Identifying the Sources of Cosmic Rays with AMANDA and IceCube

Jim Braun University of Wisconsin - Madison

Overview

Neutrino astronomy will improve our understanding of high energy processes in the universe

The IceCube Neutrino Observatory is half complete and improves with each construction season

New search methods are improving sensitivity

Recent results are encouraging

Cosmic Rays

Astronomical Messengers

Astronomical Messengers

Cosmic Ray Accelerators

SN Remnants

AGN

GRB 080319b

Galactic Sources

Extragalactic Sources

Correlations of Auger EHE events with nearby AGN and the supergalactic plane

J. Abraham et al., Science 318, 938 (2007)

NO SMOKING GUN!

Optical Cherenkov Detection

μ

μ

Hadronic Shower

W

Cherenkov light mapped by optical sensors

The South Pole

University of Oxford

University Utrecht

Univ Alabama, Tuscaloosa Univ Alaska, Anchorage UC Berkeley UC Irvine Clark-Atlanta University U Delaware / Bartol Research Inst Georgia Tech University of Kansas Lawrence Berkeley National Lab University of Maryland The Ohio State University Pennsylvania State University University of Wisconsin-Madison University of Wisconsin-River Falls Southern University, Baton Rouge

The IceCube Collaboration

32 Institutions, ~250 members

Drilling and Deployment

Digital Optical Module (DOM)

HV

Flasher Board with 12 LEDs

DOM Main Board

Power consumption: 3 W Digitize at 300 MHz for 400 ns Dynamic range 200pe/15 nsec Excalibur FPGA/ARM CPU Digital data transmission over copper

10 inch Hamamatsu PMT

Pressure Sphere

Clock stability: $10^{-10} \approx 0.1$ nsec / sec Synchronized to GPS every ≈ 10 sec

Calibration

DOM local clock must be synchronized with GPS master clock

DOM Front-End

PMT

Calibrated Quantities:

- PMT Gain
- PMT Propagation Delay
- Amplifier Gains
- Discriminator Threshold
- ATWD Sampling Rate
- ATWD ADC/mV

Event Topologies

Run 110261 Event 32883 Tue Jan 29 09:39:35 2008

0

Event Reconstruction

Scattering and absorption affect photon propagation in ice

Delay probability known as a function of distance to track

$$\mathcal{L}(\theta, \phi, \mathbf{r}) = \prod_{i=1}^{N} P(t_{res}|d)$$

Minimize -Log L to find best fit hypothesis

IceCube Events

Event Selection

A combination of topological cuts reduces misreconstructed upgoing events

Upgoing Events

IceCube 22 String:

5114 neutrino candidates in 276 days livetime

Search for Extraterrestrial Neutrinos

Need to separate extraterrestrial neutrinos from atmospheric neutrino background

Binned searches are suboptimal

- Event loss
- Distribution of events within bin
- Track resolution
- Event energy
- Optimization

Perform search with an unbinned maximum-likelihood method

Point Source Search

Space Angle Term:

- Assume $P(|x_i x_s|)$ is a 2-D Gaussian
- Space angle uncertainty σ_{i} can be measured for each event during reconstruction

Energy Term:

Use number of hit channels(Nch) as a measure of energy

Point Source Search

Background: Atmospheric neutrinos are uniform in RA

$$\mathcal{B}_i = \frac{1}{\Omega} \cdot P_{atm}(Nch_i)$$

Assume a fraction of events are signal, remainder are background

Partial probability for each event:

$$P(\vec{x}_s, n_s, \gamma, \vec{x}_i, Nch_i, \sigma_i) = \frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) \mathcal{B}_i$$

Likelihood function:
$$\mathcal{L}(\vec{x}_s, n_s, \gamma) = \prod_{i=1}^{N} P(\vec{x}_s, n_s, \gamma, \vec{x}_i, Nch_i, \sigma_i)$$

M

Numerically minimize -Log L with respect to n_s and γ , obtaining best fit values $\hat{n}_s, \hat{\gamma}$

Log likelihood:
$$\lambda = -2 \cdot log \left[\frac{\mathcal{L}(\vec{x}_s, n_s = 0)}{\mathcal{L}(\vec{x}_s, \hat{n}_s, \hat{\gamma})} \right]$$

Point Source Search

Simulate sources of various strength

Compute significance by comparing to data randomized in RA

Method requires 30% - 50% less flux for 5σ discovery compared to binned approach

Search Optimization

Discovery Potential vs. Spectral Index

Without energy term, cuts must be optimized for either hard or soft signal spectrum. With the energy term, the analysis is (nearly) optimal for all signal spectra. Background separation is done by the analysis, rather than by the cuts.

Estimating Spectral Index

Maximization of λ yields an estimate of the source strength and spectral index

Source	μ ₉₀	P-value
Crab	9.27	0.10
MGRO J2019+37	9.67	0.077
Mrk 421	2.54	0.82
Mrk 501	7.28	0.22
LS I +61 303	14.74	0.03
Geminga	12.77	0.0086

$$E^{2}\Phi < \mu 90 * 10^{-11} \text{ TeV cm}^{-2} \text{ s}^{-1}$$

The probability of obtaining $p \leq 0.0086$ for at least one of the 26 sources is 20%

The Cygnus Region

Milagro Stacking Search

Improves per-source flux sensitivity and discovery potential by a factor of 4 compared to a fixed-point search for any of the six sources

Milagro Stacking Search

Experimental Limits

Search of the Galactic Plane with IceCube-22 + AMANDA

Optimized for low energy No significant excess observed

IceCube 22 String

A search based on a list of sources yields no significant excess

Accounting for all trials, p-value for analysis is 1.34% (2.2 sigma).

At this significance level, consistent with fluctuation of background.

IceCube 22 String

Out of 10,000 trials of scrambled data sets, 67 (0.67%) have a teststatistic (max IlhRatio or p-value of hottest spot) more significant than that found in the data.

Including trial factor of two since the analysis with the a priori list was also performed, the **post-trials p-value is** ~ **1.34%**.

Event from Hotspot

Estimated angular error: 0.84°

IceCube 22 String

If the unbinned analysis is performed without the energy / NChan term, the original hottest spot is still an excess, but no longer significant at all.

(Note that the scale has changed and no spot is significant after trials).

=> The significance at this spot depends on contribution of high energy (high NChan) events

Time Analysis of Hotspot

Future IceCube data will test the possibility that the hottest spot is a source unless it is a **one-time occurrence**.

We need to perform a time-dependent analysis to take advantage of this possibility: Assume events occur in a flare or burst of unknown duration.

$$\mathcal{L}(\vec{x}_s, n_s, \gamma, t_o, \sigma_t) = \prod_{i=1}^N \left(\frac{n_s}{N} \mathcal{S}_i \cdot \frac{1}{\sqrt{2\pi\sigma_t}} e^{-\frac{(t_i - t_o)^2}{2\sigma_t^2}} + (1 - \frac{n_s}{N}) \frac{\mathcal{B}_i}{t_L} \right)$$

Maximize likelihood, finding the best values of σ_t and t_o

$$\lambda = -2 \cdot \log \left[\frac{\mathcal{L}(\vec{x}_s, n_s = 0)}{\mathcal{L}(\vec{x}_s, \hat{n}_s, \hat{\gamma}, \hat{\sigma}_t, \hat{t}_o)} \right]$$

Time Analysis of Hotspot

• None of the events contributing most strongly to the hotspot are closer together than 10 days. Events are distributed roughly evenly in time over the year.

• Neither analysis finds any significant single cluster of events in time.

LS I +61 303 Periodic Analysis

- Binary system with 26.496d Radio Periodicity
- Clear TeV gamma ray periodicity observed by MAGIC
- Neutrino flux may also be periodic
- Apply an analysis method similar to the hotspot analysis

$$\mathcal{S}_i = \frac{1}{2\pi\sigma^2} e^{-\frac{|\vec{x}_i - \vec{x}_s|^2}{2\sigma^2}} \cdot P(Nch|\gamma) \cdot \frac{1}{\sqrt{2\pi\sigma_w}} e^{-\frac{(\phi_i - \phi_o)^2}{2\sigma_w^2}}$$

LS I +61 303 Periodic Analysis

Nine events within 3 degrees, but no time correlation

GRB 080319b

Pi of the Sky

Visual magnitude ~5.3

Data consistent with 0.0 events within window

AMANDA GRB Binned Searches

2005-2006 90% CL Limit: **14.7 * WB flux** 1997-2003 + 2005-2006: **1.1 * WB flux**

The Near Future: IceCube-40

IceCube currently running with 40 strings deployed.

~ 2x effective area of 22 strings. More fully contained strings.

Short direction: angular resolution comparable to IceCube 22.

Long direction: angular resolution comparable to full IceCube 80 configuration.

Moon Shadow

 4.2σ deficit of events from direction of moon in the IceCube 40-string detector (3 months of data) confirms pointing accuracy

Calibration with moon ~monthly with completed IceCube detector

Conclusions

- New methodology and increasing detector size are improving the current neutrino point source sensitivity
- No evidence of neutrino point sources observed by AMANDA in 3.8 years of livetime.
- The hottest spot observed by IceCube-22 will be tested with data from IceCube-40

Ice: The Optical Medium

Search for Autocorrelations

- Search for event clustering at angular scales comparable to detector resolution
 Signal scenario: A number of small event clusters
- Method: Count the number of event pairs given a maximum angular separation and minimum Nch and compare to distributions from data with randomized RA

Max significance: 1.6 σ

99 out of 100 sets of
randomized data have a
max significance of
1.6σ or greater