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1 Introduction

In this document we describe a frequentist method of defining central confidence intervals which

incorporate systematic errors. This method, the profile construction method, is an extension by

G. Feldman of the frequentist approach described in his paper with R. Cousins [1]. Originally

described (albeit very tersely) in [2], it has only recently been applied to physics analyses.

2 The Canonical Frequentist Approach

We review the canonical frequentist approach to the construction of central confidence intervals, as

described in [1].

2.1 Likelihood Ratio

We first define a test statistic to compare our observables x for various hypotheses, characterized

by physics parameters θr. For a binned distribution, a natural choice arises from the Poisson

probability (or likelihood)

P (x|θr) =
N∏

i=1

e−µi
µni

i

ni!
, (1)

where we form a product over the N bins of our observable(s) x, and in each bin of the data we see

ni counts on an expected µi for the hypothesis we are testing with parameters θr. At this point it

is conventional to switch to the negative logarithm (the log likelihood):

L(θr) = −2 ln P = 2
N∑

i=1

(µi − ni lnµi + lnni!) . (2)

We will come back to the additional factor of 2.
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To compare the probabilties of two hypotheses H1 and H2 of generating our observed data, we

take the likelihood ratio (or, working with the logarithm, the difference):

L(θr1) − L(θr2) = 2
N∑

i=1

(
µ1,i − µ2,i + ni ln

µi,2

µi,1

)
. (3)

where hypothesis H1 with parameters θr1 gives us an expected count µ1,i, and hypothesis H2 with

parameters θr2 gives us an expected count µ2,i, and again we have observed ni counts in a given

bin. Using this, our test statistic compares the hypothesis at a point θr to the hypothesis that fits

the data the best. Specifically, in the physics parameter space θr, the test statistic is the difference

of the log likelihood at this point to the best-fit hypothesis with parameters θ̂r (L is minimized1

by θ̂r):

∆L(θr) = L(θr) − L(θ̂r) . (4)

The additional factor of 2 added in equation 2 arises because in the Gaussian regime, ∆L so defined

approaches a χ2 distribution with degrees of freedom equal to the dimension of θr (Wilks’ Theorem).

2.2 Confidence Intervals

At this point, we wish to examine all the physically allowed hypotheses by iterating over the space

θr, and determine which are allowed given our observation x. It is not uncommon at this point

to use Wilks’ Theorem and define confidence intervals using a χ2 distribution. Specifically, one

calculates ∆L at every point θr, and for a given confidence level (CL) α, the allowed region is the

set

{θr}α = {θr | ∆L(θr) < χ2(α, dimθr)} . (5)

For two parameters and a 90% confidence level, we would allow the region where ∆L < 4.61. This

is known as the global scan method.

As demonstrated in [1], the global scan method has several disadvantages when the likelihood

varies in a complicated way over the parameter space. In particular, ∆L can deviate from the

simple χ2 distribution by a significant amount if, for example, one of the parameters is extended

into a region which has little effect on the observables. In this case, the effective dimensionality of

θr is reduced and the χ2 used has too many degrees of freedom. In this case we prefer a frequentist

approach to define the confidence intervals which takes this and other issues into account to achieve

proper coverage.
1By minimizing the negative log likelihood, we maximize the probability.
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Specifically, at each point in the parameter space θr, we perform a number of Monte Carlo

experiments where we sample from the parent distribution {x | θr} and then calculate the likelihood

ratio ∆Li for the experiment. This set of {∆Li} allows us to see how our test statistic behaves

under statisical variations only. Then to define our confidence intervals at CL α, we find the critical

value ∆Lcrit such that

(∫ ∆Lcrit

0
∆Li

)
/

(∫ ∞
0

∆Li

)
= α , (6)

and our acceptance region is the set {θr} where ∆Ldata(θr) < ∆Lcrit(θr). In this way we have

used the likelihood ratio as an ordering principle to sort the possibilities into increasing statistical

significance. We also point out that the exclusion region at CL α is simply the complement of this

set, as acceptance / exclusion is just defined by which side of the critical value one is on.

3 Incorporating Systematic Errors

Unfortunately, the above procedure does not incorporate any kind of systematic errors. In statistical

terms, a systematic error can be treated as a nuisance parameter : a parameter which one must

know to calculate the expected signal, but the value of which is not important to the result. The

likelihood depends now on both physics parameters θr and nuisance parameters θs, but one needs

to “project out” any confidence intervals into only the θr space.

The key to this procedure is to use an approximation for the likelihood ratio that, in a sense,

uses the worst-case values for the nuisance parameters θs – the values which make the data fit the

hypothesis the best at that point θr. Mathematically, we find the best values for θs in both the

numerator and the denominator of the likelihood ratio:

∆Lp(θr) = L(θr,
ˆ̂
θs) − L(θ̂r, θ̂s) , (7)

where we have globally minimized the second term, and we have conditionally minimized the first

term, keeping θr fixed but varying the nuisance parameters to find ˆ̂
θs. This statistic is called the

profile likelihood.

The profile likelihood is used in combination with the χ2 approximation in the “MINOS” method

in the MINUIT suite and is also explored in some detail by Rolke et al. in [3, 4]. To extend the

Feldman-Cousins frequentist construction to the profile likelihood, we follow the method suggested

by Feldman [5]: we perform Monte Carlo experiments as before, but instead of iterating through

the entire (θr, θs) space, at each point in the physics parameter space θr we fix θs to its best-fit

value from the data, ˆ̂
θs. Then we recalculate the profile likelihood for the experiment as defined in
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equation 7. As before, this gives us a set of likelihood ratios {∆Lp,i} with which we can define the

critical value for a CL α which depends only on θr.

To summarize, we describe the procedure step-by-step:

1. The test statistic / ordering principle is the profile likelihood ∆Lp as defined in eq. 7.

2. The profile likelihood for the data is calculated at each point θr, with the numerator being a

conditional minimum at (θr,
ˆ̂
θs), and the denominator the global minimum at some (θ̂r, θ̂s).

3. For each point θr, we perform a number of Monte Carlo experiments in which we sample

from the parent distribution {x | θr,
ˆ̂
θs,data}, then we recalculate the profile likelihood for

each experiment.

4. For a CL α, at each point we find the critical value ∆Lp,crit(θr) using eq. 6, and this point is

in the allowed region if ∆Lp,data(θr) < ∆Lp,crit(θr).

4 Discussion

We note that the problem of incoporating systematic errors into confidence intervals is still an

area of active research: for a survey of recent approaches, including hybrid Bayesian-frequentist

methods not discussed here, see [6]. Two fully frequentist constructions (not using the profile

likelihood approximation) have been employed in test cases by by G. Punzi [7] and K. Cranmer [8],

but there is not a general consensus on an ordering principle. For further information, we refer the

reader to the discussion by Cranmer in [9]2.
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