
IceRay Testing mini-HOWTO
John Kelley, 25 October 2007

jkelley@icecube.wisc.edu

1. What is This?

This document contains instructions for driving the IceRay test software at UH-Manoa.
Unless otherwise noted, all software is installed on the hub idlpc6.  The system should
be booted from the RedHat partition, and the user should be logged in as aura.

2. Power-up

To power up the system, first turn on all three relevant power supplies — there are two to
the left of the PC monitor connected in series which power the DOR card and thus the
mainboard, and there is the 100V rack-mount unit on the bench.  The order of power-up
is not important.

Next, the DOM mainboard itself can be powered on via the command

% on 0 1

which powers on DOR card 0, wire pair 1.  You should see output indicating that DOM
“A” is communicating (there is no unterminated “B” DOM on this pair).

2. DOM Mainboard Prep

The next step is to put the mainboard in the correct state (iceboot) for data taking:

% iceboot 01a

You should see output indicating that the mainboard is in iceboot.

Now, you also need to check that the dtsx software is running.  This software attaches a
network socket at port 5004 to the Linux device file representing the DOM mainboard.
This can be done with the following command:

% killall dtsx; dtsxall.pl

3. Running the Test Script

The proto-DAQ testing system is a Python script which controls the mainboard and the
ICRR through a suite of custom iceboot (the DOM mainboard command-line OS)
commands.  The top-level IceRay.py script and supporting code is run from this
directory on idlpc6:



% cd ~/testdaq/iceray/scripts/run-scripts

Usage for the script can be viewed by executing without any command-line arguments:

% ./IceRay.py

The script currently has two run modes: first, it can acquire forced triggers and save the
events (including raw LAB3 waveforms) as binary files, as well as decoded headers in a
text file; second, it can perform a DAC threshold scan and save the results via the
decoded headers (including scaler rates).

3.1 Forced Triggers / Waveform Acquisition

Forced trigger mode with waveform acquisition can be run with the following arguments
to IceRay.py:

% ./IceRay.py –d 010 –F –f <file prefix> -n <events>

The flag ‘-d 010’ tells the script to connect to the mainboard at card 0, pair 1, DOM A
(=0).  ‘-F’ specifies forced triggers.  The <file prefix> should be replaced with
a string for naming the event binary files (currently one file per event).  The files will be
named:

<prefix>.1.bin
<prefix>.2.bin
...

and so forth, up to the number of triggers / events recorded, specified by the final integer
argument <events>.

For example,

% ./IceRay.py –d 010 –F –f testwf -n 100

will acquire 100 forced-trigger waveforms, with filenames testwf.1.bin,
testwf.2.bin, etc.   The binary file format is described in this document:

   http://www.icecube.wisc.edu/~jkelley/iceray/Virtual Addres CMD.ver1.xls

This will change somewhat, as we have not added the mainboard header and ATWD data
to the events yet.

The decoded event headers are all appended to the file headers.txt, along with an
event timestamp (from the PC, not from a real time calibration).   The columns in the
header file are in the same order as the non-waveform data, as described in the document
linked above.



3.2 Threshold Scan

The other mode in which IceRay.py can run is a threshold scan, in which it ramps up all
ICRR DAC values from 0 to 4095 and records, via the decoded event headers, all scaler
rates at each DAC setting.

The syntax for this type of run is as follows.  It is recommended to move the old headers
file out of the way first in order to have a clean file for this run:

% mv headers.txt headers.txt.bak
% ./IceRay.py –d 010 –F –S -h -n 100

The ‘-S’ flag switches on the scan.  The ‘-h’ puts the ICRR in housekeeping mode, in
which no waveform data is transferred to the mainboard, only the headers.  This saves
some time.  The ‘-n 100’ normally would select how many steps to perform in the
scan, but this is currently hard-coded to switch to finer binning in the DAC region of
interest.  We may fix this at some point.

4. Analysis

Analysis / visualization tools are quite primitive at this stage: a couple of ROOT and
gnuplot scripts with basic binary and header file parsing.  If you’d like to use either of
these, they can be found at

http://www.icecube.wisc.edu/~jkelley/iceray/iceray.html

I can provide usage information upon request.

5. Power-down

To power the system down, first power off the mainboard:

% off all

Then turn off all three power supplies.

6. Troubleshooting

If the Python script hangs immediately at startup, interrupt it with CTRL-C, and then run
it again.  Please contact me (jkelley@icecube.wisc.edu) if you have any
questions regarding these procedures or run into any unexpected trouble.  Thanks!


