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Abstract

I investigate some questions resulting from a simple definition of a straight line in an
arbitrary metric space. The triangle inequality is used as a “line equality,” and defines
the line. I try to reproduce some of the definitions for simple geometrical objects and
look at the differences from the Euclidian. This definition of a line segment is similar
to but not the same as a geodesic.
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1 Introduction

A traditional metric space is defined by a set and a mapping ρ from pairs of elements in that
set to the reals such that:

1. ρ(x, y) ≥ 0

2. ρ(x, y) = ρ(y, x)

3. ρ(x, y) = 0 ⇐⇒ x ≡ y

4. ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

It is desirable, since spacetime is not a traditional metric space, to extend this study into
modified metric spaces which do not satisfy the first criterion. First things first, though–
traditional metric spaces are easier to understand.

Some of the properties the metric space can have are those of being open or closed or
neither, of being bounded, of being compact, and so on. Different metrics defined over the
same space may result in metric spaces with different properties.

1.1 Examples of Metric Spaces

I believe it is important to have some examples available to hand on which one may test
various hypotheses and get a feeling for the territory. For simplicity in most of these I impose
various metrics on R2.

1. The simplest metric space is the trivial metric, in which ρ(x, x) = 0 and ρ(x, y) = 1
when x ̸≡ y.

2. Two more simple spaces are R2 with the metric ρ(x, y) =
√
(x1 − y1)2 + (x2 − y2)2:

(the ‘as the crow flies’ metric), and

3. R2 with the metric ρ(x, y) =| (x1 − y1) | + | (x2 − y2) |: (the ‘city streets’ (or taxi-cab
or L1) metric).

4. R3 with a hybrid metric ρ(x, y) =
√

(x3 − y3)2 + (| (x1 − y1) | + | (x2 − y2) |)2) is in-
teresting. Call it a ‘city crow’ metric–like a bird constrained to fly between skyscrapers,
but able to move vertically without hindrance.

5. Another is the distance between two points on the unit sphere. If two points have polar
coordinates θ1, ϕ1 and θ2, ϕ2 then in the ‘great circle’ metric the distance between them
is given by sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)− cos(θ1) cos(θ2).

6. Consider R2 with the point (0, 0) missing. Let it have coordinates (r, θ), and define the
metric such that for points x1 and x2, ρ(x1, x2) = min(

∫
Px1x2

ds/r), where the integral

is taken over some path Px1x2 from x1 to x2. The result (call it the ‘2D potential
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well metric’) has several cases. If x1 = (r1, θ) and x2 = (r2, θ) (the same θ), then
ρ(x1, x2) = | ln(r1/r2)|. If the radii are the same, then ρ(x1, x2) = |θ2 − θ1|. Otherwise

ρ(x1, x2) =
√

((θ2 − θ1)2 + (ln(r2/r1)2)

7. Similarly, consider R3 with (0, 0, 0) missing and define ρ(x1, x2) = min(
∫
Px1x2

ds/r),

where the integral is taken over some path from x1 to x2. Call this the ‘3D potential
well metric.’

8. Consider the familiar space of joined planes consisting of two copies of R2, an ‘upper’
and a ‘lower’, which are joined along the negative x-axis such that the upper -y joins
the lower +y, and the lower -y joins the upper +y. This space may be parameterized
by r and θ where θ runs from 0 to 4π. The distance I select is the obvious extension
of the ‘crow flies’ distance: For two points (r1, θ1) and (r2, θ2), if |θ1 − θ2| < π then
the distance is familiar:

√
r21 + r22 − 2r1r2 cos(θ1 − θ2), but if |θ1 − θ2| > π then the

shortest distance between the two points is to (0, 0) and back, and so must be r1 + r2.

9. Consider the metric space (call it Dis4) over 4 points {A,B,C,D}, with distances
between them defined by:

A B C D
A 0 2/5 1/3 1
B 2/5 0 1/4 3/5
C 1/3 1/4 0 2/3
D 1 3/5 2/3 0

(1)

10. For a nice pathological case, consider the real interval [0, 2], with ρ(a, b) =| a− b | if a
and b are rational, and = 1 if either of a or b is not rational. Call this Rat2.

11. Those who’ve walked in swamps know that there are solid bits to walk on, but getting
yourself unstuck to get there is hard. In remembrance of swamp-walking, consider a
new metric for the real line ρ(x, y) = f(x, y)∥x− y∥ where

f(x, y) =

{
1 x ̸∈ [0, 2] ∪ y ̸∈ [0, 2]

1 + ϵ2(x2 − 2x)(y2 − 2y) x ∈ [0, 2] ∩ y ∈ [0, 2]
(2)

12. Extend the taxicab metric to 3 dimensions and call it the Office metric.

13. Given a space and a metric ρ on it, define a derived metric ρ
′
such that ρ

′
(a, b) =

ρ(a, b)/(1 + ρ(a, b)). Its values lie in [0, 1).

2 Line Segments and Lines: Definition

In a familiar line segment, the distance from an end-point to a point in the middle plus
the distance from that point to the other end-point is equal to the distance between the
end-points. This seems to extend very naturally to traditional metric spaces, namely:

Sab ≡ {x | ρ(a, x) + ρ(x, b) = ρ(a, b)} (3)
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Figure 1: Sab and Lab in taxicab metric

It is simple to extend this definition to an entire line defined by two points:

Lab ≡ {x | ρ(a, x) + ρ(x, b) + ρ(a, b) = 2 ∗max(ρ(a, b), ρ(a, x), ρ(x, b))} (4)

2.1 Specific Examples of Sab

Obviously if a ≡ b then Saa = {a} and Laa is the entire set. It is also immediate that the
trivial metric does not have any interesting line segments (Sab = {a, b} = Lab).

The ‘as the crow flies’ metric behaves just as expected, but in the ‘taxicab’ metric a line
segment is, in general, a rectangle with opposite corners at the points a and b, and thus has
what one might term ‘width.’ While it is tempting to think of width as the interior of the
line segment (and indeed the ‘taxicab’ metric line segments usually do have an interior), it
isn’t always possible to define an “interior”, as may be seen from the ‘city crow’ metric.

A line in the ‘taxicab’ metric consists of the line segment (usually looks like a rectangle)
plus the quadrants tangent to the points a and b and to Sab, as shown in Figure 1.

The ‘great circle’ metric has line segments which are great circle arcs joining the points
a and b, unless these points are exactly opposite each other on the sphere, in which case the
entire surface of the sphere is the line segment. A line consists of this arc plus an arc from
b to a point exactly opposite from a on the sphere, and from a to a point exactly opposite
to b on the sphere.

In the ‘2D potential well’ metric space, if the two points have the same θ coordinate,
the line segment is a section of radius connecting them. If they have the same radius,
the segment is the arc connecting them of the circle they lie on–unless they are exactly
opposite in θ, in which case the entire circle is the line segment. If they are neither, then
there is a simple equation linking the radius and θ of the arc connecting them: θ = ((θ2 −
θ1)/ ln(r2/r1)) ln(r/r1). Note again that if the θ’s are exactly opposite to each other, there
are two arcs, one to each side of the point (0, 0), which are mirror images of each other.
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In general, if the metric is defined so that the ‘distance’ between two points a and b is
the minimum of the weighted integral over the path between them (a minimum path), then
that path is part of the Sab, by construction.

In the ‘swamp’ metric if the points a and b are less than 0 greater than 2, then Sab

consists of the same set of points you would have using the usual metric on the real line:
[a, b]. However, if either point is within the interval (0, 2) then Sab = {a, b}; only the two
endpoints are in the segment.

In the “derived” metric we have no non-trivial line segments. If x ≡ ρ(a, c) and y ≡ ρ(c, b)
and z ≡ ρ(a, b), then x+ y ≥ z, and we have

1 +
1

1 + z
=

1

1 + x
+

1

1 + y
=

2 + x+ y

1 + x+ y + xy
= 1 +

1− xy

1 + x+ y + xy
(5)

from which we find
1 + z − xy − xyz = 1 + x+ y + xy ≥ 1 + z (6)

so x or y must be 0 and only the trivial line segments are possible.

2.2 Sab is Closed

One obvious question is: Is Sab closed, open, or neither? The familiar line segment on the
‘crow flies’ metric is, of course, closed.

If Sab is a finite set, then it trivially contains its limit points and is closed. Suppose it
is not. Select a limit point of Sab designated as z and assert that it is not in Sab. By the
definition of a limit point in a metric space, for any ϵ > 0 there exists within Sab some point
y such that ρ(z, y) < ϵ.

Because z is not in the segment, ρ(a, z)+ρ(z, b) > ρ(a, b). Let δ ≡ ρ(a, z)+ρ(z, b)−ρ(a, b).
Select ϵ < δ/2, and as noted above we can find q within Sab such that ρ(z, q) < ϵ. We know
that

ρ(a, z) ≤ ρ(a, q) + ρ(z, q) ≤ ρ(a, q) + ϵ

and
ρ(z, b) ≤ ρ(q, b) + ρ(z, q) ≤ ρ(q, b) + ϵ

We can combine these to give

ρ(a, b) + 2ϵ = ρ(a, z) + ρ(z, b) < ρ(a, q) + ϵ+ ρ(q, b) + ϵ < ρ(a, b) + 2ϵ

which is a contradiction. Therefore Sab must be closed.

2.3 Sab is bounded

This is easily seen. Let w ≡ ρ(a, b); then defining the ball to be

B(q, r) ≡ {x | ρ(q, x) ≤ r} (7)
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clearly each x ∈ Sab satisfies x ∈ B(a, w), and thus Sab is bounded. We needn’t restrict
ourselves to the endpoints, of course. For each x, y ∈ Sab, we have

ρ(x, y) ≤ ρ(x, b) + ρ(y, b)

ρ(x, y) ≤ ρ(x, a) + ρ(y, a)

=⇒ ρ(x, y) ≤ ρ(a, b)

and the distance between any two points within Sab is less than or equal to ρ(a, b), and
Sab ⊂ B(x,w).

2.4 Sab Contains its Sub-segments of the form Sax

Suppose that there is some point q in Sab. Is it true that Saq ⊂ Sab?

Suppose ∃y ∈ Saq. Then ρ(a, y) + ρ(y, q) = ρ(a, q), and since ρ(a, q) + ρ(q, b) = ρ(a, b),
then ρ(a, y) + ρ(y, q) + ρ(q, b) = ρ(a, b). Since we have, by definition of a metric space,
ρ(y, q) + ρ(q, b) ≥ ρ(y, b), we get

ρ(a, b) = ρ(a, y) + ρ(y, q) + ρ(q, b) ≥ ρ(a, y) + ρ(y, b) ≥ ρ(a, b)

Since we are bounded above and below by ρ(a, b) the ≥ must be =, and we see that ρ(a, y)+
ρ(y, b) = ρ(a, b), and hence y ∈ Sab.

Thus Saq ⊂ Sab if q ∈ Sab.

If we know that for a set of points xi

ρ(a, x1) + Σiρ(xi, xi+1) + ρ(xn+1, b) = ρ(a, b)

we can iterate combining the distances to likewise show that all of the xi are in Sab.

It is not true in general that if x, y ∈ Sab that Sxy ⊂ Sab. For a simple counterexample,
consider the ‘2D potential well metric’ with points on opposite sides of the singularity, e.g.
(1, 0) and (−2, 0). The line segment consists of two branches around the singularity. If you
take one x from one branch and y from another the resulting segment between them is almost
entirely disjoint from the original.

2.5 Widths and Measures in a Line Segment

Define a mapping from Sab and the real number t to a set of points in the segment which
are at distance t from the point a. Clearly t has to lie within [0, ρ(a, b)].

G(Sa,b, t) ≡ {q | q ∈ Sab ∩ {v | ρ(a, v) = t} }

To keep the notation simple, I’m assuming that the a which is the reference for this distance
is the first point mentioned in Sa,b, instead of explicitly specifying it. This set of points may
be empty for some values of t, or have one point only, or many points. For t = 0 we trivially
have G(Sa,b, 0) = {a}, and also G(Sa,b, ρ(a, b)) = {b}. Given a line segment Sab and mapping
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G(Sa,b, t), we can define a real function from [0, ρ(a, b)] to [0, ρ(a, b)] that describes a type of
width of the line segment.

W (Sa,b, t) ≡ max(ρ(c, d)) | c, d ∈ G(Sa,b, t)

It is possible that there are no points in the set for a given ti, in which case defineW (Sa,b, ti) =
0. If there is only one point the value is also 0, of course. To be able to talk about this easily
we need another function that helps precisely define continuity over [0, ρ(a, b)]:

Conta,b(t) ≡
{

1, G(Sa,b, t) ̸= ∅;
0, G(Sa,b, t) = ∅ (8)

Since Conta,b(t) will always be 1 when t = 0 or t = ρ(a, b), if it is discontinuous then there
are gaps in the mapping. I call the segment Cont if Conta,b(t) = 1 everywhere.

Another definition of width is possible; call it the thickness. Define the thickness at the
distance x from a as the largest sphere C one can have entirely within Sa,b centered in the
set of points at distance x

Tx(Sab|x) ≡ max(r|C(y, r) ⊂ Sab, y ∈ H(Sab|x)) (9)

The thickness of the segment itself is

Tx(Sab) ≡ max(Tx(Sab|x)) (10)

A line segment can have a non-zero width but a thickness of 0. For example, consider
the Office metric for the case in which the points a and b share the same x coordinate. The
resulting Sab is a plane, which in general has a non-zero width, but the thickness is 0.

2.5.1 Geodesics

If Sab is Cont then we can find at least one mapping g from the real set [0, ρ(a, b)] to Sab such
that for every r in the interval there is one point in Sab. It need not be true that the distance
between points r and r + ϵ is small: it may be relatively large. Consider the pathological
”swamp” metric as an example.

However, if the mapping g does satisfy ρ(g(r), g(r+ ϵ)) = ϵ then we can call g continuous
in the usual sense, and consider it a geodesic in the usual sense of the term. There might be
amusing complications if the equality is replaced with an ϵ/δ construction instead.

There can be more than one distinct continuous mapping gi. These are separated from
each other in the following sense. Pick a distance from a at which two are distinct and call
it r. Let g1(r) = x1 and g2(r) = x2, and ρ(x1, x2) = K > 0. There exists ϵ > 0 such that for
all q ∈ (r − ϵ, r + ϵ), ρ(g1(q), g2(q)) > 0.

Suppose this were not true, and there were some q in that interval for which g1(q) =
y1 = y2 = g2(q). We have ρ(x1, y1) < ϵ and ρ(x2, y1) < ϵ. We therefore must have 2ϵ >
ρ(x1, y1) + ρ(x2, y1) > ρ(x1, x2) = K , but since ϵ is arbitrarily small and K is finite this is
a contradiction. (Also true for the ϵ/δ construction variant I mention above.)
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There are always at least two intersections between two such geodesics: the end points.
If there are countably many then as usual one can find a sequence with a limit λ in the real
interval [0, ρ(a, b)]. For points in each geodesic close to the map for λ the maximum distance
K = ρ(x1, x2) will have to become arbitrarily small.

2.6 Partitionable and Well-ordered

If a line segment has the property that for each point c ∈ Sab, Sab = Sac ∪ Scb then that line
segment is partitionable . This is a fairly strong requirement. Segments consisting of only
three points are trivially partitionable .

It is easily seen that W (Sa,b, t) must be 0 everywhere for a partitionable segment. If it is
non-zero for some t then there exist two points x and y in Sab such that ρ(a, x) = ρ(a, y) = t
(and also ρ(x, b) = ρ(y, b)). If we could partition Sab then y would have to be in either Sax

or Sxb: say Sax without loss of generality. This requires ρ(a, y) + ρ(y, x) = ρ(a, x) = ρ(a, y),
which would imply ρ(y, x) = 0 which contradicts the assumption that there are two distinct
points.

A segment which has W (Sa,b, t) always 0 call ‘well-ordered.’ If this is true for all line
segments in the space, then call the metric space ‘well-ordered’ too. It can happen that a line
segment will have multiple branches, each of which, considered separately, is well-ordered;
but the whole segment is not. Line segments of the ‘taxi-cab’ are generally not well-ordered,
though some are for selected a and b.

‘Well-ordered’ is an analog of the usual definition of a line segment, which is the set of
points (1− t)x+ ty : 0 ≤ t ≤ 1. At first glance partitionable and ‘well-ordered’ seem to be
closely related, and in fact partitionable implies ‘well-ordered.’

Given x, y ∈ Sab, if Sab is partitionable we must have y ∈ Sax or y ∈ Sxb. Without loss
of generality assume the first case, ρ(a, y) + ρ(y, x) = ρ(a, x). If x ̸= y we have ρ(y, x) > 0
and thus ρ(a, y) ̸= ρ(a, x). Since x and y were selected arbitrarily, this means that no two
points have the same distance from a and thus W (Sa,b, t) = 0. So partitionable implies
‘well-ordered.’

On the other hand, well-ordered does not imply partitionable, as shown by a counterex-
ample. The metric Dis4 has a non-trivial line segment in SA,D, which consists of the entire
set. This segment is clearly well-ordered. It is not partitionable . Thus well-ordered does
not imply partitionable .

A segment can be well-ordered and Cont but not partitionable . Consider the ‘swamp’
metric and the segment S02. It consists of all the points in [0, 2], has no gaps, and no two
points have the same distance from 0. However, for any x in S02 where x is neither 0 nor 2,
the union of the segments S0x and Sx2 consists of only 3 points: {0, x, 2}.

A weaker condition than partitionable can be useful. Call a line segment ‘locally parti-
tionable ’ if, for all but a finite number of points, we have

q ∈ Sab,∃ϵ > 0 | (B(q, ϵ) ∩ Saq)⊕ (B(q, ϵ) ∩ Sbq) = B(q, ϵ) ∩ Sab

A line segment can bifurcate, but so long as there are only a finite number of these bifurcation
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points it can be locally partitionable . That Saq ⊂ Sab if q ∈ Sab we know from section 2.3.
Along with this we can define the property of being ‘locally well-ordered’ in a natural way.

If W (Sab) > 0, some of the W (Sab, q) > 0. Either W (Sab, q) > 0∀q /∈ {a, b}, or there
exists some q where it is = 0. In the first case it may be possible to parameterize something
more like a conventional line segment, one of which contains a given point q ∈ Sab while
others do not.

2.7 When Does Sab Contain its Sub-segments Generated from In-
ternal Points?

We already saw that Sab does not always contain sub-segments created from points within
it, but it is interesting to determine when it does and when it does not.

If for some x, y in Sab, Sxy ̸⊂ Sab, then clearly x is not in Say or Sby, and likewise y is not
in Sax or Sbx, or else by the result above Sxy ⊂ Say ⊂ Sab (for example). Thus if Sxy ̸⊂ Sab,
then Sab ̸= Sax ∪Sxb, since we have a point y which is not in either of the two sub-segments.
Sab is not partitionable .

Notice that the converse is not true: Sab not partitionable does not imply that there exists
{x, y} ∈ Sab with Sxy ̸⊂ Sab. The ‘taxi cab’ metric space provides a simple counter-example:
each line segment contains all segments creatable from points within it, but it is not a simple
sum of two sub-segments Sax and Sxb.

A line need not contain all line segments generated by the points within it. This is obvious
from considering the ‘great circle’ metric, where a line is (in general) an arc extending more
than half-way round the sphere. Thus there are two points {x, y} in Lab which are exactly
opposite to each other, and Sxy is the entire surface of the sphere–which is not contained in
Lab in general.

The ‘2D potential well’ metric space offers an example of a space in which not all line
segments are partitionable , and in fact in which there exist line segments which do not
contain line segments generated from points within themselves. It is easy to see that most
of the line segment arcs in this space are partitionable , but when the points are at different
radii and are opposite each other in θ, the line segment consists of two non-circular arcs
joining the points. Clearly the Sac and Scb formed from using a point in one of these arcs
will not generate any points in the other arc, and this Sab is not partitionable . In addition,
if you take a point from one of the arcs and a point from the other, the line segment formed
between them will, far from being a subset of Sab, only intersect Sab in two points.

At the moment all I have are examples to outline the nature of the questions.

2.8 Nearest Point in a Line Segment

Given a line segment Sab (not equivalent to the entire space) and a point c not in it, then
define the nearest points as

N(Sab, c) = {x ∈ Sab | ρ(c, x) = d | d = min(ρ(c, y)) y ∈ Sab}
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Since Sab is closed, there is at least one point in N .

There can be more than one point in N . For example take the ‘great circle’ metric space.
Consider one Sab which is an arc on the ‘equator’ and c on a ‘pole.’ In this case N(Sab, c) is
the entire Sab. The ‘great circle’ metric space was not devised to be pathological.

2.9 Non-trivial Intersection of Line Segments

In many cases two line segments will not intersect at all, or only in a single point. I think
this is understood well enough to require no comment.

If the segments have W (Sa,b) = 0 and W (Sc,d) = 0 (the maximum of W (Sa,b, t)), and
a, b /∈ Sc,d and c, d /∈ Sa,b

Assume there are points a, b, c, and d such that c, d ̸∈ Sab and a, b ̸∈ Scd. This will not
always be possible, of course (as when a and b are on opposite poles of a sphere, with the
usual metric on a sphere). Call their intersection

Ia,b|c,d ≡ Sab ∩ Scd

Often I will be ∅, and there are metric spaces in which it is always ∅ (using the trivial metric,
for example), but consider for now the instances when it is not empty, and also not the entire
space (as can happen in 1-dimensional spaces).

Clearly I is closed.

It may be of interest to examine when I is connected. To do that we’d need to define
connectedness and convexity in this space.

Is Ia,b|c,d = Srs for some r and s?

Not always: there is a counterexample in the ‘2D potential well metric.’ Points exactly
opposite each other in angle but at different radii have 2-branched line segments, which can
have two intersection points with the segment joining a pair of points at the same radius.
These don’t form even a trivial line segment.

So instead of Ia,b|c,d, consider the connected subsets of it. Label these (if there are
countably many) with i and call them J i

a,b|c,d.

Are these J i
a,b|c,d = Srs for some r, s?

Not always. If the intersection part is a single point, that is a trivial line segment and
the conjecture is true. However, take as a counterexample the case of the ‘3D potential well
metric’ when {a, b} = {(N, 0, 0), (−N, 0, 0)} and {c, d} = {(N, ϵ, 0), (−N,−ϵ, 0)} where N is
large.

The S in these cases take the form of long conical sheaths that reach from each endpoint
to meet around the singularity. The intersection of the “conical” portions near one of the
endpoint will consist of a couple of loops. If two points are far from the singularity the line
segment between them will look much like a line segment in R3–they cannot generate a loop.
Therefore the J cannot be a line segment in this example, and therefore not in general.

Assume for the moment that the union of the two line segments is not the same as the
entire space. Given a point q in the intersection J i

a,b|c,d, can we create a non-empty ball
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B(q, R) ≡ {x | ρ(x, q) ≤ R} which contains points not in the intersection of the two line
seqments? (In other words, extending beyond the intersection blob.) Assume we can, for
R greater than some Rmin (though the cases in which one cannot might have interesting
pathologies). Now consider U ≡ B(q, R)∩ Sab. Into how many continuous convex parts is it
divided?

If there are 0, 1 or more than 2 convex parts I’m not ready to deal with the situation
right now. If there are 2, then let’s proceed.

U ≡ U1∪U2 where U1 and U2 are the two convex parts. Let p1 ∈ U1∩J i
a,b|c,d and p2 ∈ U2∩

J i
a,b|c,d. If either of these two sets is empty, we again have a curious situation which I’ll ignore

for the moment. Now find a point Q (if it exists) in Scd such that Q ̸∈ Sab and ρ(Q, i) > R.

Let W1 = min(ρ(p1, Q)), p1 ∈ U1 ∩ J i
a,b|c,d, and W2 be the corresponding minimum for p2.

Use these to define f(Q,R) ≡ W 2
1 /(W

2
1 + W 2

2 ). Now define fL(R) = min(f(Q,R)) and
fH(R) = max(f(Q,R)). If these converge such that limR→Rmin

fH(R)− fL(R) = 0, then we
can define a unique angle of intersection, which is given by sin(θ/2) = limR→Rmin

fH(R). It
may be zero; perhaps in some metrics even always zero. For the standard Euclidean metric
the definition returns the usual value for θ.

2.10 Dimensions

Dimensions aren’t always easy to define, but I at least need to have something that allows me
to exclude trivial cases. There are two obvious definitions of a 1-dimensional space: There
exist two points a and b for which Lab is the entire space; or alternatively, for all distinct
points a and b, Lab is the entire space. It isn’t clear which is most useful yet, and I have not
taken up such fine points as “except for a finite number of points” or “except for a finite set
of disconnected regions.”

An alternative approach is iterative. Consider some local region of the metric space. If
for every point x in Sab (excluding a and b) there exists a ball B(x, ϵ) ⊂ Sab, the space is
locally 1D.

In section 3 I discuss ways of defining ”inside” for a generalized triangle.

If I find a point c /∈ Sab and define a triangle T 1
a,b,c and if for every point x ∈ T 1

a,b,c (not
in any of the Sac, etc) there exists a ball B(x, ϵ) ⊂ T 1

a,b,c, the space is locally 2D.

If I find a point d /∈ T 1
a,b,c and define a ‘tetrahedron’ T41a,b,c,d in the analogous way to

T 1, and if for every point x ∈ T41a,b,c,d (not in any of the T 1
a,b,d, etc) there exists a ball

B(x, ϵ) ⊂ T41a,b,c,d, the space is locally 3D.

2.11 Hyperbolic

A Gromov product in a metric space is defined by

(a, b)c =
1

2
(ρ(a, c) + ρ(c, b)− ρ(a, b)) (11)

This will always be greater than or equal to zero. If c ∈ Sa,b, then (a, b)c = 0.
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A Gromov-hyperbolic metric space satisfies, for all a, b, c, and d in the space,

(a, b)c ≥ min((a, d)c, (d, b)c)− δ (12)

If all segments in the metric space are trivial, then the space will be Gromov-hyperbolic.

3 Planes

There are four obvious definitions of a ‘plane’ defined by 3 points. In the usual Euclidean
space these are equivalent, but not in general.

Require that the three points a, b, and c are not in the same line. We can try to use a
line defined by two of the points and a third point not on the line, as in

P s
Lab,c

≡ {y | y ∈ Lcr; r ∈ Lab} (13)

Sometimes one will have P s
Lab,c

≡ P s
Lac,b

≡ P s
Lbc,a

, but this need not be true in general. A
more symmetric definition is better:

P 2
a,b,c ≡ {y | y ∈ LXr; X ∈ {a, b, c}, r ∈ Lab ∪ Lbc ∪ Lac} (14)

In Euclidean geometry one can get away with an even smaller definition; though this can
produce amusing unexpected gaps in the coverage in more general cases:

P 1
a,b,c ≡ {y | y ∈ LXr; X ∈ {a, b, c}, r ∈ Sab ∪ Sbc ∪ Sac} (15)

Alternatively we can use a union of all lines generated from all points in the lines generated
by the three points, as in

P 4
a,b,c ≡ {y | y ∈ Lsr; s, r ∈ Lab ∪ Lbc ∪ Lac} (16)

Once again, in the Euclidean metric we can get away with a smaller definition involving
lines between points on the line segments generated by the three points.

P 3
a,b,c ≡ {y | y ∈ Lsr; s, r ∈ Sab ∪ Sbc ∪ Sac} (17)

We can also define a plane-like object by selecting one of the definitions of a ‘plane’ and
generating all lines formed from points within that object; continuing the iteration until we
get convergence (if that ever happens!).

An obvious first question is: ‘Do these result in the same sets?’ The answer is no. A
simple counter-example is the ‘great circle’ metric. Given 3 points, the plane defined by
P 1 consists, in general, of the area contained within 6 arcs defined by the points and lines
between them–it is NOT the entire sphere, in general. However, P 4, consisting of all lines
joining points in any of the lines, must consist of the entire sphere, since any line must
include at least two points opposite each other on the sphere, and any line joining two points
opposite each other comprises the entire sphere. Thus these are not equivalent definitions.
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We have (by construction) that P s ⊂ P 2 for any order of (a, b, c); and it is obvious that
P 1 ⊂ P 2 and P 3 ⊂ P 4. It is not hard to see that P 1 ⊂ P 3 and P 2 ⊂ P 4, and if we iterate
P 1 or P 3 as described above, that P 2 ⊂ P 1

iter and P 4 ⊂ P 3
iter.

A second question is: ‘Does a line partition a plane defined by that line and another
point?’ This depends on how one defines partition, apparently. In the case of the ‘great
circle’ metric two points on ‘opposite’ sides of the line in a plane (P 1) defined by another
point cannot be joined by a great circle arc which does not intersect the line, but can be
joined by a series of arcs which don’t intersect it. Of course, P 1 is a deliberately minimal
definition.

This needs more work.

4 Inside/Outside

Consider a ‘triangle’ defined by 3 points, none of which is in a line defined by the other two.

T 1
a,b,c ≡ {∪Sij | i, j ∈ {Sab ∪ Sbc ∪ Sac}} (18)

Sometimes sweeping out the “angles” from the vertices will be equivalent, but not always:

T 2
a,b,c ≡ {∪Sij | i ∈ {a, b, c}, j ∈ {Sab ∪ Sbc ∪ Sac}} (19)

The T 2 definition clearly does not give the same set as the T 1 definition when applied to
the ‘2D potential well metric’ when the 3 points are spaced around the singularity. The
“hole” in the middle is shaped differently between the two. It is possible to take three points
from the interior of the original triangle and create a triangle from these with a new and
“smaller” “hole” in the middle. One could define a limiting “interior” as the union of all
such sub-triangles and their sub-triangles in turn.

What constitutes the inside and what the outside of the triangle? There may in fact
be nothing ‘inside’ in any reasonable sense–for example consider the ‘city streets’ metric, in
which the line segments between the three points completely fill the rectangle defined by the
most extreme points with nothing left over to call “inside.” I use the definition

Ina,b,c ≡ {∪Sij | i, j ∈ {Sab ∪ Sbc ∪ Sac}} − {Sab ∪ Sbc ∪ Sac}

for the inside of this ‘triangle’, with the understanding that it may be empty.

I’d like to know if this definition of a triangle results in a triangle defined by three points
which is a subset of the plane defined by those three points. It is consistent with P 3 and P 4,
but it isn’t clear yet if it works with the other two.

5 Interpretations

For a metric space defined by minimization of some quantity over a path, Sab represents the
set of points on 2-stride paths between a and b. Since Sa,b defined this way is minimizing
over a path of an infinite number of strides, you would expect that it would contain all
sub-segments generated by pairs of points within it.
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6 Miscellaneous Questions

Given two segments Sa,b1 and Sa, b2, and given two points c1 and c2 on each respectively,
both the same distance from a, what can we say about the relative sizes of ρ(c1, c2) and
ρ(b1, b2)? In the ordinary Euclidean metric the former will be smaller than the latter, but
in general you don’t know that. As an example, in the ‘2D potential well metric’, if a is on
the near side of the peak and b1 and b2 are almost on the opposite side; just a little to the
left and right respectively, the c points along the arcs may be farther apart or nearer than
the end b points, depending on where along the arc you select them.

Given a and b, under what conditions can one find x and y such that Sxy is Lab? This
is certainly sometimes possible when the space is bounded and closed, as can be seen by
considering the unit disk in R2 with the standard ‘crow flies’ metric: just pick x, y to lie on
the boundary and you have {x, y} = {a, b}, Sxy = Lab. When the space is unbounded, it is
at least sometimes impossible for Lab to be Sxy.

Under the different definitions of the triangle, under what conditions can one “triangu-
late” the metric space? Is a well-defined dimension of the space a prerequisite? Can one
readily expand the definition to the equivalents of higher dimensions?

One can easily pathologize a bounded metric space to have a point which cannot lie in
the interior of any line segment (ie. not one of the endpoints), by defining the distance
between that point and any other to be greater than twice the largest distance between any
other two points. However, if the metric is continuous according to some measure (e.g. all
Sab are Cont), what does this excluded subset look like? Some kind of boundary? Does it
have a thickness?

Is there some simple way to determine the boundary of a simplex in the metric space?

7 Families of Metric Spaces That Preserve the Sets

Comprising Line Segments

Given a set of points and a metric on these, we consider the set of all line segments. There is
a family of metric spaces which result in the same set of line segments. To be precise, using
the same a, b results in the same set of points Sab for any of the metrics in this family and
for all a and b in the set (or local region of the set). For example if a metric ρ on a set of
points results in a set of line segments S, ρ → cρ for c > 0 results in the same set S.

This can be more extensive than simple scaling. For example, consider R2 with the metric
function ρ = ((δx)α + (δy)α)1/α. If α > 1, line segments are the same no matter what α is
selected, even though circles are quite different. If you use a linear mapping of the x and y
onto x

′
and y

′
and plug that into the metric function, line segments are unchanged.

In the trivial case of a space consisting of {a, b, c} you can get the same set of line
segments {Sab} with arbitrarily different metrics: e.g. ρ1(a, b) = 2, ρ1(a, c) = 1, ρ1(c, b) = 1
and ρ2(a, b) = 2, ρ2(a, c) = 1/4, ρ2(c, b) = 7/4.
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8 Angle at an Intersection

If we take two lines Lab and Lcd that intersect in a non-empty Iab,cd, the obvious approach
is to try to find the distance between points on each line equidistant from their intersection,
and see if the ratio of the distance between those points (Ch) and their distance from the
intersection (R) becomes constant with decreasing distance. That gives us a way to define
a local angle. Since this is a metric space we have 2R ≥ Ch.

To that end, we need to look at intersection cases. For simplicity of notation, call Lab L1

and call Lcd L2, and call the intersection I; just assume the other points have been defined
already.

I-A I is a single point
I-B I is a finite set of points
I-C I is an infinite set of points
I-D I contains a disk of radius ϵ > 0

For the moment, only consider case I-A, or a point from I-B in which the point is isolated
from the rest by some distance κ. Call the intersection point used here p.

In order to define our limit, the lines L1 and L2 should be ‘continuous’ in some sense.
Name the intersection of a disk Dϵ(p) with L as Qϵ(p, L).

C-0 continuous: For all ϵ > 0 if Qϵ(p, L)− {p} is non-empty.

C-1 continuous: If it is continuous in the C-0 sense and if for all 0 < ϵ2 < ϵ1 < κ, for
some appropriate κ, Qϵ2(p, L) is a proper subset of Qϵ1(p, L).

Assume both lines L1 and L2 are C-1 continuous.

One can demand other forms of continuity, such as that for every ϵ > 0 and p on the line,
there are points x on the line satisfying ρ(p, x) = ϵ (C-2), and so on.

Consider now circles C(p, ϵ) = {x|ρ(p, x) = ϵ} that intersect the lines.

It is possible to have a circle that intersects one but not the other locally continuous
line, for some radius less than κ, while at nearby radii both are intersected, by for example
removing a point from the space. It would not contain its limit points.

Denote the intersection of a circle and line asWϵ(p, L) ≡ C(p, ϵ)∩L In ordinary Euclidean
geometry this will have two points in it (recall that p is on the line L).

Pick pairs of points (h1, h2) from Wϵ(p, L1) and Wϵ(p, L2) respectively, and from these
select a set of pairs for which the distance ρ(h1, h2) is minimum. There may easily be more
than 1 of these (as in Euclidean geometry). Pick one of these pairs: (hϵ,L1 , hϵ,L2).

Now find another ϵ2 < ϵ1, and find the same type of pairs as before with the new ϵ. From
that set, pick one for which both ρ(hϵ2,L1 , hϵ1,L1) and ρ(hϵ2,L2 , hϵ1,L2) are minimum: assuming
this is possible. If a metric is pathological enough C-1 continuity isn’t enough to guarantee
this.

We are now able to compare the change of distances with radius.

The ratio of Ch1 = ρ(hϵ1,L1 , hϵ1,L2) to ϵ1 and the ratio of Ch2 = ρ(hϵ2,1, hϵ2,2) to ϵ2
should be at least consistent as ϵ1 decreases. If the ratio converges to some constant value
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r as ϵ1 decreases, we are able to define an angle between the lines in a consistent way.
θ ≡ 2 arcsin(r/2) Since, as noted above, Ch ≤ 2R, if the limit of r = Ch1/ϵ1 exists and is
well defined, then the angle θ is also well defined.

8.1 Loosening

How many of the assumptions above can be loosened? If the ratio mentioned converges,
with a set of excursions ‘of measure 0’, that should suffice for a nearly correct angle.

As an example of a pathological metric that offers C-1 continuity for the given lines,
consider a Euclidean x-y plane with exceptional points. Distances between all points are the
same as before, except for those for which y = 1/2n for n > 1, where the distance is 5 times
the usual distance. Lines defined by L(1,1),(−1,−1) and L(1,−1),(−1,1) intersect in (0, 0), and are
C-1 continuous with respect to that point. However some points will be missing from both
lines, namely those for which y = 1/2n. One could define open bands as the pathological
parts instead, in which case the lines L would include their limit points, so merely adding
that condition doesn’t guarantee that a circle at the intersection of the lines will always
intersect both lines.

9 Looking at Balls

Recall that a Ball is B(a, r) ≡ {x|ρ(a, x) ≤ r}, a Sphere is Sp(a, r) ≡ {x|ρ(a, x) < r}, and a
Circle is C(a, r) ≡ {x|ρ(a, x) = r}.

Define
Q(a, r) ≡ {∪Sa,x∀x ∈ C(a, r)} (20)

The metric around this Ball is “well-behaved” if

Q(a, r) = B(a, r) (21)

If it is not “well-behaved”, then ∃y ∈ B(a, r)|r − ρ(a, y) < ρ(a, z)∀z ∈ C(a, r)

It isn’t hard to kludge up a metric space for which this can be true. For example, pick
the ordinary R2 and pick a point q for which ρ(a, q) is the usual one, but ρ(x, q) is some
large number for any x ̸= a. You can probably also come up with situations in which the
boundary Circle has significantly fewer points than Circles of smaller radius.

What requirements will make the metric “well-behaved” almost everywhere?

In a possibly related question, can one have a Sphere around a remote point in which
every point but the center is farther from the starting point than the center?

R(b, r1, r2) ≡ Sp(b, r2)−B(b, r1), r2 > r1 > 0 (22)

Suppose that for every z ∈ R(b, r1, r2) we have ρ(a, b) < ρ(a, z) for some a.

16



Naturally ρ(a, z) ≤ ρ(a, b) + ρ(b, z). Since ρ(a, z) is larger than ρ(a, b) by assumption,
ρ(a, z) = ρ(a, b) + δ with δ > 0. We can then write

ρ(a, b) < ρ(a, z) = ρ(a, b) + δ ≤ ρ(a, b) + ρ(b, z) < ρ(a, b) + r2 (23)

Giving
ρ(a, z) < ρ(a, b) + r2 (24)

We can’t automatically require r1 or r2 to be arbitrarily small, but at least this brackets δ,
which has to satisfy δ < r2.

If there is a non-empty line Sa,b, assume we can find adjust r2 to find a z in the ring and
a y outside the ring but in Sa,b such that the distance between z and y is less than ϵ. If so,
then because ρ(a, y)+ρ(y, z) ≥ ρ(a, z) then ρ(a, y)+ ϵ > ρ(a, z), with ϵ becoming arbitrarily
small. But since this brings ρ(a, z) arbitrarily close to a value less than ρ(a, b), we have a
contradiction.

Therefore either Sa,b is empty in this situation, or we can’t pick y and z arbitrarily close
together. We know that for y in Sa,b (which means ρ(b, y) = ρ(a, b)−ρ(a, y)), ρ(y, z) > ρ(y, b).

There is thus some kind of break in Sa,b, such that for some arbitrarily small ϵ we can
find a y ∈ Sa, b such that ρ(a, y) + ϵ < ρ(a, b), but for which there are no x ∈ Sa,b such that
ϵ < ρ(a, x)− ρ(a, y) < 2ϵ. There might be a last point on this part of Sa,b, or it might be a
limit point not in the line segment.

10 Curves and Continuity and Dimensions

If a curve (C) is closed, and satisfies C(x, ϵ) ∪ (C) is a finite set of points for all x ∈ (C),
except for a finite set of points (e.g. endpoints of the curve) ∀ϵ|ϵ0 > ϵ > 0, we can call the
curve continuous. If the circle and curve intersect in two points (as with lines in the familiar
Euclidean plane) for all but a few points (given small enough circles), we can try to define
an ordering of points.

For example, pick a center for the circle b, give the circle radius r < ϵ0 and name the
points of intersection with the curve a and c. If it is the case that ρ(c, a) > r then a is
farther from c than b, and the three points are ordered. Pick a smaller radius r− δ and call
the points of intersection of this new circle a′ and c′. δ1 ≡ ρ(a, a′) > δ and δ2 ≡ ρ(c, c′) > δ.
It is easy to see that the distance ρ(c′, a′) > r − δ1 − δ2. Unfortunately there aren’t strong
upper bounds on δ1 and δ2, so it isn’t instantly obvious that ρ(c′, a′) > r − δ. Were that
true, we could extend ordering on the curve.

The obvious case to check is that in which all but a finite number of points on the curve
have a single point in the intersection of arbitrary small circles with the curve. This isn’t
possible if, given Sa,b, ∀λ ∈ [0, ρ(a, b)],∃x ∈ Sa,b such that x is unique and ρ(a, x) = λ. This
is easily seen by first finding a c ∈ Sa,b and then a d ∈ Sa,c such that ρ(c, d) < δ. Then look
at Sc,d. If the condition of every real distance having a point in the segment is true, then for
the distance λ = ρ(c, d)/2 we can find a point f for which ρ(c, f) = λ. But then since by
the definition of f being in Sc,d, we know that ρ(d, f) = λ. This gives us two points in the
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circle C(f, λ) ∪ Sc,d, which contradicts the assumption the paragraph started with, since c
and d are arbitrary (and therefore not restricted to a finite number of points).

At any rate, we can try to define a 1-dimensional curve as one which is continuous per the
above definition (excepting a finite number of points) and for which each circle centered on
a point on the curve intersects the curve in exactly two points (excepting that finite number
of points on the curve). A two-dimensional surface would be one in which for almost all
points on the surface, for a small enough radius of circle the intersection of the circle with
the surface is a 1-dimensional curve. Of course the ”almost all” is no longer merely ”all but
a finite number” anymore, our measure needs to be more sophisticated. One can make a
ladder of dimensions this way, though the exceptional points get harder to define.

11 Other References

Taxicab Geometry by Eugene F. Krause is a nice elementary introduction that I just discov-
ered (9-March-2004).
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