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Chapter 1

Introduction

Our Universe is a violent place. Stars burn through their elemental fuel and explode. Matter spirals

to its doom around supermassive black holes at the center of galaxies. Space still glows in every

direction from the primordial explosion of the Big Bang.

Born from these inhospitable conditions are the neutrinos. Anywhere nuclear reactions or

particle collisions take place, neutrinos are likely to be produced — in the Big Bang, in stars, and

even in our own nuclear reactors. The neutrino, having no electric charge, interacts only via the

weak force, and thus normal matter is nearly transparent to it. Trillions of neutrinos pass through

our bodies every second, and we never notice.

Wolfgang Pauli postulated the existence of the neutrino in 1933 to solve a problem with missing

energy in radioactive beta decay [1]. Twenty years later, Reines and Cowan first detected neutrinos

by placing liquid scintillator targets next to the Hanford and Savannah River nuclear reactors [2].

Today, we have also detected neutrinos from our Sun ([3]; see also fig. 1.1), from nuclear decay deep

in the Earth [4], and even from a nearby supernova [5, 6]. Figure 1.2 shows the fluxes and energy

ranges spanned by known and hypothetical neutrino sources.

Another product of the high-energy processes in the universe are cosmic rays: high-energy

protons and atomic nuclei that are accelerated to energies far beyond that of any particle accelerator

on Earth. These cosmic rays bombard the Earth continuously, producing yet more neutrinos that

rain down upon us from high in our atmosphere.

Given a large enough target, we can detect these high-energy atmospheric neutrinos. The

AMANDA-II neutrino detector employs the huge ice sheet at the South Pole as such a target, and



2

Figure 1.1: “Picture” of the Sun in neutrinos, as seen by the Super-Kamiokande neutrino
detector. Image credit: R. Svoboda and K. Gordan.
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Figure 11: Neutrino spectra. We show the cosmic neutrino background (CνB) multiplied by 1010, solar
and supernova neutrinos, the isotropic atmospheric neutrinos, those coming from the galactic plane due
to cosmic ray gas interactions, an hypothetical galactic source at 10 kpc, whose detection at E > 10 TeV
would require a good angular resolution to reject the atmospheric background (similar considerations hold
for AGN neutrinos not displayed). Finally the required flux to produce the CR beyond the GZK cutoff by
annihilations with the dark matter neutrinos.

CP violation appearing at one loop through the diagrams in fig. 10 would lead [30] to
Γ(N → !H) "= Γ(N → !̄H∗), so that a final L asymmetry will result. Reasonable parameter
values lead naturally to the required asymmetries (η ∼ 10−10), making this scenario probably
the simplest baryogenesis mechanism.

3.6 Neutrinos, dark matter and ultra-high energy cosmic rays:

Neutrinos may not only give rise to the observed baryonic matter, but they could also
themselves be the dark matter in the Universe. This possibility arises [31] because if the
ordinary neutrinos are massive, the large number of them present in the CνB will significantly
contribute to the mass density of the Universe, in an amount9 Ων $

∑

i mνi
/(92h2 eV). Hence,

in order for neutrinos not to overclose the Universe it is necessary that
∑

i mνi
<∼ 30 eV, which

is a bound much stronger than the direct ones for mνµ,τ . On the other hand, a neutrino mass
∼ 0.1 eV (as suggested by the atmospheric neutrino anomaly) would imply that the mass
density in neutrinos is already comparable to that in ordinary baryonic matter (ΩB ∼ 0.003),
and mν>∼ 1 eV would lead to an important contribution of neutrinos to the dark matter.

The nice things of neutrinos as dark matter is that they are the only candidates that
we know for sure that they exist, and that they are very helpful to generate the structures
observed at large supercluster scales (∼ 100 Mpc). However, they are unable to give rise
to structures at galactic scales (they are ‘hot’ and hence free stream out of small inhomo-
geneities). Furthermore, even if those structures were formed, it would not be possible to
pack the neutrinos sufficiently so as to account for the galactic dark halo densities, due to

9The reduced Hubble constant is h ≡ H/(100 km/s-Mpc) $ 0.6.

Figure 1.2: Neutrino fluxes as function of energy (multiplied by E3 to enhance spectral
features) from various sources, including the cosmic neutrino background from the Big
Bang (CνB), supernovae neutrinos (SN ν), solar neutrinos, and atmospheric neutrinos
(from [7]).
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uses sensitive light sensors deep in the ice to detect the light emitted by secondary particles produced

when a neutrino occasionally hits the ice or the bedrock. AMANDA-II accumulates such neutrinos at

the rate of about 16 per day, about four of which are sufficiently high quality to use for an analysis.

Why study these neutrinos? Nature provides a laboratory with energies far above what we

can currently produce on Earth, and studying these high-energy neutrinos can possibly reveal hints

of surprising new physical effects. We know that our theories of gravity and quantum mechanics are

mutually incompatible, but we have no theory of quantum gravity to unify the two. At high enough

energies, we should be able to probe effects of quantum gravity, and neutrinos may prove crucial to

this effort.

In this work, we examine atmospheric neutrinos detected by AMANDA-II from the years 2000

to 2006 for evidence of quantum gravitational effects, by determining their direction and approximate

energy. We have found no evidence for such effects, leading us to set limits on the size of any violations

of our existing theories. Finally, we determine the atmospheric neutrino flux as a function of energy,

extending measurements by other neutrino experiments.
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Chapter 2

Cosmic Rays and Atmospheric Neutrinos

2.1 Cosmic Rays

Cosmic rays are protons and heavier ionized nuclei with energies up to 1020eV that constantly

bombard the Earth’s atmosphere. Exactly where they come from and how they are accelerated

to such incredible energies are both open questions. Nearly 100 years after Victor Hess’s balloon

experiments in 1912 showed that cosmic rays come from outer space [8], we still do not know their

source. One of the main difficulties is that the magnetic field of the Galaxy scrambles any directional

information that might point back to a source. Still, all but the highest-energy cosmic rays come

from within our Galaxy, and the expanding shocks around supernovae remnants are a likely candidate

acceleration site [9]. Figure 2.1 shows a composite image of the expanding shock wave around the

Tycho supernova remnant.

The cosmic ray energy spectrum is a power law with differential flux approximately propor-

tional to E−2.7 [11]. Figure 2.2 shows measurements of the flux from both direct measurements

(space- and balloon-based instruments) and indirect measurements (air shower arrays). Above about

106 GeV, the spectrum steepens to approximately dN/dE ∝ E−3, a feature known as the knee. The

exact mechanism for this transition is unknown, but one possibility is a rigidity-dependent cutoff of

the spectrum as cosmic rays diffuse out of the Galaxy [12].
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Figure 2.1: X-ray and infrared multi-band image of Tycho’s supernova remnant
(SN 1572), a possible source of galactic cosmic ray acceleration [10]. Image credit:
MPIA/NASA/Calar Alto Observatory.



6

10-10

10-8

10-6

10-4

10-2

100

100 102 104 106 108 1010 1012

E
2 dN

/d
E

 
 (

G
eV

 c
m

-2
sr

-1
s-1

)

Ekin  (GeV / particle)

Energies and rates of the cosmic-ray particles

protons only

all-particle

electrons

positrons

antiprotons

CAPRICE
BESS98

AMS
Ryan et al.

Grigorov
JACEE
Akeno

Tien Shan
MSU

KASCADE
CASA-BLANCA

DICE
HEGRA

CasaMia
Tibet

AGASA
HiRes

Figure 1. Global view of the cosmic-ray spectrum.

would be an increase in the relative abundance of heavy nuclei as first protons, then helium,
then carbon, etc. reach an upper limit on total energy per particle [17]. The first evidence of
such a sequence (which I call a “Peters cycle” [1]) is provided by the recent publication of the
KASCADE experiment [21], which was discussed extensively at this workshop. The data from
KASCADE are limited in energy to below 1017 eV. The larger KASCADE Grande array [22],
which encloses an area of one square kilometer, will extend the reach of this array to 1018 eV.
KASCADE measures the shower size at the ground, separately for protons and for GeV muons.
Inferences from the measurements about primary composition depend on simulations of showers
through the atmosphere down to the sea level location of the experiment.

17

Figure 2.2: The cosmic ray energy spectrum as measured by various direct and indirect
experiments, from [13]. The flux has been multiplied by E2 to enhance features in the
steep power-law spectrum.
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2.2 Atmospheric Neutrinos and Muons

2.2.1 Production

As cosmic rays interact with air molecules in the atmosphere, a chain reaction of particle

production (and decay) creates an extensive air shower of electrons, positrons, pions, kaons, muons,

and neutrinos. Atmospheric neutrinos are produced through hadronic interactions generating charged

pions and kaons, which then decay into muons and muon neutrinos:

π+(K+)→ µ+ + νµ (2.1)

π−(K−)→ µ− + ν̄µ . (2.2)

Some of the muons produced in the decay will also eventually decay via exchange of a W± boson,

producing both electron and muon neutrinos:

µ+ → ν̄µ + e+ + νe (2.3)

µ− → νµ + e− + ν̄e . (2.4)

However, many of these atmospheric muons will survive to ground level and, depending on their

energy, can penetrate kilometers into the Earth before decaying. The process of atmospheric muon

and neutrino production is shown schematically in fig. 2.3.

2.2.2 Energy Spectrum and Angular Distribution

Atmospheric muon neutrinos dominate over all other neutrino sources in the GeV to TeV

energy range. The flux of atmospheric electron neutrinos is over one order of magnitude smaller than

the flux of muon neutrinos at these energies [15]. While the flux of parent cosmic rays is isotropic,

the kinematics of the meson interaction and decay in the atmosphere alters the angular distribution

of atmospheric νµ to a more complicated function of the zenith angle.

While elaborate three-dimensional calculations exist for the expected flux of atmospheric neu-

trinos [16, 17], an approximate analytic formulation is given by Gaisser [11]:
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Collisions between cosmic rays and 

nuclei in the upper atmosphere can 

create high-energy pions (!). In the 

collision shown on the right, a !", ! 0,

and other heavy particles (the hadronic

shower) are created. The ! 0 decays

and produces gamma rays and leptons

the electromagnetic shower) but no

neutrinos. The !" produces two muon

neutrinos (blue) and an electron 

neutrino (red). The collision shown on

he left produces a !#, leading to the

production of two muon neutrinos and

an electron antineutrino. 

(The neutrino interaction cross sections, and hence the neutrino detection probability,

increases dramatically with energy.) Depending on the energy of the incident cosmic

ray and how its energy is shared among the fragments of the initial reaction, neutrino

energies can range from hundreds of millions of electron volts to about 

100 giga-electron-volts (GeV). (In comparison, the highest-energy solar neutrino

comes from the 8B reaction, with a maximum energy of about 15 MeV.) 

Muon neutrinos produce muons in the detector, and electron neutrinos produce

electrons, so that the detector signals can be analyzed to distinguish muon events

from electron events. Because the sensitivity of the detectors to electrons and muons

varies over the observed energy range, the experiments depend on a Monte Carlo

simulation to determine the relative detection efficiencies. Experimental results, 

therefore, are reported as a “ratio of ratios”—the ratio of observed muon neutrino to

electron neutrino events divided by the ratio of muon neutrino to electron neutrino

events as derived from a simulation:

R = 

If the measured results agree with the theoretical predictions, R = 1.

A recent summary of the experimental data is given by Gaisser and Goodman

(1994) and shown in Table II. For most of the experiments, R is significantly less

than 1: the mean value is about 0.65. (In the table, the Kamiokande and IMB III 

experiments identify muons in two ways. The first involves identification of the

Cerenkov ring, which is significantly different for electrons and muons. The second

involves searching for the energetic electron that is the signature for muons that have

stopped in the water detector and decayed. A consistent value of R is obtained using

either method.) Despite lingering questions concerning the simulations and some 

systematic effects, the experimenters and many other physicists believe that the 

observed values for R are suppressed by about 35 percent.

The Kamiokande group has also reported what is known as a zenith-angle depen-

dence to the apparent atmospheric-neutrino deficit. Restricting the data to neutrinos

that come from directly over the detector (a zenith angle of 0 degrees and a distance of

about 30 kilometers) yields R < 1.3 (that is, more muon to electron neutrino events are

observed than predicted by theory). Neutrinos that are born closer to the horizon (a

zenith angle of 90 degrees) and have to travel a greater distance to reach the detector

result in R < 0.5. Finally, neutrinos that have to travel through the earth to reach the

detector (roughly 12,000 kilometers) result in an even lower value for R. The apparent

(&%'&
e
) observed

((
(&%'&

e
) simulation

Table II. Results from the Atmospheric Neutrino Experiments

Experiment Exposure R

(kiloton-year)

IMB I 3.8 0.68 ) 0.08

Kamiokande Ring 7.7 0.60 ) 0.06

Kamiokande Decay – 0.69 ) 0.06

IMB III Ring 7.7 0.54 ) 0.05

IMB III Decay – 0.64 ) 0.07

Frejus Contained 2.0 0.87 ) 0.13

Soudan 1.0 0.64 ) 0.19

NUSEX 0.5 0.99 ) 0.29

.

The result of the Kamiokande experiment will be tested in the near future by

super-Kamiokande, which will have significantly better statistical precision. Also,

the neutrino oscillation hypothesis and the MSW solution will be tested by the

Sudbury Neutrino Observatory (SNO) experiment, which will measure both

charged- and neutral-current solar-neutrino interactions.

Evidence from Atmospheric Neutrinos. Upon reaching the earth, high-energy

cosmic rays collide violently with nuclei present in the rarefied gas of the earth’s

upper atmosphere. As a result, a large number of pions—!#, !0, and !"—are

produced (see Figure 2). These particles eventually decay into either electrons or

positrons and various types of neutrinos and antineutrinos. (A large number of

kaons are also produced by cosmic rays in the upper atmosphere, and these 

particles also eventually decay into various leptons.)  As seen in Figure 2, the

decay of either positive or negative pions results in the eventual production of 

two muon neutrinos (&% and &!%) but only one electron neutrino (either &
e

or &!e
).

Experimenters, therefore, expect to measure two muon neutrinos for each 

electron neutrino. 

Atmospheric neutrinos are orders of magnitude less abundant than solar 

neutrinos, but can be readily detected because they have very high energies. 

Figure 2.3: Atmospheric muon and neutrino production (from [14]).
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dN

dEν
= C

(
Aπν

1 + Bπν cos θ∗ Eν/επ
+ 0.635

AKν

1 + BKν cos θ∗ Eν/εK

)
, (2.5)

where

Aπν = ZNπ
(1− rπ)γ

γ + 1
(2.6)

and

Bπν =
γ + 2
γ + 1

1
1− rπ

Λπ − ΛN

Λπ ln(Λπ/ΛN )
. (2.7)

Equivalent expressions hold for AKν and BKν . In the above, γ is the integral spectral index (so

γ ≈ 1.7); Zij is the spectral-weighted moment of the integral cross section for the production of

particle j from particle i; Λi is the atmospheric attenuation length of particle i; εi is the critical

energy of particle i, at which the decay length is equal to the (vertical) interaction length; ri is the

mass ratio mµ/mi; and cos θ∗ is not the zenith angle θ at the detector, but rather the angle at the

production height in the atmosphere.

The cosine of the atmospheric angle is roughly equal to that of the zenith angle for cos θ ≥ 0.5.

For steeper angles, we have a polynomial parametrization of the relation that averages over muon

production height [18],

cos θ∗ =

√
cos2 θ + p2

1 + p2(cos θ)p3 + p4(cos θ)p5

1 + p2
1 + p2 + p4

(2.8)

where the fit constants for our specific detector depth are given in table 2.1.

Table 2.1: Fit parameters for the cos θ∗ correction (eq. 2.8), from [18].

p1 0.102573
p2 -0.068287
p3 0.958633
p4 0.0407253
p5 0.817285

While significant uncertainties exist in some of the hadronic physics (especially production of
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Figure 2.4: Predicted atmospheric neutrino flux as a function of energy and zenith angle,
extended to high energies with the Gaisser parametrization. The flux vs. energy (left) is
averaged over all angles, while the flux vs. zenith angle (right) is at 1 TeV.

K± and heavier mesons), eq. 2.5 is a useful parametrization of the flux in the energy range where

neutrinos from muon decay can be neglected (Eν of at least a few GeV, and higher for horizontal

events).

We can also use eq. 2.5 to extend the detailed calculations of Barr et al. [16] and Honda et al.

[17] to energies of 1 TeV and above, by fitting the parameters in an overlapping energy region (below

700 GeV). We show the extended fluxes for each of these models in fig. 2.4 as a function of energy

and zenith angle.

2.3 Neutrino Oscillations

If neutrinos are massive, their mass eigenstates do not necessarily correspond to their flavor

eigenstates. As we will show, this implies that neutrinos can change flavor as they propagate, and a

νµ produced in the atmosphere may appear as some other flavor by the time it reaches our detector.

In general, there exists a unitary transformation U from the mass basis to the flavor basis.

For oscillation between just two flavors, say νµ and ντ , the transformation can be represented as a

rotation matrix with one free parameter, the mixing angle θatm:



11

 νµ

ντ

 =

 cos θatm sin θatm

− sin θatm cos θatm


 ν1

ν2

 . (2.9)

For free particles propagating in a vacuum, the neutrino mass (energy) eigenstates evolve according

the equation

 ν1(t)

ν2(t)

 =

 e−iE1t 0

0 e−iE2t


 ν1(t = 0)

ν2(t = 0)

 . (2.10)

Combining equations 2.9 and 2.10, and using the approximation that the mass of the neutrino is

small compared to its momentum (so that Ei ≈ p + mi
2

2p ), we find

 νµ(t)

ντ (t)

 = Uf (t)

 νµ(t = 0)

ντ (t = 0)

 , (2.11)

where the time-evolution matrix Uf (t) in the flavor basis is given by

Uf (t) =

 cos2 θatm e−i
m1

2t
2p + sin2 θatm e−i

m2
2t

2p cos θatm sin θatm (e−i
m1

2t
2p − e−i

m2
2t

2p )

− cos θatm sin θatm (e−i
m1

2t
2p − e−i

m2
2t

2p ) cos2 θatm e−i
m1

2t
2p + sin2 θatm e−i

m2
2t

2p

 .

(2.12)

By squaring the appropriate matrix element above, this evolution equation can easily be used

to obtain the probability that a muon neutrino will oscillate into a tau neutrino. Conventionally, the

propagation time is replaced by a propagation length L, and the momentum can be approximated

by the neutrino energy E, resulting in the following expression for the survival (non-oscillation)

probability:

Pνµ→νµ
= 1 − sin2 2θatm sin2

(
∆m2

atmL

4E

)
, (2.13)

where ∆m2
atm is the squared mass difference and L is in inverse energy units1 (we continue this

1 L (GeV−1) = L (m)/(c~) = L (m) · 5.07× 1015 m−1 GeV−1 .
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convention unless noted otherwise).

In practice, for atmospheric neutrinos the zenith angle of the neutrino relative to a detector

serves as a proxy for the baseline L. Specifically, the baseline for a given zenith angle θ is given by

L =
√

R2
Earth cos2 θ + hatm(2REarth + hatm)−REarth cos θ (2.14)

if the neutrino is produced at a height hatm in the atmosphere, and where θ = 0 corresponds to a

vertically down-going neutrino. We assume that the Earth is spherical and set the radius REarth =

6370 km, noting that the difference between the polar radius and equatorial radius is only about 0.3%.

We use an average neutrino production height in the atmospheric 〈hatm〉 = 20 km [19]. We note that

any correction for detector depth is smaller than the error from either of these approximations.

A description of oscillation between all three flavors can be obtained as above, except that the

transformation matrix U has a 3 × 3 minimum representation and has four free parameters: three

mixing angles θ12, θ13, and θ23, and a phase δ13 [20]. Fortunately, because of the smallness of the

θ13 mixing angle and the “solar” mass splitting ∆m12, it suffices to consider a two-neutrino system

in the atmospheric case.

Observations of atmospheric neutrinos by Super-Kamiokande [21], Soudan 2 [22], MACRO

[23], and other experiments have provided strong evidence for mass-induced atmospheric neutrino

oscillations. Observations of solar neutrinos by the Sudbury Neutrino Observatory (SNO) have also

shown that the neutrinos truly change flavor, rather than decay or disappear in some other way [24].

A global fit to oscillation data from Super-Kamiokande and K2K [25] results in best-fit atmospheric

parameters of ∆m2
atm = 2.2 × 10−3 eV2 and sin2 2θatm = 1 [26]. Thus from eq. 2.13, for energies

above about 50 GeV, atmospheric neutrino oscillations cease for Earth-diameter baselines. However,

a number of phenomenological models of physics beyond the Standard Model predict flavor-changing

effects at higher energies that can alter the zenith angle and energy spectrum of atmospheric muon

neutrinos. We consider two of these in the next chapter, violation of Lorentz Invariance and quantum

decoherence.
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Chapter 3

Quantum Gravity Phenomenology

Experimental searches for possible low-energy signatures of quantum gravity (QG) can provide a

valuable connection to a Planck-scale theory. Hints from loop quantum gravity [27], noncommutative

geometry [28], and string theory [29] that Lorentz invariance may be violated or spontaneously broken

have encouraged phenomenological developments and experimental searches for such effects [30, 31].

Space-time may also exhibit a “foamy” nature at the smallest length scales, inducing decoherence of

pure quantum states to mixed states during propagation through this chaotic background [32].

As we will discuss, the neutrino sector is a promising place to search for such phenomena.

Water-based or ice-based Čerenkov neutrino detectors such as BAIKAL [33], AMANDA-II [34],

ANTARES [35], and IceCube [36] have the potential to accumulate large samples of high-energy

atmospheric muon neutrinos. Analysis of these data could reveal unexpected signatures that arise

from QG phenomena such as violation of Lorentz invariance or quantum decoherence.

3.1 Violation of Lorentz Invariance

Many models of quantum gravity suggest that Lorentz symmetry may not be exact [31]. Even

if a QG theory is Lorentz symmetric, the symmetry may still be spontaneously broken in our Universe.

Atmospheric neutrinos, with energies above 100 GeV and mass less than 1 eV, have Lorentz gamma

factors exceeding 1011 and provide a sensitive test of Lorentz symmetry.

Neutrino oscillations in particular are a sensitive testbed for such effects. Oscillations act as a

“quantum interferometer” by magnifying small differences in energy into large flavor changes as the

neutrinos propagate. In conventional oscillations, this energy shift results from the small differences
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in mass between the eigenstates, but specific types of violation of Lorentz invariance (VLI) can also

result in energy shifts that can generate neutrino oscillations with different energy dependencies.

The Standard Model Extension (SME) provides an effective field-theoretic approach to VLI

[37]. The “minimal” SME adds all coordinate-independent renormalizable Lorentz- and CPT-violating

terms to the Standard Model Lagrangian. Even when restricted to first-order effects in the neutrino

sector, the SME results in numerous potentially observable effects [38, 39, 40]. To specify one particu-

lar model which leads to alternative oscillations at high energy, we consider only the Lorentz-violating

Lagrangian term

1
2
i(cL)µνabLaγµ←→D νLb (3.1)

with the VLI parametrized by the dimensionless coefficient cL [39]. La and Lb are left-handed

neutrino doublets with indices running over the generations e, µ, and τ , and Dν is the covariant

derivative with A
←→
D νB ≡ ADνB − (DνA)B.

We restrict ourselves to rotationally invariant scenarios with only nonzero time components

in cL, and we consider only a two-flavor system. The eigenstates of the resulting 2 × 2 matrix cTT
L

correspond to differing maximal attainable velocity (MAV) eigenstates. That is, eigenstates may

have limiting velocities other than the speed of light and may be distinct from either the flavor or

mass eigenstates. Any difference ∆c in the eigenvalues will result in neutrino oscillations. The above

construction is equivalent to a modified dispersion relationship of the form

E2 = p2c2
a + m2c4

a (3.2)

where ca is the MAV for a particular eigenstate, and in general ca 6= c [41, 42]. Given that the

mass is negligible, the energy difference between two MAV eigenstates is equal to the VLI parameter

∆c/c = (ca1 − ca2)/c, where c is the canonical speed of light.

The effective Hamiltonian H± representing the energy shifts from both mass-induced and VLI

oscillations can be written [43]
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H± =
∆m2

4E
Uθ

−1 0

0 1

U†
θ +

∆c

c

E

2
Uξ

−1 0

0 1

U†
ξ (3.3)

with two mixing angles θ (the standard atmospheric mixing angle) and ξ (a new VLI mixing angle).

The associated 2× 2 mixing matrices are given by

Uθ =

 cos θ sin θ

− sin θ cos θ

 (3.4)

and

Uξ =

 cos ξ sin ξe±iη

− sin ξe∓iη cos ξ

 (3.5)

with η representing their relative phase. Solving the Louiville equation for time evolution of the state

density matrix ρ

ρ̇ = −i[H±, ρ] (3.6)

results in the νµ survival probability. This probability Pνµ→νµ
is given by

Pνµ→νµ
= 1 − sin2 2Θ sin2

(
∆m2L

4E
R
)

, (3.7)

where the combined effective mixing angle Θ can be written

sin2 2Θ =
1
R2

(sin2 2θ + R2 sin2 2ξ + 2R sin 2θ sin 2ξ cos η) , (3.8)

the correction to the oscillation wavelength R is given by

R =
√

1 + R2 + 2R(cos 2θ cos 2ξ + sin 2θ sin 2ξ cos η) , (3.9)

and the ratio R between the VLI oscillation wavelength and mass-induced wavelength is
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Figure 3.1: νµ survival probability as a function of neutrino energy for maximal baselines
(L ≈ 2REarth) given conventional oscillations (solid line), VLI (dotted line, with n = 1,
sin 2ξ = 1, and ∆δ = 10−26), and QD effects (dashed line, with n = 2 and D∗ =
10−30 GeV−1).

R =
∆c

c

E

2
4E

∆m2
(3.10)

for a muon neutrino of energy E and traveling over baseline L. For simplicity, the phase η is often

set to 0 or π/2. For illustration, if we take both conventional and VLI mixing to be maximal

(ξ = θ = π/4), this reduces to

Pνµ→νµ(maximal) = 1 − sin2

(
∆m2L

4E
+

∆c

c

LE

2

)
. (3.11)

Note the different energy dependence of the two effects. The survival probability for maximal baselines

as a function of neutrino energy is shown in fig. 3.1.

Several neutrino experiments have set upper limits on this manifestation of VLI, including

MACRO [44], Super-Kamiokande [45], and a combined analysis of K2K and Super-Kamiokande data
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[43] (∆c/c < 2.0 × 10−27 at the 90% CL for maximal mixing). In previous work, AMANDA-II has

set a preliminary upper limit using four years of data of 5.3× 10−27 [46]. Other neutrino telescopes,

such as ANTARES, are also expected to be sensitive to such effects (see e.g. [47]).

Given the specificity of this particular model of VLI, we wish to generalize the oscillation

probability in eq. 3.7. We follow the approach in [47], which is to modify the VLI oscillation length

L ∝ E−1 to other integral powers of the neutrino energy E. That is,

∆c

c

LE

2
→ ∆δ

LEn

2
, (3.12)

where n ∈ [1, 3], and the generalized VLI term ∆δ is in units of GeV−n+1. An L ∝ E−2 energy

dependence (n = 2) has been proposed in the context of loop quantum gravity [48] and in the case

of non-renormalizable VLI effects caused by the space-time foam [49]. Both the L ∝ E−1 (n = 1)

and the L ∝ E−3 (n = 3) cases have been examined in the context of violations of the equivalence

principle (VEP) [50, 51, 52]. We note that in general, Lorentz violation implies violation of the

equivalence principle, so searches for either effect are related [31].

We also note that there is no reason other than simplicity to formulate the VLI oscillations

as two-flavor, as any full description must incorporate all three flavors, and we know nothing of the

size of the various eigenstate splittings and mixing angles. However, a two-flavor system is probably

not a bad approximation, because in the most general case, one splitting will likely appear first as

we increase the energy. Also, since we will search only for a deficit of muon neutrinos, we do not care

to which flavor the νµ are oscillating (so it need not be ντ ).

3.2 Quantum Decoherence

Another possible low-energy signature of QG is the evolution of pure states to mixed states via

interaction with the environment of space-time itself, or quantum decoherence. One heuristic picture

of this phenomenon is the production of virtual black hole pairs in a “foamy” spacetime, created

from the vacuum at scales near the Planck length [53]. Interactions with the virtual black holes may

not preserve certain quantum numbers like neutrino flavor, causing decoherence into a superposition

of flavors.
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Quantum decoherence can be treated phenomenologically as a quantum open system which

evolves thermodynamically. The time-evolution of the density matrix ρ is modified with a dissipative

term /δHρ:

ρ̇ = −i[H, ρ] + /δHρ . (3.13)

The dissipative term representing the losses in the open system is modeled via the technique of

Lindblad quantum dynamical semigroups [54]. Here we outline the approach in ref. [55], to which we

refer the reader for more detail. In this case, we have a set of self-adjoint environmental operators

Aj , and eq. 3.13 becomes

ρ̇ = −i[H, ρ] +
1
2

∑
j

([Aj , ρAj ] + [Ajρ,Aj ]) . (3.14)

The hermiticity of the Aj ensures the monotonic increase of entropy, and in general, pure states will

now evolve to mixed states. The irreversibility of this process implies CPT violation [56].

To obtain specific predictions for the neutrino sector, there are again several approaches for

both two-flavor systems [57, 58] and three-flavor systems [55, 59]. Again, we follow the approach

in [55] for a three-flavor neutrino system including both decoherence and mass-induced oscillations.

The dissipative term in eq. 3.14 is expanded in the Gell-Mann basis Fµ, µ ∈ [0, 8], such that

1
2

∑
j

([Aj , ρAj ] + [Ajρ,Aj ]) =
∑
µ,ν

LµνρµFν . (3.15)

At this stage we must choose a form for the decoherence matrix Lµν , and we select the weak-coupling

limit in which L is diagonal, with L00 = 0 and Lii = −Di. These Di represent the characteristic length

scale over which decoherence effects occur. Solving this system for atmospheric neutrinos (where we

neglect mass-induced oscillations other than νµ → ντ ) results in the νµ survival probability [55]:
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Pνµ→νµ =
1
3

+
1
2

[
1
4
e−LD3(1 + cos 2θ)2 +

1
12

e−LD8(1− 3 cos 2θ)2 + e−
L
2 (D6+D7)

· sin2 2θ

(
cos

L

2

√(
∆m2

E

)2

− (D6 −D7)2



+
sin
[

L
2

√(
∆m2

E

)2 − (D6 −D7)2
]

(D6 −D7)√(
∆m2

E

)2 − (D6 −D7)2

)]
. (3.16)

Note the limiting probability of 1
3 , representing full decoherence into an equal superposition of flavors.

The Di not appearing in eq. 3.16 affect decoherence between other flavors, but not the νµ survival

probability.

We note that in eq. 3.16, we must impose the condition ∆m2/E > |D6 −D7|, but this is not

an issue in the parameter space we explore in this analysis. If one wishes to ensure strong conditions

such as complete positivity [57], there may be other inequalities that must be imposed (see e.g. the

discussion in ref. [59]).

The energy dependence of the decoherence terms Di depends on the underlying microscopic

model. As with the VLI effects, we choose a generalized phenomenological approach where we suppose

the Di vary as some integral power of the energy,

Di = D∗
i En, n ∈ [1, 3] , (3.17)

where E is the neutrino energy in GeV, and the units of the D∗
i are GeV−n+1. The particularly

interesting E2 form is suggested by decoherence calculations in non-critical string theories involving

recoiling D-brane geometries [60]. We show the n = 2 survival probability as a function of neutrino

energy for maximal baselines in fig. 3.1.

An analysis of Super-Kamiokande in a two-flavor framework has resulted in an upper limit

at the 90% CL of D∗ < 9.0 × 10−28 GeV−1 for an E2 model and all D∗
i equal [61]. ANTARES

has reported sensitivity to various two-flavor decoherence scenarios as well, using a more general

formulation [58]. Analyses of Super-Kamiokande, KamLAND, and K2K data [62, 63] have also set
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strong limits on decoherence effects proportional to E0 and E−1. Because our higher energy range

does not benefit us for such effects, we do not expect to be able to improve upon these limits, and

we focus on effects with n ≥ 1.

Unlike the VLI system, we have used a full three-flavor approach to the phenomenology of the

QD system. There is no theoretical justification for doing so in one but not the other, but for the

special case in which all decoherence parameters are equal, the choice is important. This is because

in a three-flavor system, the limiting survival probability is 1/3, compared to 1/2 in a two-flavor

system. Since heuristically the equality of decoherence parameters suggests that the interactions

with space-time are flavor-agnostic, we feel that using a three-flavor description is more apt.
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Chapter 4

Neutrino Detection

4.1 General Techniques

A major obstacle to overcome in the detection of the neutrino is its small cross section: while

the neutrino-nucleon cross section rises with energy, at 1 TeV the interaction length is still 2.5 million

kilometers of water [64]. Thus, any potential detector must encompass an enormous volume to achieve

a reasonable event rate. Once an interaction does occur in or near the detector, we can detect the

resulting charged particles by means of their radiation. A (relatively) cost-effective approach is to

use natural bodies of water or transparent ice sheets as the target material, and then instrument this

volume with photomultiplier tubes. While originally proposed in 1960 by K. Greisen and F. Reines

[65, 66], large-scale detectors of this sort have only been in operation for the past decade or so.

Water or ice neutrino detectors typically consist of vertical cables (called “strings” or “lines”)

lowered either into deep water or into holes drilled in the ice. Photomultiplier tubes (PMTs) in

pressure housings are attached to the cables, which supply power and communications. A charged-

current neutrino interaction with the surrounding matter produces a charged lepton via the process

νl(νl) + q → l−(l+) + q′ , (4.1)

where q is a valence or sea quark in the medium, and q′ is as appropriate for charge conservation.

In the case of a muon neutrino, the resulting muon can travel a considerable distance within the

medium.
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Figure 4.1: Formation of a Čerenkov cone by a relativistic muon moving through a
medium.

4.2 Čerenkov Radiation

Because the relativistic muon produced in the neutrino interaction is traveling faster than the

speed of light in the medium, it will radiate via the Čerenkov effect. A coherent “shock wave” of light

forms at a characteristic angle θc depending on the index of refraction n of the medium, specifically,

cos θc =
1

nβ
, (4.2)

where β = v/c is the velocity of the particle. For ice, where n ≈ 1.33, the Čerenkov angle is about

41◦ for relativistic particles (β ≈ 1). A full treatment differentiates between the phase and group

indices of refraction, but this is a small correction (see e.g. [67]). Figure 4.1 presents a geometric

derivation of the simpler form shown in eq. 4.2.

The number of Čerenkov photons emitted per unit track length as a function of wavelength λ

is given by the Franck-Tamm formula [68]

d2N

dxdλ
=

2πα

λ2

(
1− 1

β2n2

)
, (4.3)

where α is the fine-structure constant. Because of the 1/λ2 dependence, the high-frequency photons

dominate the emission, up to the ultraviolet cutoff imposed by the glass of the PMT pressure vessel
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(about 365 nm [69]). Between this and the frequency at which is the ice is no longer transparent

(about 500 nm; see section 5.2), we expect an emission of about 200 photons per centimeter [70].

4.3 Muon Energy Loss

Čerenkov radiation from the bare muon is not its dominant mode of energy loss. The rate of

energy loss as a function of distance, dE/dx, can be parametrized as

− dE

dx
= a(E) + b(E) E , (4.4)

where a(E) is the ionization energy loss given by the standard Bethe-Bloch formula (see e.g. [71]), and

b(E) is the sum of losses by e+e− pair production, bremsstrahlung, and photonuclear interactions.

The energy losses from various contributions are shown in figure 4.2.

The ionization energy losses are continuous in nature, occurring smoothly along the muon

track. However, at high energies, the losses by bremsstrahlung, pair production, and photonuclear

interactions are not continuous but stochastic: rare events that result in large depositions of energy

via particle and photon creation. The particles produced are highly relativistic, and if charged, they

too will radiate via the Čerenkov effect. Furthermore, because they are kinematically constrained to

the approximate direction of the muon, this emission will peak at the Čerenkov angle of the muon.

The roughly conical Čerenkov emission of the bare muon is thus enhanced by the various energy

losses described above [73].

4.4 Other Event Topologies

For charged-current νe and ντ interactions, or neutral-current interactions of any flavor, the

event topology is less track-like than the muon case described above, and is instead more spherical

or “cascade-like.” For νe events, this is because of the short path length of the resulting electron or

positron within the ice. For ντ events (except for those of very high energy), the resulting τ lepton

will decay immediately, in most cases resulting in a hadronic shower. However, 17% of the time [20],

the τ will decay via
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the question arises whether this precision is sufficient to propagate muons with hun-

dreds of interactions along their way. Figure 6 is one of the examples that demon-

strate that it is sufficient: the final energy distribution did not change after enabling

parametrizations. Moreover, different orders of the interpolation algorithm (g, cor-

responding to the number of the grid points over which interpolation is done) were

tested (Figure 9) and results of propagation with different g compared with each

other (Figure 10). The default value of g was chosen to be 5, but can be changed to

other acceptable values 3 ≤g≤ 6 at the run time.
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τ+ → µ+ + νµ + ν̄τ

τ− → µ− + ν̄µ + ντ , (4.5)

possibly resulting in a detectable muon track (albeit of significantly lower energy than the original

ντ ). For a neutral-current event, there is no outgoing charged lepton, although there may be a

hadronic shower from the collision.

Because cascade-like and track-like events have very different signatures and strategies for

background rejection, one generally focuses on one or the other early in the analysis. We consider

only νµ-induced muons in this analysis; other types of event will be removed by the data-filtering

procedures which we describe in chapter 6.

4.5 Background

While we have described the means by which we might detect a neutrino-induced muon,

the background to such a search is formidable. Even with kilometers of overburden, high-energy

atmospheric muon bundles dominate over neutrino events by a factor of about 106. Selecting only

“up-going” muons allows us to reject the large background of atmospheric muons, using the Earth

as a filter to screen out everything but neutrinos (see fig. A.2). In practice, we must also use other

observables indicating the quality of the muon directional reconstruction, in order to eliminate mis-

reconstructed atmospheric muon events — a topic we will revisit in chapter 6.
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Chapter 5

The AMANDA-II Detector

5.1 Overview

AMANDA, or the Antarctic Muon And Neutrino Detector Array, consists of 677 optical

modules (OMs) on 19 vertical cables or “strings” frozen into the deep, clear ice near the geographic

South Pole. Each OM consists of an 8” diameter Hamamatsu R5912-2 photomultiplier tube (PMT)

housed in a glass pressure sphere. The AMANDA-II phase of the detector commenced in the year

2000, after nine outer strings were added. Fig. 5.1 shows the geometry of the detector, as well as the

principal components of the OMs.

The bulk of the detector lies between 1550 and 2050 meters under the snow surface, where the

Antarctic ice sheet is extremely clear. The 19 strings are arranged roughly in three concentric cylin-

ders, the largest of which is approximately 200 meters in diameter. The OMs are connected to cables

which supply power and transmit PMT signals to the surface. Multiple cabling technologies are used:

coaxial, twisted-pair, and fiber optic. While most transmitted signals are analog, string 18 contains

prototype digital optical modules (DOMs) which digitize the PMT signal before transmission.

5.2 Optical Properties of the Ice

Far from being a homogeneous medium, the ice at the South Pole consists of roughly horizontal

layers of varying clarity. As the ice layers accumulated over geological time periods, varying amounts

of atmospheric dust were trapped during the deposition, depending on the climatological conditions

at the time. These “dust layers” strongly affect both the optical scattering and absorption lengths
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Section 6 summarizes event classes for which the
reconstruction may fail and strategies to identify
and eliminate such events. The performance
of the reconstruction procedure is shown in
Section 7. We discuss possible improvements
in Section 8.

2. The AMANDA detector

The AMANDA-II detector (see Fig. 2) has been
operating since January 2000 with 677 optical
modules (OM) attached to 19 strings. Most of the
OMs are located between 1500 and 2000 m below
the surface. Each OM is a glass pressure vessel,
which contains an 8-in. hemispherical PMT and its
electronics. AMANDA-B10,2 the inner core of 302
OMs on 10 strings, has been operating since 1997.

One unique feature of AMANDA is that it
continuously measures atmospheric muons in
coincidence with the South Pole Air Shower
Experiment surface arrays SPASE-1 and SPASE-2
[7]. These muons are used to survey the detector
and calibrate the angular resolution (see Section 7

and Refs. [8,9]), while providing SPASE with
additional information for cosmic ray composition
studies [10].

The PMT signals are processed in a counting
room at the surface of the ice. The analog signals
are amplified and sent to a majority logic trigger
[11]. There the pulses are discriminated and a
trigger is formed if a minimum number of hit
PMTs are observed within a time window of
typically 2 ms: Typical trigger thresholds were 16
hit PMT for AMANDA-B10 and 24 for AMANDA-II.
For each trigger the detector records the peak
amplitude and up to 16 leading and trailing edge
times for each discriminated signal. The time
resolution achieved after calibration is stC5 ns
for the PMTs from the first 10 strings, which are
read out via coaxial or twisted pair cables. For the
remaining PMTs, which are read out with optical
fibers the resolution is stC3:5 ns: In the cold
environment of the deep ice the PMTs have low
noise rates of typically 1 kHz:

The timing and amplitude calibration, the array
geometry, and the optical properties of the ice are
determined by illuminating the array with known
optical pulses from in situ sources [11]. Time
offsets are also determined from the response to
through-going atmospheric muons [12].
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[74]). The Eiffel tower on the left illustrates the scale.
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and must be taken into account for event reconstruction and simulation.

The scattering and absorption properties have been measured or inferred using a number of

in situ light sources [75], resulting in a comprehensive model of the ice properties known as the

“Millennium” ice model. Since the publication of that work, the effect of smearing between dust

layers has been examined, resulting in an updated model of the ice known as “AHA.” The effective

scattering length in this model λeff
s , defined such that

λeff
s =

λs

1− 〈cos θs〉
, (5.1)

with an average scattering angle of 〈cos θs〉 ≈ 0.95, is shown along with the absorption length λa in

fig. 5.2. The effective scattering length is approximately 20 m, whereas the absorption length (at 400

nm) is about 110 m.

5.3 Data Acquisition and Triggering

Cables from the deep ice are routed to surface electronics housed in the Martin A. Pomerantz

Observatory (MAPO). PMT signals, broadened after transmission to the surface, are amplified in

Swedish amplifiers (SWAMPs). A prompt output from the SWAMPs is fed to a discriminator,

which in turn feeds the trigger logic and a time-to-digital converter (TDC). The TDC records the

leading and falling edges when the signal crosses the discriminator level. Each edge pair forms a hit,

of which the TDC can store eight at a time. The difference between the edges is referred to as the

time-over-threshold, or TOT.

The main trigger requires 24 hit OMs within a sliding window of 2.5 µs. The hardware core

of the trigger logic is formed by the digital multiplicity adder-discriminator (DMADD). When the

trigger is satisfied, the trigger electronics open the gate to a peak-sensing analog-to-digital converter

(ADC) which is fed by a delayed signal from the SWAMPs. The ADC gate remains open for 9.8 µs,

and the peak amplitude during that window is assigned to all hits in that particular channel. 10

µs after the trigger, a stop signal is fed to the TDC. The trigger is also sent to a GPS clock which

timestamps the event. Events are recorded to magnetic tape and then flown north during the austral

summer season.
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Figure 5.2: Inverse absorption and effective scattering lengths as a function of depth and
wavelength in the AHA ice model. Note the large dust peak at a depth of roughly 2050
m, with three smaller dust peaks at shallower depths.
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Figure 5.3: Principal components of the AMANDA µ-DAQ (adapted from [67]).

The data acquisition system (DAQ) described here is known as the muon DAQ, or µ-DAQ, and

operated through 2006. A parallel DAQ that also records waveform information, the TWR-DAQ,

has been fully operational since 2004. Only µ-DAQ data are used in this analysis. A simplified block

diagram showing the principal components in shown in fig. 5.3.

5.4 Calibration

Calibration of cable time delays and the corrections for dispersion are performed with in situ

laser sources. After calibration, the time resolution for the first 10 strings is σt ≈ 5 ns (those with

coaxial or twisted-pair cables), and the time resolution for the optical fiber strings is σt ≈ 3.5 ns [74].

The time delay calibration is cross-checked using down-going muon data.

The amplitude calibration uses single photoelectrons (SPEs) from low-energy down-going

muons as a “calibration source” of known charge. The uncalibrated amplitude distribution of SPEs

is fit as the sum of an exponential and a Gaussian distribution, with the peak of the Gaussian portion

representing one PE.
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Chapter 6

Simulation and Data Selection

6.1 Simulation

In order to meaningfully compare our data with expectations from various signal hypothe-

ses, we must have a detailed Monte Carlo (MC) simulation of the atmospheric neutrinos and the

subsequent detector response. For the input atmospheric muon neutrino spectrum, we generate an

isotropic power-law flux with the nusim neutrino simulator [76] and then reweight the events to

standard flux predictions [16, 17]. As discussed in section 2.2.2, we have extended the predicted

fluxes to the TeV energy range via the neutrinoflux package, which fits the low-energy region

with the Gaisser parametrization [11] and then extrapolates above 700 GeV. We add standard oscil-

lations and/or non-standard flavor changes by weighting the events with the muon neutrino survival

probabilities in eqs. 2.13, 3.7, or 3.16.

Muon propagation and energy loss near and within the detector are simulated using mmc

[72]. Photon propagation through the ice, including scattering and absorption, is modeled with

photonics [77], incorporating the depth-dependent characteristic dust layers from the AHA ice

model (see section 5.2). The detector simulation amasim [78] records the photon hits, and then

identical filtering and reconstruction methods are performed on data and simulation. Cosmic ray

background rejection is ensured at all but the highest quality levels by a parallel simulation chain fed

with atmospheric muons from corsika [79], although when reaching contamination levels of O(1%)

— a rejection factor of 108 — computational limitations become prohibitive.

As we will discuss further in chapter 8, the absolute sensitivity of the OMs is one of the
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larger systematic uncertainties. Determining the effect on our observables can only be achieved by

rescaling the sensitivity within amasim and re-running the detector simulation. We have generated

atmospheric neutrino simulation for 7 different optical module sensitivities, and for each set we reach

an effective livetime (see appendix D) of approximately 60 years.

6.2 Filtering and Track Reconstruction

Filtering the large amount of raw AMANDA-II data from trigger level to neutrino level is an

iterative procedure. First, known bad optical modules are removed, resulting in approximately 540

OMs for use in the analysis. Unstable or incomplete runs (“bad files”) are identified and excluded.

Hits caused by electrical crosstalk and isolated noise hits are also removed (“hit cleaning”).

The initial data volume is so large that only fast, first-guess algorithms can be run on all events.

These include the direct walk algorithm [74] and JAMS [80], both of which employ pattern-matching

algorithms to reconstruct muon track directions. If the zenith angle is close to up-going (typically

greater than 70◦ or 80◦), the event is kept in the sample. This step is known as “level 1” or L1

filtering. “Level 2” and “level 3” filtering steps consist of more computationally intensive directional

reconstructions, along with another zenith angle cut using the more accurate results.

The best angular resolution is achieved by likelihood-based reconstructions utilizing the timing

information of the photon hits. The iterative unbiased likelihood (UL) reconstruction uses the timing

of the first hit in an OM, and maximizes the likelihood

L =
∏

i

p(ti|~a) , (6.1)

where ~a = (x, y, z, θ, φ) is the track hypothesis and ti is the timing residual for hit i. The timing

residual is the difference between the expected photon arrival time based only on geometry and the

actual arrival time, which in general is delayed by scattering in the ice. A parametrization of the

probability distribution function describing the time residuals of the first photon hits is given by the

Pandel function1 [81], and this is convoluted with a Gaussian to include PMT jitter. A high-quality

sample event is shown in fig. 6.1 along with the track from the UL reconstruction.

1For this reason, the UL reconstruction is also commonly referred to as the “Pandel” reconstruction (even though
other reconstructions also use the Pandel p.d.f.). We use the terms interchangeably.
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Figure 6.1: Sample AMANDA-II event from 2001, with number of OMs hit Nch = 77.
Colors indicate the timing of the hits, with red being earliest. The size of the circles
indicate the amplitude of the PMT signal. The line is the reconstructed track obtained
from the unbiased likelihood or “Pandel” fit (σ = 1.2◦).
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Because we are interested in rejecting atmospheric muons, it is useful to compare the UL

likelihood with a reconstruction using the prior hypothesis that the event is down-going. This

Bayesian likelihood (BL) reconstruction weights the likelihood with the prior probability density

function (PDF) Pµ(θ), a polynomial fit to the zenith-angle dependence of the muon flux at the depth

of the AMANDA-II detector. The likelihood to maximize therefore becomes

LBayes =
∏

i

p(ti|~a) Pµ(θ) . (6.2)

The log-likelihood ratio of the UL fit to the BL fit is then a test statistic which we can use as a

quality parameter.

6.3 Quality Cuts

After initial filtering and reconstruction (after level 3), atmospheric neutrino events are still

dominated by mis-reconstructed atmospheric muons (down-going muons that are incorrectly recon-

structed as up-going). In order to remove (or “cut”) these events, we must use several variables

indicating the quality of the track reconstruction.

6.3.1 Point-source Cuts

As a starting point for these quality cuts, we use the criteria developed for the 2000-2004

AMANDA-II point source analysis [82]. These cuts are applicable to an atmospheric neutrino analysis

primarily because they are not optimized for a high-energy extraterrestrial neutrino flux, and so their

efficiency for lower-energy atmospheric neutrinos is still quite good. These cuts are shown in table

6.1.

6.3.1.1 Likelihood Ratio

As described in section 6.2, the log likelihood ratio log LUL/LBL tests the relative probability

of the unbiased “Pandel” fit (which, because of the zenith-angle cuts, indicates the track is up-going

or close to it), and the Bayesian down-going fit. The larger this ratio, the less likely the event is to

be down-going. Including a dependence on the zenith angle is necessary because this test gets less

powerful near the horizon, where the up-going and down-going tracks may only be separated by a
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Table 6.1: Initial quality cuts, originally designed for the 2000-2004 point-source analysis.
x = sin δUL, where δ is the reconstructed declination, and Θ() is the unit step function.
Quality variables are described in the text.

Description Criterion (to keep)
Likelihood ratio log LUL/LBL > 34 + 25(1−Θ(x− 0.15)) · (x− 0.15)

Smoothness |SPhit,UL| < 0.36 and SPhit,UL 6= 0
Paraboloid error σ < 3.2◦ − 4◦ ·Θ(x− 0.75) · (x− 0.75) and σ 6= 0

Flariness FTOT-short + FB10 + FB10 < 10
Stability period 2000: day ∈ [47, 309]

2001: day ∈ [44, 293]
2002: day ∈ [43, 323]
2003: day ∈ [43, 315]
2004: day ∈ [43, 309]

2005-06: included in file selection
File size 2000-04: Runs/file > 6

Bayesian bug fix 2005-06: θBL < 90◦

small angle.

6.3.1.2 Smoothness

The smoothness of a track hypothesis is a topological parameter varying from -1 to 1 that

measures the evenness of the hits along the track. Positive values of the smoothness indicate hits

concentrated at the beginning of the track, while negative values indicate hits concentrated at the

end. Small absolute value of the smoothness indicates that the hits are more evenly distributed,

supporting the fit hypothesis.

The particular implementation of the smoothness calculation that we use, the Phit smoothness

or SPhit, only considers direct (unscattered) hits within a 50 m cylinder around the UL track. It

then compares the number of hits in the cylinder to the number expected given a minimally ionizing

muon (see ref. [80] for more detail). In table 6.1, we also explicitly exclude events with exactly zero

smoothness; in an early implementation, this result indicated no direct hits within the cylinder.

6.3.1.3 Paraboloid Error

The paraboloid error, or angular resolution parameter, is an estimate of the 1σ error on the

direction of the UL fit, and poorly reconstructed tracks will tend to have higher values of this error.

This parameter is obtained by fitting a paraboloid to the likelihood space near the best-fit minimum



36

[83]. Using the fit to approximate the 1σ confidence level results in an error ellipse with major and

minor axes σ1 and σ2, and we form with these a single error parameter σ by taking the geometric

mean

σ =
√

σ1σ2 . (6.3)

The quality cut on the paraboloid error is tightened near the horizon, where background

contamination worsens. Pathological results, such as zero or negative values of the ellipse axes, must

be excluded.

6.3.1.4 Flariness and Stability Period

In periods of windy or stormy weather at the South Pole, electrical induction on the surface

cables (especially twisted-pair cables) can actually result in enough spurious “hits” to trigger the

detector. These types of fake events are known as flares, and to enable removal of these events, a

number of characteristic flare variables have been developed [84]. We use three of these flare variables:

FTOT-short, the number of hits in twisted-pair channels with TOT shorter than expected; FB10, the

ratio of hits in strings 1-4 (coaxial cabling) to strings 5-10 (twisted-pair cabling); and FB10, the ratio

of hits in strings 11-19 with optical cabling to those with twisted-pair cabling. The flare indicators

are normalized as logarithms of probabilities, so we use their sum as a combined flare indicator.

Finally, since configuration changes often take place during the austral summer season, we

exclude these periods with a stability period cut based on the day of the year of the event. This is

only necessary for data from 2000-2004, as for 2005 and 2006 this was performed as part of the file

selection before the initial data filtering.

6.3.2 Purity Cuts

After applying the cuts described in the previous section, we can examine the purity of the

sample using a cut-tightening ratio procedure, and then try to isolate any remaining background

events. First, we uniformly tighten or loosen all the cut parameters by scaling them linearly with a

“cut strength” parameter. We multiply the observable x by either α or 1/α depending on the cut:
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(xi < X0) → (αxi < X0) , (6.4)

(xi > X0) →
(xi

α
> X0

)
∀ i .

Figure 6.2 shows the result of this procedure. As the cuts are tightened, the background is eventually

eliminated, leaving only a systematic normalization shift in the simulation. After performing this

procedure using the point-source cuts, we find that there is a background contamination of 2-3% (the

difference between the ratio at the nominal cuts, cut strength=1, and the ratio in the flat region).

As we will see, however, this procedure is not foolproof; it only eliminates background at the tails of

the quality parameters we are already using.

We have isolated several parameters which are of use to reduce this background even further:

• Ψ, the space angle between the Pandel/UL and JAMS fits;

• NdirC, the number of direct hits (class C, with tres ∈ [−15, 75] ns); and

• LdirB, the maximum separation along the track of direct hits (class B, with timing residual

tres ∈ [−15, 25] ns).
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In each of these variables, there are tails in the data that are not matched by atmospheric neutrino

simulation but are consistent with mis-reconstructed muons. This is shown in fig. 6.3, along with the

region we have chosen to eliminate. These purity cuts are also shown in table 6.2.

Table 6.2: Purity cuts designed to remove the remaining background contamination after
applying the quality cuts shown in table 6.1.

Description Criterion (to keep)
Up-going cos θUL < 0

Space angle ΨUL,JAMS < 25◦

Direct hits NdirC > 6
Direct length LdirB > 60 m

After reapplying the same cut-tightening ratio procedure described above, we estimate that

these cuts achieve a purity of greater than 99%. This reduces the data from 6099 to 5686 events

(-7%) while reducing the atmospheric neutrino MC prediction by 2%. However, this turns out to be

an overestimation of the purity.

6.3.3 High-Nch Excess and Additional Purity Cuts

The selection criteria described above, as well as the analysis procedure described in chapter

7, were designed blindly. Specifically, our observables (the zenith angle and number of OMs hit, Nch;

see section 7.1) were hidden until the cuts and analysis procedures were finalized. However, after

unblinding, we examined the Nch and cos θUL distributions and found an unexpected 1.5% excess in

the (60 < Nch < 120) region (see fig. 6.4). This is slightly higher than the estimated 0.5% background

contamination, and more importantly, it is not distributed evenly across the observable space (which

is how we model background contamination in the systematic errors). In this section, we discuss the

impact of the excess, and how we have chosen to address it.

An analysis of the events in the high-Nch region suggests that the excess (about 85 events

compared to Monte Carlo normalized to the low-Nch region) consists of mis-reconstructed muons.

Salient observations about the excess include:

• the excess is evenly spread across all years;

• events scanned in the event viewer are not track-like (perhaps muon bundles passing outside
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Figure 6.3: Data (red points) and atmospheric neutrino simulation (blue points) exhibit-
ing background contamination in several quality variables after the point-source cuts.
Purity cuts designed to reduce this background are shown graphically with vertical lines.



40

chN
20 30 40 50 60 70 80 90 100 110 1201

10

210

310

Barr et al.
Honda et al. (2006)
Data

Nch, Various Atm. MC Models
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the detector) and appear preferentially in the clean ice regions, but we did not notice other

distinguishing topologies (such as association with certain strings or OMs);

• these poor events tend to have worse up- to down-going likelihood ratios; and

• perhaps most convincing, a significant fraction of the excess appears to have higher paraboloid

error and JAMS/Pandel space angle difference.

To illustrate the last point, in fig. 6.5 we show the distribution of paraboloid error and

JAMS/Pandel space angle for high-Nch events. The excess is concentrated at poor values of both,

which is what we would expect for mis-reconstructed background. Also, an excess is not characteristic

of any of our signal hypotheses. Therefore, we have chosen to isolate and remove the excess.

In order to isolate the excess, we use another point from the list above: the excess is concen-

trated at poor up-to-down likelihood ratio (see fig. 6.6). We can first roughly isolate the population

using their likelihood ratio, and only then apply any cuts to paraboloid error and space angle differ-

ence. Since the likelihood ratio (LR = log LUL/LBL) is highly dependent on the zenith angle, instead

of using a constant value we follow the median LR as a function of cos θUL, as derived from MC. This
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Nch > 65, after applying the original purity cuts. Note that the excess is concentrated in
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dependence, which we refer to as LRmed(θ), is shown graphically in fig. 6.7 and explicitly formulated

in table 6.3.

To determine how to tighten the cuts as a function of Nch, we examine two-dimensional plots

of paraboloid error and space angle vs. Nch, only for the events below LRmed(θ). A cut is shown

superimposed on the distributions for atmospheric MC, data, and the ratio of data to atmospheric

MC in figures 6.8 and 6.9. These contours define our level 2 purity cuts and are listed in table 6.3.

Table 6.3: Level 2 purity cuts defined after unblinding to remove high-Nch background
contamination. The combined criterion keeps events that exceed the median likelihood
ratio OR pass both the space angle and paraboloid error conditions.

Description Criterion (to keep)
Median LR (cos θUL < −0.7) ∧ (LR > −20/0.3 · (cos θUL + 0.7) + 52) ∨

(cos θUL ≥ −0.7) ∧ (cos θUL < −0.4) ∧ (LR > 52) ∨
(cos θUL ≥ −0.4) ∧ (LR > −20/0.4 · (cos θUL + 0.4) + 52)

Paraboloid error σ < (−1.1◦/30 · (Nch − 50) + 3.2◦) ∨
(Nch > 80) ∧ (σ < 2.1◦)

Space angle Ψ < (−15◦/30 · (Nch − 50) + 25◦) ∨
(Nch > 80) ∧ (Ψ < 10◦)
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Table 6.4: Summary of livetime and events remaining after each filtering step for 2000
to 2006. The livetime of each year corresponds to the filtered data sample, whereas the
raw event totals are for the entire year, including unstable periods.

2000 2001 2002 2003 2004 2005 2006

Livetime (d) 197 193 204 213 194 199 187
Raw events 1.37 B 2.00 B 1.91 B 1.86 B 1.72 B 2.06 B 2.00 B
L1 45.4 M 81.8 M 68.3 M 65.3 M 60.8 M 184 M 177 M
L2 5.50 M 6.87 M 7.59 M 8.02 M 7.47 M — —
L3 1.63 M 1.90 M 2.10 M 2.22 M 2.09 M 5.21 M 4.89 M
Point src. 560 799 976 1034 966 897 934
Purity 516 750 908 966 901 810 835
Purity L2 504 730 884 953 883 780 810

Table 6.5: Total 2000-2006 livetime and events remaining after each filtering step.

Total

Livetime (d) 1387
Raw events 12.9 B
L1 683 M
L3 20.0 M
Point src. 6166
Purity 5686
Purity L2 5544

6.4 Final Data Sample

After the level 2 purity cuts, we are left with 5544 candidate neutrino events below the horizon.

In table 6.4, we show the livetime and various numbers of events remaining after each filtering and cut

level, with 7-year totals shown in table 6.5. The livetime of the detector accounts for both excluded

data-taking periods as well as inherent deadtime due to the DAQ itself. We also note that the larger

number of filtered events in 2005 and 2006 is due to additional filter streams added.

We also show the distributions of our primary quality variables at the final cut level in fig. 6.10.

The efficiency of these selection criteria for simulated atmospheric neutrinos that trigger the detector

is 24%.
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6.5 Effective Area

The effective area of a detector is the area Aeff(E, θ, φ) of a corresponding ideal detector with

100% detection efficiency. For neutrino telescopes, because of the low interaction probability, the

neutrino effective area Aν
eff is much smaller than the physical cross-section of the detector. The

effective area encapsulates all efficiencies in a particular analysis; this includes not only the efficiency

of quality cuts, but also physical effects like Earth absorption and oscillations (we can consider the

Earth as part of the detector). For a discussion of calculation techniques, see appendix B. The

neutrino effective area for various zenith angle ranges at the final cut level is shown in fig. 6.11, along

with the ratio of effective area of ν̄µ to νµ.

6.6 A Note on Blindness

The original purity cuts designed for this analysis and described in section 6.3.2 were designed

in a blind fashion. By this we mean that the observables for our analysis, Nch and the reconstructed

zenith angle, were removed from the files and not used to design the cuts, in order to limit the chance

of biasing the results and forcing agreement with one hypothesis or the other.

Such a procedure works well when background can easily be determined from the data itself:

for example, in a point-source search where the background is determined by looking off-source.

However, for an analysis in which eliminating background is crucial, and simulating the final 1% of

that background is not feasible, we find this blindness procedure of limited usefulness.

First, the point-source cuts were designed with the zenith angle unblinded, and so by using

these cuts we are arguably not blind in this variable to begin with. Furthermore, blinding the

Nch distribution simply prevented us from characterizing and eliminating the background, and we

eventually had to alter the cuts in a non-blind way. In cases such as this where the background

cannot be measured from the data, it is crucially important to understand the background events

and the detector response, and we argue that by careful justification of any non-blind cuts, we can

still achieve meaningful results.
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Chapter 7

Analysis Methodology

7.1 Observables

As described in chapter 3, the signature of a flavor-changing new physics effect such as VLI

or QD is a deficit of νµ events at the highest energies and longest baselines (i.e., near the vertical

direction). For our directional observable, we use the cosine of the reconstructed zenith angle as given

by the UL fit, cos θUL (with −1 being the vertical up-going direction). As reconstructing the neutrino

energy from the energy loss of the through-going muon is difficult, we use instead an energy-correlated

observable, the number of OMs (or channels) hit, Nch.

The simulated energy response to the Barr et al. atmospheric neutrino flux [16] (without any

new physics) is shown in fig. 7.1. For this flux, the simulated median energy of the final event sample

is 640 GeV, and the 5%-95% range is 105 GeV to 8.9 TeV. Fig. 7.2 shows the median neutrino energy

for a given event Nch. Fig. 7.3 shows the simulated effects of QD and VLI on both the zenith angle

and Nch distributions: a deficit of events at high Nch and at more vertical directions. Because the

Nch energy estimation is approximate, the VLI oscillation minima are smeared out, and the two

effects look similar in the observables. Furthermore, the observable minima are not exactly in the

vertical direction. This is because the Nch-energy relationship varies with zenith angle, since the

detector is taller than it is wide, and events off the vertical actually have a higher median energy.
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7.2 Statistical Methods

The goal of our analysis is to quantify whether our data are well-described by certain classes of

hypotheses; namely, violation of Lorentz invariance, quantum decoherence, or the Standard Model.

Each of the general scenarios above — VLI, for example — can be further expanded into a set of

specific hypotheses, each with different parameters. We need a methodology that will allow us to

test each point in this parameter space, and then define a region of this space which is allowed or

excluded at a certain confidence level. We would also like to include the effect of systematic errors

into this methodology.

In this chapter, we describe a frequentist method of defining central confidence intervals that

incorporates systematic errors. This method, the profile construction method, is an extension by

G. Feldman of the frequentist approach described in his paper with R. Cousins [85]. Originally

described (albeit very tersely) in [86], it has only recently been applied to physics analyses.
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7.2.1 Likelihood Ratio

We first define a test statistic to compare our observables x for various hypotheses, character-

ized by physics parameters θr. For a binned distribution, a natural choice arises from the Poisson

probability (or likelihood)

P (x|θr) =
N∏

i=1

e−µi
µni

i

ni!
, (7.1)

where we form a product over the N bins of our observable(s) x, and in each bin of the data we see

ni counts on an expected µi for the hypothesis we are testing with parameters θr. At this point, it

is conventional to switch to the negative logarithm (the log likelihood):

L(θr) = −2 ln P = 2
N∑

i=1

(µi − ni lnµi + lnni!) . (7.2)

We will come back to the additional factor of 2.

To compare the probabilities of two hypotheses, H1 and H2, of generating our observed data,

we take the likelihood ratio (or, working with the logarithm, the difference):

L(θr1)− L(θr2) = 2
N∑

i=1

(
µ1,i − µ2,i + ni ln

µi,2

µi,1

)
, (7.3)

where hypothesis H1 with parameters θr1 gives us an expected count µ1,i, and hypothesis H2 with

parameters θr2 gives us an expected count µ2,i, and again we have observed ni counts in a given bin.

Using this, our test statistic compares the hypothesis at a point θr to the hypothesis that fits the

data the best. Specifically, in the physics parameter space θr, the test statistic is the difference of

the log likelihood at this point to the best-fit hypothesis with parameters θ̂r (L is minimized1 by θ̂r):

∆L(θr) = L(θr)− L(θ̂r) . (7.4)

The additional factor of 2 added in equation 7.2 arises because in the Gaussian regime, ∆L so defined

approaches a χ2 distribution with degrees of freedom equal to the dimension of θr (Wilks’ Theorem).

1By minimizing the negative log likelihood, we maximize the probability.
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7.2.2 Confidence Intervals

At this point, we wish to examine all the physically allowed hypotheses by iterating over the

space θr, and determine which are allowed given our observation x. It is not uncommon to use Wilks’

Theorem and define confidence intervals using a χ2 distribution. Specifically, one calculates ∆L at

every point θr, and for a given confidence level (CL) α, the allowed region is the set

{θr}α = {θr | ∆L(θr) < χ2(α, dim θr)} . (7.5)

For two parameters and a 90% confidence level, we would allow the region where ∆L < 4.61. This is

known as the global scan method.

As demonstrated in [85], the global scan method has several disadvantages when the likelihood

varies in a complicated way over the parameter space. In particular, ∆L can deviate from the simple

χ2 distribution by a significant amount if, for example, one of the parameters is extended into a region

that has little effect on the observables. In this case, the effective dimensionality of θr is reduced and

the χ2 used has too many degrees of freedom. In this case, we prefer a frequentist approach to define

the confidence intervals that takes this and other issues into account to achieve proper coverage.

Specifically, at each point in the parameter space θr, we perform a number of Monte Carlo

experiments where we sample from the parent distribution {x | θr} and then calculate the likelihood

ratio ∆Li for the experiment. The sampling to generate the MC “data” for an experiment can be

achieved a number of ways. We choose to first select the total number of events N from a Poisson

distribution with µ equal to the integral of the parent distribution, and then sample N times from

the parent observable distribution (as a probability density function) to find the observables for each

MC event.

The set of {∆Li} from the MC experiments allows us to see how our test statistic behaves

under statistical variations only. To define our confidence intervals at CL α, we find the critical value

∆Lcrit such that

(∫ ∆Lcrit

0

∆Li

)
/

(∫ ∞

0

∆Li

)
= α , (7.6)
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Figure 7.4: Simulated likelihood ratio distribution (red points) for a point in VLI param-
eter space, from 1000 MC experiments. Shown for comparison are χ2 distributions for
two (solid line) and three (dashed line) degrees of freedom. The vertical line marks the
90% critical value, and the arrow marks the likelihood ratio for the data, indicating that
this hypothesis is excluded at the 90% CL.

and our acceptance region is the set {θr} where ∆Ldata(θr) < ∆Lcrit(θr). As an illustration, fig. 7.4

shows a simulated ∆L distribution along with the 90% critical value. By employing the ∆L distri-

bution to determine the confidence level, we have used the likelihood ratio as an ordering principle

to sort the possibilities into increasing statistical significance. We also point out that the exclusion

region at CL α is simply the complement of this set, as acceptance / exclusion is defined by which

side of the critical value one is on.

7.3 Incorporating Systematic Errors

Unfortunately, the above procedure does not incorporate any kind of systematic errors. In

statistical terms, a systematic error can be treated as a nuisance parameter : a parameter that one

must know to calculate the expected signal, but the value of which is not important to the result.
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The likelihood depends now on both physics parameters θr and nuisance parameters θs, but one

needs to “project out” any confidence intervals into only the θr space.

The key to this procedure is to use an approximation for the likelihood ratio that, in a sense,

uses the worst-case values for the nuisance parameters θs — the values which make the data fit the

hypothesis the best at that point θr. Mathematically, we find the best values for θs in both the

numerator and the denominator of the likelihood ratio

∆Lp(θr) = L(θr,
ˆ̂
θs)− L(θ̂r, θ̂s) , (7.7)

where we have globally minimized the second term, and we have conditionally minimized the first

term, keeping θr fixed but varying the nuisance parameters to find ˆ̂
θs. This statistic is called the

profile likelihood.

The profile likelihood is used in combination with the χ2 approximation in the “MINOS”

method in the MINUIT suite [87] and is also explored in some detail by Rolke et al. in [88, 89]. To

extend the Feldman-Cousins frequentist construction to the profile likelihood, we follow the method

suggested by Feldman [90]: we perform Monte Carlo experiments as before, but instead of iterating

through the entire (θr, θs) space, at each point in the physics parameter space θr, we fix θs to its

best-fit value from the data, ˆ̂
θs. Then we recalculate the profile likelihood for the experiment as

defined in equation 7.7. As before, this gives us a set of likelihood ratios {∆Lp,i} with which we can

define the critical value for a CL α that depends only on θr.

To summarize, we describe the procedure step-by-step:

1. The test statistic / ordering principle is the profile likelihood ∆Lp as defined in eq. 7.7.

2. The profile likelihood for the data is calculated at each point θr, with the numerator being a

conditional minimum at (θr,
ˆ̂
θs) and the denominator the global minimum at some (θ̂r, θ̂s).

3. For each point θr, we perform a number of Monte Carlo experiments in which we sample

from the parent distribution {x | θr,
ˆ̂
θs,data}, then we recalculate the profile likelihood for each

experiment.
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4. For a CL α, at each point we find the critical value ∆Lp,crit(θr) using eq. 7.6, and this point is

in the allowed region if ∆Lp,data(θr) < ∆Lp,crit(θr).

7.4 Discussion

We note that the problem of incorporating systematic errors into confidence intervals is still

an area of active research. For a survey of recent approaches, including hybrid Bayesian-frequentist

methods not discussed here, see [91]. Another approach which uses random variations in the MC

experiments to model systematic errors is presented in [92]2. Two fully frequentist constructions

(not using the profile likelihood approximation) have been employed in test cases by G. Punzi [93]

and K. Cranmer [94], but there is not a general consensus on an ordering principle. For further

information, we refer the reader to the discussion by Cranmer in [95]3.

7.5 Complications

7.5.1 Computational Requirements

The primary drawback of the profile construction method is its computational requirements.

For a given experiment, locating the likelihood minimum in a multi-dimensional parameter space is

time-consuming. Furthermore, to define the confidence regions, we need hundreds or thousands of

Monte Carlo experiments at each point in the parameter space. We have employed a few tricks to

make the problem manageable, which we describe below. These may or may not be applicable in

other implementations.

1. Pre-generation of histograms. The method requires a histogram of the observables at

each point in parameter space (that is, for every value of the physics and nuisance parameters).

Generating such a weighted Monte Carlo distribution can be time-consuming, so pre-computing

the histograms and saving/loading the binned results is faster. This computation can also be

performed in parallel on a cluster.

2This reference also provides an exceptionally clear description of the Feldman-Cousins method.
3We also note this as the origin of the term “profile construction” to describe this method.
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2. Parameter space gridding. Pre-computing the observable histograms requires one to operate

on a discrete grid. In practice, the physics parameters should be binned somewhat finely, and the

nuisance parameters can be binned more coarsely. Our grids contained a total of approximately

5× 104 points for each class of hypothesis (n = 1 VLI, for example).

3. Likelihood minimization. The downside to using a grid is that most minimization algorithms

require continuous parameters. Because of this, and to avoid any issue with local minima, we

chose simply to perform an exhaustive search for the minimum when required.

4. Normalization nuisance parameter. Minimization of a normalization nuisance parame-

ter (see chapter 8 for specifics) can be handled differently, because it can be easily varied

via histogram scaling. The likelihood can be automatically minimized in this dimension by

normalization of the total number of events4.

5. Histogram interpolation. One of our nuisance parameters, the OM sensitivity, is not variable

via reweighting; changing it requires re-simulating neutrino Monte Carlo from the detector

simulation stage onward. If we need histograms with OM sensitivities between those generated,

we linearly interpolate between the observable histograms of higher and lower sensitivity as an

approximation.

6. MC Experiments and confidence levels. As we perform the Monte Carlo experiments, we

estimate not only the confidence level of the data but also the error on that confidence level.

If that confidence level is far enough away from the confidence levels we care about (generally

90% to 99%), we abort the MC experiments early and record the approximate confidence level.

Furthermore, recording the actual confidence level at a certain point (instead of just a yes/no of

whether the point is excluded) allows offline contour interpolation finer than the initial binning.

Several improvements are possible as computational power increases and/or specific implemen-

tation details change. First, if observable histogram generation is fast enough, the grid approach can

be abandoned and a minimization algorithm such as MINUIT [87] can be employed. Alternatively,

4This can be easily proved by differentiating the Poisson log-likelihood with respect to an overall scaling factor on
the µi.
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an adaptive grid algorithm could be used to avoid unnecessary time spent in uninteresting portions

of the parameter space.

7.5.2 Zero Dimensions

One advantage of the Feldman-Cousins method is that, unlike the χ2 approximation, the

effective dimensionality of the parameter space is not fixed. Specifically, if one enters a region of the

parameter space where varying a parameter doesn’t affect the observables very much, the critical

value of the likelihood ratio will tend toward a χ2 distribution with fewer degrees of freedom.

This results in a mild pathology, however, in the case where our physics parameter space has

only one dimension to begin with. Suppose one is parametrizing new physics with the logarithm of a

single parameter, log10 ∆δ. Then as this gets smaller and smaller, eventually there may be no effect

on the observables at all, and the ∆L distribution representing statistical variations will approach a

δ-function (a χ2 distribution with zero degrees of freedom). This may not be a problem if the data is

perfectly described by the simulation; however, any small differences may mean that a relatively small

∆Ldata in this region of the parameter space may be artificially blown up into a huge significance

(see fig. 7.5 for an example). We view this more as a coordinate singularity brought on by infinitely

stretching out the region between no new physics (∆δ = 0) and the ∆δ to which we are sensitive.

Our solution was to avoid this region of the parameter space in the one-dimensional case, but we

encourage further studies of the effect.

7.6 Binning and Final Event Count

In general, finer binning provides higher sensitivity with a likelihood analysis. Indeed, we find

a monotonic increase in simulated sensitivity to VLI effects while increasing the number of bins in

cos θUL and Nch (see fig. 7.6). However, because the further gains in sensitivity are minimal with

binning finer than 10 × 10, we limit ourselves to this size to avoid any systematic artifacts caused

by binning, say, finer than our angular resolution. We also limit the Nch range for the analysis to

20 ≤ Nch < 120 in order to avoid regions with very poor statistics, limiting the possibility that a

few remaining high-energy background events might pollute the analysis. This reduces the number

of candidate neutrino events in the analysis region to 5511.
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Chapter 8

Systematic Errors

Systematic errors represent uncertainties in quantities necessary to predict our observables given a

certain hypothesis. These can be physics-related (for example, the absolute normalization of the flux

of atmospheric neutrinos) or detector-related (the sensitivity of the AMANDA-II optical modules).

Here we quantify a number of these systematic errors and discuss how they are incorporated into

this analysis.

8.1 General Approach

Each systematic error, or nuisance parameter, added to the likelihood test statistic increases

the dimensionality of the space we must search for the minimum; therefore, to add systematic errors,

we group them by their effect on the (cos θUL, Nch) distribution. We define the following four classes

of errors: 1) normalization errors, affecting only the total event count; 2) slope errors, affecting the

energy spectrum of the neutrino events and thus the Nch distribution; 3) tilt errors, affecting the

cos θUL distribution; and 4) OM sensitivity errors, which affect the probability of photon detection

and change both the cos θUL and Nch distribution. These errors are incorporated into the simulation

as follows:

• Normalization errors are incorporated via a uniform weight 1±
√

(α2
1 + α2

2);

• slope errors are incorporated via an energy-dependent event weight (E/Emedian)∆γ , where

Emedian is the median neutrino energy at the final cut level, 640 GeV (see fig. 8.1);
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Figure 8.1: Simulated effect of slope uncertainty ∆γ on the Nch distribution.

• tilt errors are incorporated by linearly tilting the cos θUL distribution via a factor 1+2κ(cos θUL+

1
2 ) (see fig. 8.2); and

• OM sensitivity errors are incorporated by regenerating atmospheric neutrino simulation while

globally changing the sensitivity of all OMs in the detector simulation from the nominal value

by a factor 1 + ε (see fig. 8.3).

As we discuss later, we split the normalization error into two components, α1 and α2, to facilitate

the determination of the conventional atmospheric flux. The slope error is normalized at the median

energy to isolate slope changes from a change in normalization. The tilt term linearly tilts the cos θUL

distribution around cos θUL = −0.5, with the magnitude of κ corresponding to the percent change at

cos θUL = 0.

Table 8.1 summarizes sources of systematic error and the class of each error. The total nor-

malization errors α1 and α2 are obtained by adding the individual normalization errors in quadra-

ture, while the tilt κ and slope change ∆γ are added linearly. Asymmetric error totals are conser-

vatively assumed to be symmetric, using whichever deviation from the nominal is largest. Each
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Figure 8.2: Simulated effect of tilt uncertainty κ on the cos θUL distribution.

class of error maps to one dimension in the likelihood space, so for example in the VLI case,

L(θr, θs) = L(∆δ, sin 2ξ, α, ∆γ, κ, ε). During minimization, each nuisance parameter is allowed to

vary freely within the range allowed around its nominal value, with each point in the likelihood space

giving a specific prediction for the observables, Nch and cos θUL. In most cases, the nominal value of

a nuisance parameter corresponds to the predictions of the Barr et al. flux, with best-known inputs

to the detector simulation chain. We describe each of the individual errors shown in table 8.1 in the

following sections.

8.2 Sources of Systematic Error

8.2.1 Atmospheric Neutrino Flux Normalization

One of the largest sources of systematic error is the overall normalization of the atmospheric

neutrino flux. While the total νµ + ν̄µ simulated event rate for recent models [16, 17] only differs by

±7%, this masks significantly larger differences in the individual νµ and ν̄µ rates. We take the latter
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tions.
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Table 8.1: Systematic errors in the atmospheric muon neutrino flux, separated by effect
on the observables cos θUL and Nch. See the text for more detail on each source of error.

Error Class Magnitude
Atm. νµ + ν̄µ flux α1 ±18%
Neutrino interaction α2 ±8%
Reconstruction bias α2 −4%
ντ -induced muons α2 +2%
Background contamination α2 +1%
Charmed meson contribution α2 +1%
Timing residual uncertainty α2 ±2%
Muon energy loss α2 ±1%
Primary CR slope (H, He) ∆γ ±0.03
Charmed meson contribution ∆γ +0.05
Pion/kaon ratio κ +0.01/−0.03
Charmed meson contribution κ −0.03
OM sensitivity, ice ε ±10%

difference of ±18% to be more representative of the true uncertainties in the models. This is also in

line with the total uncertainty in the flux estimated in ref. [17].

8.2.2 Neutrino Interaction

To estimate the error in our simulation of neutrino interactions (from the cross section, scatter-

ing angle, parton distribution functions, etc.), we compare our nusim atmospheric neutrino simulation

with a sample generated with anis [96]. anis uses the more modern CTEQ5 neutrino-nucleon cross

sections and parton distribution functions [97], compared to MRS [98] in nusim, and it also accu-

rately simulates the neutrino-muon scattering angle. We find an 8% difference in the normalization

for an atmospheric neutrino spectrum (anis produces fewer events). There is a small difference in

the median energy of the events (3% lower in anis), but we do not find an appreciable difference in

the shapes of the observable distributions.

8.2.3 Reconstruction Bias

We characterize our uncertainty in our reconstruction quality parameters (“reconstruction

bias”) by investigating how systematic disagreements between data and simulation affect the number

of events surviving to the final cut level. In particular, the smoothness and paraboloid error variables

have systematically lower values in simulation than in data. To quantify how this affects our event
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sample, we first use a Kolmogorov test to find the scaling factor for these variables that reduces the

disagreement the most. Specifically, the scaling factor ζ approximately corrects the simulated value

of the quality variable qMC to the observed value qdata:

qdata ≈ ζ qMC . (8.1)

Note that this is not a normalization change, but a scaling of the individual observable values. These

scaling factors are shown in table 8.2.

Table 8.2: Systematic scaling factors for smoothness and paraboloid error.

Parameter Scaling Factor
|SPhit| 1.09
Perr 1.025

We then reapply the cuts to the simulation using the scaled values of these two parameters.

This decreases the final number of events in the sample by 4%, and we use this as the estimated

uncertainty due to systematic shifts in our quality parameters. We note this is smaller than the

estimate of 9% in ref. [82], because our agreement between data and simulation in the paraboloid

error is better (possibly because we use photonics to simulate the photon propagation).

8.2.4 Tau-neutrino-induced Muons

Normally, ντ -induced muons are negligible when considering atmospheric neutrinos, since

mass-induced oscillations are such a small effect at our energies. However, in the new physics scenar-

ios we consider here, up to 50% of our νµ flux can oscillate to ντ , which can then interact, generate

a τ lepton, and then decay to a muon. To estimate this flux, we generate a sample of tau neutrinos

with anis. Then, we weight each event with a νµ atmospheric weight times its oscillation probability,

for the extreme case described above. The final event rate is only 2% of the total.

The reason the flux is so small is that we are significantly penalized by the steep power-law

energy spectrum, considering that the muon takes only a fraction of the tau energy. We are also

penalized by the branching ratio of τ → µνµντ , which is only 17% [20].
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Figure 8.4: Ratio of data to atmospheric neutrino MC as a function of cut strength (see
eq. 6.4 for definition), after application of L2 purity cuts. The dashed line represents the
minimum of the “flat” region. There is no significant difference between the minimum
and the ratio at the analysis final cut level (cut strength = 1.0).

8.2.5 Background Contamination

As described in section 6.3.2, we estimate the background contamination by tightening the

quality cuts until the ratio of data to simulation flattens out. After application of the L2 purity cuts,

we recheck the background contamination with this method and still estimate it to be less than 1%

(see fig. 8.4).

Although frequently used, this method is far from ideal. In addition to the drawbacks men-

tioned in chapter 6, the data/MC ratio does not reliably have the shape shown in fig. 8.4, with a clear

region of constant ratio. In fig. 8.4, only the initial point-source cuts were scaled as a function of

cut strength, and the purity cuts were not. Scaling the purity cuts as well presents several problems

(e.g., how to “scale” a two-dimensional cut), and frequently the data/MC ratio does not flatten.
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A better approach would be to model the background contamination in the observables and

then include the contamination level as a nuisance parameter, but this requires a more sophisticated

understanding of the characteristics of mis-reconstructed muons that survive to high quality levels.

8.2.6 Timing Residual Uncertainty

The uncertainty in the timing of the optical modules is less than 5 ns, as determined by YAG

laser pulses. We take the effect on the normalization of the final event sample to be 2%, from ref. [82].

8.2.7 Muon Energy Loss

The uncertainty in the muon energy loss from various sources is rather small at TeV energies,

and we use the estimate in ref. [82] of a 1% effect in the absolute event rate.

8.2.8 Primary Cosmic Ray Slope

Some uncertainty remains in the primary cosmic ray (CR) spectral index [99]. If this is small,

we can model this by just changing the spectral slope by some amount ∆γ. The uncertainty in the

slope of the proton component is small (0.01), but the uncertainty in the Helium component is much

larger (0.07). To find how much this uncertainty changes the total flux, we approximate a change in

spectral index of a secondary component as follows:

E−γ + fE−γ+∆γ ≈ (1 + f)E−γE
f

1+f ∆γ = (1 + f)E−γ+ f
1+f ∆γ (8.2)

That is, we note that to first order, a change in spectral index of ∆γ in a secondary component

is scaled by approximately f/(1 + f), the fraction of the total flux for that component. Since fHe is

at most 30% in our energy range, we set the uncertainty in the primary cosmic ray spectral index to

∆γ = 0.01 + 0.3 · 0.07 = 0.03.

8.2.9 Charmed Meson Contribution

The Barr et al. and Honda et al. atmospheric neutrino flux predictions only include νµ

from charged pion and kaon decay, but at high enough energies, a charmed meson (e.g. D±) can

be produced. These decay almost immediately1 and can produce a high-energy contribution to the

1This is why the charmed meson component of the flux is also referred to as “prompt.”
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Figure 8.5: Predicted atmospheric prompt neutrino fluxes, averaged over zenith angle
and multiplied by E3 to enhance features, compared to the Barr et al. conventional flux.
The vertical dotted line marks the 95% point of the energy range of our data sample.

atmospheric neutrino flux. The cross sections that are relevant for charm production, however, are

still uncertain, leading to huge uncertainties in the normalization of this flux (see [100] for a review).

In our simulation, we neglect any charm component. To estimate the systematic uncertainty

by neglecting this component, we compare the predicted flux when adding the Naumov RQPM (“Re-

combination Quark Parton Model”) flux [101]. The RQPM model is a non-perturbative approach,

and is a conservative choice as the predicted flux is quite large. More recent perturbative-QCD

calculations predict maximum fluxes that are quite a bit smaller (see e.g. [102, 103]). Even in the

Naumov RQPM model, however, the predicted flux is almost negligible in the energy range of this

analysis, as shown in fig. 8.5.

We find the difference in normalization to be 1% at our final cut level. We also incorporate the

effect on the Nch distribution by modeling the charm contribution as a change in slope of the energy
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Figure 8.6: Relative contribution of pions and kaons to atmospheric muons and muon
neutrinos, as a function of energy (solid = vertical, dashed = 60◦, from [104]).

spectrum. We find that changing the spectral index by +0.05 matches the increase at high Nch

caused by the Naumov flux. Changing the spectral index actually distorts the zenith angle spectrum

by a tiny amount (a tilt of κ = −0.03), but we saw no observable difference when just adding the

Naumov flux, so to be conservative we “correct” for this by adding in a tilt uncertainty along with

the slope term described above.

8.2.10 Rock Density

The uncertainty in the density of bedrock under the polar ice is approximately 10% [82]. To

model the effect of this, we modify both anis and mmc, increasing the density of rock by 10% in

both, and compare to an unmodified anis sample. We find a negligible difference in atmospheric

event rates of < 0.1%. We note that increases in interaction probability due to increased density are

offset by decreased muon range.

8.2.11 Pion/Kaon Ratio

The relative contribution to the atmospheric neutrino flux from pions and kaons is both energy

and zenith-angle dependent. This general dependence is shown in fig. 8.6. However, the cross section

for the production of kaons is still relatively uncertain, and thus the exact value of the π/K ratio

contributes to our systematic errors.
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standard Barr et al. prediction.

To determine the effect on the zenith angle distribution from the uncertainty in the pion/kaon

ratio, we first implement an atmospheric flux weighting scheme that directly uses the Gaisser parametriza-

tion (eq. 2.5), with coefficients fitted to reproduce the Barr et al. flux. We then compare the cos θUL

distributions using extreme values for AK/Aπ of 0.28 and 0.51, as derived from the ZNπ and ZNK

uncertainty tabulated in ref. [105]. The effect is small and can be approximated by a linear tilt κ in

the cos θUL distribution of +0.01/−0.03 (see fig. 8.7).

8.2.12 Optical Module Sensitivity and Ice

A significant source of error is the uncertainty in the absolute sensitivity of the optical modules.

This has a large effect on both the overall detector event rate (a decrease of 1% in sensitivity results

in a decrease of 2.5% in event rate) and the shape of the zenith angle and Nch distributions, as

shown in fig. 8.3. We quantify this uncertainty by comparing the trigger rate of down-going muons in

2005 with simulation predictions given various OM sensitivities, including the uncertainty of hadronic

interactions, by using corsika air shower simulations with the sibyll 2.1 [106], epos 1.60 [107],

and qgsjet-ii-03 [108] interaction models. For the purposes of this study, we assume that the
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Figure 8.8: AMANDA-II atmospheric muon rate vs. OM sensitivity for 2005 data and
various simulated hadronic interaction models. The arrows indicate the range of OM
sensitivities compatible with data using this estimation procedure.

uncertainty in the hadronic interaction model is the primary uncertainty in the atmospheric muon

rate. There is also uncertainty in the normalization of the cosmic ray flux itself, but this is included

in the atmospheric neutrino flux uncertainty, and including it again here would be “double-counting.”

We find that we can constrain the optical module sensitivity to within +10%/−7%, around

a central value of 85% (see fig. 8.8). The range of uncertainty in the sensitivity is consistent with

ref. [82]. That analysis used the shape of the atmospheric neutrino zenith angle distribution to

constrain the OM sensitivity to 100%+3%-10%. However, we cannot use this approach since this

distribution was blinded to us.
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Table 8.3: Relative simulated atmospheric neutrino rates for various ice models, compared
to the rate with ptd and MAM.

Ice Model Relative atm. νµ rate
Millennium +39%

AHA +23%
AHA (85% OMs) -8%

The difference in central values of the OM sensitivity is due to the differences in ice model

used; we use the photonics package with the AHA ice model, while the simulation in ref. [82] used

ptd with the MAM ice model. While the MAM ice model was tuned to muon data, and reproduces

both muon and neutrino rates fairly well, all ice models released with photonics produce muon and

neutrino rates that are significantly higher. It is currently unclear whether this is a problem with

the ice model or with the photonics software, but we can “fix” this discrepancy by changing the

nominal OM sensitivity to 85% when using the AHA ice model. We note that this also brings the

expected neutrino rate in line with the MAM ice model, as shown in table 8.3.

This entanglement between ice and optical module sensitivity is rather insidious, because to

first order, changing the ice model and OM sensitivity has a similar effect on the Nch and cos θUL

distributions. Using timing information (such as timing residuals), it is possible to disentangle the

two. To our observables, however, the effects are similar, so we model both as a single source of error.

Changing the OM sensitivity by ±10% covers the range in uncertainty in ice models and is also in

line with our muon rate analysis (see fig. 8.9), so we use this as the final error estimate for this class

of uncertainty.

8.3 Final Analysis Parameters

We make a few more simplifications to reduce the dimensionality of the likelihood space. First,

we note that the phase η in the VLI survival probability (eq. 3.7) is only relevant if the VLI effects

are large enough to overlap in energy with conventional oscillations (i.e., below 100 GeV). Since our

neutrino sample is largely outside this range, we set cos η = 0 for this search. This means we can

also limit the VLI mixing angle to the range 0 ≤ sin 2ξ ≤ 1. Second, in the QD case, we vary the

decoherence parameters D∗
i in pairs (D∗

3 , D∗
8) and (D∗

6 , D∗
7). If we set D∗

3 and D∗
8 to zero, 1

2 of νµ
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Figure 8.9: Simulated effect of OM sensitivity on cos θUL and Nch distributions, compared
to the spread from different ice models (2005 L3 simulation).
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Table 8.4: Physics parameters and nuisance parameters used in each of the likelihood
analyses (VLI, QD, and conventional).

Analysis Physics parameters Nuisance parameters
VLI ∆δ, sin 2ξ α1, α2, ∆γ, κ, ε

QD D∗
3,8, D∗

6,7 α1, α2, ∆γ, κ, ε

Conv. α1, ∆γ α2, κ, ε

remain after decoherence; with D∗
6 and D∗

7 set to zero, 5
6 remain; and with all D∗

i equal and nonzero,

1
3 remain after decoherence.

Finally, in the absence of new physics, we can use the same methodology to determine the

conventional atmospheric neutrino flux. In this case, the nuisance parameters α1 (the uncertainty

in the atmospheric neutrino flux normalization) and ∆γ (the change in spectral slope relative to the

input model) become our physics parameters. The determination of an input energy spectrum by

using a set of model curves with a limited number of parameters is commonly known as forward-

folding (see e.g. ref. [109]).

Table 8.4 summarizes the likelihood parameters used for the VLI, QD, and conventional anal-

yses.
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Chapter 9

Results

9.1 Final Zenith Angle and Nch Distributions

After performing the likelihood analysis described in chapter 7 on the (cos θUL, Nch) distri-

bution, we find no evidence for VLI-induced oscillations or quantum decoherence, and the data are

consistent with expectations from atmospheric flux models. The reconstructed zenith angle and Nch

distributions compared to standard atmospheric neutrino models are shown in fig. 9.1, projected into

one dimension and rebinned.

9.2 Likelihood Ratio and Best-fit Point

The profile likelihood ratio of the data to the best-fit point over the parameter space, along

with the critical value ∆Lcrit at a confidence interval, are the two fundamental results of the profile

construction method described in chapter 7. As an example, we show in fig. 9.2(a) the likelihood ratio

as a function of the n = 1 VLI parameters log10 ∆δ and sin2 2ξ (we have switched the mixing angle

parameter from sin 2ξ to sin2 2ξ to enhance the region of interest in the parameter space). Regions

with high values of the likelihood ratio are easily excluded. The boundary between the allowed and

excluded regions at a certain confidence level is given by the intersection of this surface with the

critical surface for that confidence level ∆Lcrit, shown in fig. 9.2(b). We can see that the critical

value varies quite substantially across the parameter space from 4.61, the 90% CL χ2 value for two

degrees of freedom. Instead of finding the intersection of these two surfaces, in practice it is easier

(and likely more accurate) to compute the actual CL at a given grid point and then interpolate to
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Figure 9.1: Zenith angle and Nch distributions of the 5511 candidate atmospheric neutrino
events in the final sample, compared with Barr et al. [16] and Honda et al. [17] predictions
(statistical error bars).
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find the desired contours.

The best-fit point shown in fig. 9.2(a) has physics parameters (log10 ∆δ = −25.5, sin2 2ξ = 0.4)

and nuisance parameters (1 + α = 1.14, ∆γ = 0.08, κ = −0.03, ε = 0.85). The minimum occurs at

a rather large value of the VLI parameter, but with a small mixing angle, and by construction the

nuisance parameters have been adjusted from their central values to make the hypothesis fit the data.

A high normalization and harder spectrum compensate for the loss of events due to VLI. The fact

that the best-fit point does not correspond to Standard Model physics (the lower left-hand corner

of fig. 9.2(a)) is likely due to statistical fluctuations or small remaining disagreements between data

and simulation. As we will see in the next section, the difference is not statistically significant.

9.3 Upper Limits on Quantum Gravity Parameters

In all new physics scenarios, the data are consistent with no new physics at the 90% CL.

We show here the allowed regions in the various parameter spaces, and we set upper limits on the

quantum gravity parameters.

9.3.1 Violation of Lorentz Invariance

The 90% CL upper limits on the VLI parameter ∆δ for oscillations of various energy depen-

dencies, with maximal mixing (sin 2ξ = 1) and phase cos η = 0, are presented in table 9.1. Allowed

regions at 90%, 95%, and 99% confidence levels in the log10 ∆δ- sin2 2ξ plane for the n = 1 hypothesis

are shown in fig. 9.3. The upper limit at maximal mixing of ∆δ ≤ 2.8 × 10−27 is competitive with

that from a combined Super-Kamiokande and K2K analysis [43].

In the n = 1 case, recall that the VLI parameter ∆δ corresponds to the splitting in velocity

eigenstates ∆c/c. Observations of ultra-high energy cosmic rays constrain VLI velocity splitting in

other particle sectors, with the upper limit on proton-photon velocity splitting of (cp − c)/c < 10−23

[41]. While we probe a rather specific manifestation of VLI in the neutrino sector, our limits are

orders of magnitude better than those obtained with other tests.
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Table 9.1: 90% CL upper limits from this analysis on VLI and QD effects proportional
to En. VLI upper limits are for the case of maximal mixing (sin 2ξ = 1), and QD upper
limits are for the case of D∗

3 = D∗
8 = D∗

6 = D∗
7 .

n VLI (∆δ) QD (D∗) Units
1 2.8× 10−27 1.2× 10−27 –
2 2.7× 10−31 1.3× 10−31 GeV−1

3 1.9× 10−35 6.3× 10−36 GeV−2

9.3.2 Quantum Decoherence

The 90% CL upper limits on the decoherence parameters D∗
i given various energy dependen-

cies are also shown in table 9.1. Allowed regions at 90%, 95%, and 99% confidence levels in the

log10 D∗
3,8- log10 D∗

6,7 plane for the n = 2 case are shown in fig. 9.4. The 90% CL upper limit from

this analysis with all D∗
i equal for the n = 2 case, D∗ ≤ 1.3 × 10−31 GeV−1, extends the previous

best limit from Super-Kamiokande by nearly four orders of magnitude. Because of the strong E2

energy dependence, AMANDA-II’s extended energy reach allows for much improved limits.

9.4 Determination of the Atmospheric Neutrino Flux

9.4.1 Result Spectrum

In the absence of evidence for violation of Lorentz invariance or quantum decoherence, we

interpret the atmospheric neutrino flux in the context of Standard Model physics only. We use

the likelihood analysis to perform a two-parameter forward-folding of the atmospheric neutrino flux

to determine the normalization and any change in spectral index relative to existing models. As

described in section 8.3, we test hypotheses of the form

Φ(E, θ, φ) = (1 + α1) Φref(E, θ, φ)
(

E

Emedian

)∆γ

, (9.1)

where Φref(E, θ, φ) is the Barr et al. or Honda et al. flux.

The allowed regions in the (1 + α1)-∆γ parameter space are shown in fig. 9.5. We translate

this result into a range of fluxes by forming the envelope of the set of curves allowed on the 90%
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Figure 9.3: 90%, 95%, and 99% CL allowed regions (from darkest to lightest) for VLI-
induced oscillation effects with n = 1. Also shown are the Super-Kamiokande + K2K
90% contour [43] (dashed line), and the projected IceCube 10-year 90% sensitivity [110]
(dotted line).
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Figure 9.5: 90%, 95%, and 99% allowed regions (from darkest to lightest) for the nor-
malization (1 + α1) and change in spectral index (∆γ) of the conventional atmospheric
neutrino flux, relative to Barr et al. [16]. The star marks the central best-fit point.

contour line in fig. 9.5 (see fig. 9.6 for an illustration)1. This band of allowed energy spectra is shown

in fig. 9.7 and compared to results obtained with Super-Kamiokande data [111].

The central best-fit point is also shown in figs. 9.5 and 9.7. However, because of the degeneracy

between the normalization parameter α1 and the systematic error α2, the best-fit point actually spans

a range of normalizations corresponding to the uncertainty α2. Specifically, we find the best-fit spectra

to be

Φbest-fit = (1.1± 0.1)
(

E

640 GeV

)0.056

· ΦBarr (9.2)

for the energy range 120 GeV to 7.8 TeV (for a discussion of this range, see section 9.4.2). Note that

1Technically, the band should be constructed from the envelope of curves from the entire 90% allowed region, but
in this case one can easily show that the boundary suffices.
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86

 / GeVν E
10

log
1 1.5 2 2.5 3 3.5 4

-1
 s

r
-1

 s
-2

 c
m

2
/d

E 
/ G

eV
Φ

 d3
 E

10
lo

g

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

AMANDA-II (2000-2006, 90% CL)

GGMR 2006
Barr et al.

Honda et al.
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Φbest-fit does not represent the entire allowed band at any CL, but only the set of best-fit spectra

with ∆L = 0. There is no degeneracy on the ∆γ parameter, so there is only a single best-fit value

for the change in spectral slope. Not including the normalization, the best-fit nuisance parameters

for the minima are (κ = 0.03, ε = 0.82). We note that the best-fit OM sensitivity of 82% is close to

the nominal value of 85% found in our systematic error study of section 8.2.12.

9.4.2 Valid Energy Range of Result

We define the valid energy range of the resulting flux band as the intersection of the 5%-95%

regions of the allowed set of spectra, as determined by the simulated neutrino energy distributions at

the final cut level. We also marginalize over the OM sensitivity, which affects the energy distribution.

This results in an energy range of 120 GeV to 7.8 TeV for this result.

We note this procedure is different (and more conservative) than that used to define the energy

range covered by an unfolding analysis, which is often determined by the reconstructed energy of the

highest-energy event. Since we bypass any energy reconstruction (it is unnecessary in an observable-

based likelihood analysis), we have no such recourse. As an alternative, using the median energy

of simulated events in the highest Nch bin (110-120) would result in a similar energy range as the

above method, with a slightly higher cutoff of 9.5 TeV. Using the 95% point of the simulated energy

distribution of events in this highest bin would extend the energy range to 76 TeV, but there are not

necessarily any data events at this energy.

9.4.3 Dependence on Flux Model

Because there are no significant differences in the shape of the atmospheric neutrino spectra

of the Barr et al. and Honda et al. models, the results of the conventional analysis (as expressed

as a primary flux) should be independent of the input model. To check this, we compare the flux

obtained using the Honda et al. model as the primary model in place of the Barr et al. model which

was used above.

The allowed regions in normalization and spectral slope parameter space are shown in fig. 9.8.

The regions are similar, with a global offset in the normalization due to the different model nor-

malizations. The best-fit slope point is identical. The resulting flux band calculated from the 90%
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Figure 9.8: 90%, 95%, and 99% allowed regions (from darkest to lightest) for the nor-
malization (1 + α1) and change in spectral index (∆γ) of the conventional atmospheric
neutrino flux, relative to Honda et al. [17]. The star marks the central best-fit point.

allowed region is shown in fig. 9.9, compared to the band obtained with Barr et al. The maximum

difference in the flux boundary is 6%. Compared to the vertical width of the band of 30% to 50%,

the dependence on flux model is a subdominant effect.

9.5 Comparison with Other Results

The atmospheric neutrino spectrum determined with this analysis is compatible with an anal-

ysis of Super-Kamiokande data [111], and extends that measurement by nearly an order of magnitude

in energy. Our data suggest an atmospheric neutrino spectrum with a slightly harder spectral slope

and higher normalization that either the Barr et al. or Honda et al. model. We also compare our

results to an unfolding of the Fréjus data [112] and to an unfolding of four years of AMANDA-II data

[113] in fig. 9.10. Except for the Fréjus results, the fluxes are shown without any oscillation effects.



89

 / GeVν E
10

log
1.5 2 2.5 3 3.5 4

-1
 s

r
-1

 s
-2

 c
m

2
/d

E 
/ G

eV
Φ

 d3
 E

10
lo

g

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

AMANDA-II (2000-2006, 90% CL, Barr et al.)

AMANDA-II (2000-2006, 90% CL, Honda et al.)

Barr et al.

Honda et al.
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Chapter 10

Conclusions and Outlook

10.1 Summary

We have set stringent upper limits on both Lorentz violation and quantum decoherence effects

in the neutrino sector, with a VLI upper limit at the 90% CL of ∆δ = ∆c/c < 2.8 × 10−27 for VLI

oscillations proportional to E, and a QD upper limit at the 90% CL of D∗ < 1.3 × 10−31 GeV−1

for decoherence effects proportional to E2. We have also set upper limits on VLI and QD effects

with different energy dependencies. Finally, we have determined the atmospheric neutrino spectrum

in the energy range from 120 GeV to 7.8 TeV and find a best-fit result that is slightly higher in

normalization and with a harder spectral slope than either the Barr et al. or Honda et al. model.

This result is consistent with Super-Kamiokande data and extends that measurement by nearly an

order of magnitude in energy.

10.2 Discussion

For an interpretation of the VLI and QD upper limits, we consider natural expectations for the

values of such parameters. Given effects proportional to E2 and E3, one can argue via dimensional

analysis that the new physics parameter should contain a power of the Planck mass MPl or M2
Pl,

respectively [114]. For example, given the decoherence parameters D, we may expect
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D = D∗En
ν

= d∗
En

ν

Mn−1
Pl

(10.1)

for n ≥ 2, and d∗ is a dimensionless quantity of O(1) by naturalness. From the limits in table 9.1, we

find d∗ < 1.6× 10−12 (n = 2) and d∗ < 910 (n = 3). For the n = 2 case, the decoherence parameter

is far below the natural expectation, suggesting either a stronger suppression than described, or that

we have indeed probed beyond the Planck scale and found no decoherence of this type.

10.3 Outlook

10.3.1 IceCube

While the AMANDA-II data acquisition system used in this analysis ceased taking data at

the end of 2006, the next-generation, km3-scale IceCube detector is under construction, with com-

pletion expected in 2011. IceCube improves upon AMANDA-II in a number of respects. First, its

larger size will allow the detection of fainter neutrino sources (see diagram in fig. 10.1). The larger

spacing between the strings increases the energy threshold (the exact value depends upon the trigger

configuration, which is flexible), but the longer strings reach into the clearest ice below a large dust

layer at 2050 m.

Second, IceCube uses digital optical modules (DOMs) in place of AMANDA’s analog OMs

(prototype DOMs are in use on AMANDA-II’s string 18). The DOMs digitize the full PMT waveform

in the ice, then transmit it digitally to the surface. The waveform provides substantially more

information about the direction and distance to a particle track than the hit times recorded by the

AMANDA µ-DAQ. Transmitting data digitally also alleviates any issues with cable dispersion and

electrical crosstalk, and modern communication protocol techniques such as error correction can be

employed.

In addition to the in-ice array, a surface air shower array (“IceTop”) detects cosmic ray air

showers. An IceTop station consists of a pair of tanks above each in-ice string, and each tank houses
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Figure 10.1: Diagram of the the next-generation, km3-scale IceCube neutrino detector
[115]. The darker cylinder marks the extent of the AMANDA-II detector. The Eiffel tower
is shown for scale.
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Figure 10.2: Diagram of an IceCube digital optical module (DOM) [115].
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two DOMs. The tanks are filled with water that, by means of a circulation and de-gassing system,

freezes into clear, bubble-free ice. In addition to fundamental cosmic ray composition studies, IceTop

can be used as a veto to assist with atmospheric muon rejection. Figure 10.3 shows a large air shower

event that has triggered numerous stations on the surface and a muon bundle that has penetrated

into the deep ice.

10.3.2 Sensitivity Using Atmospheric Neutrinos

IceCube has the potential to improve greatly upon the quantum gravity limits obtained with

AMANDA-II, as increased statistics of atmospheric neutrinos at the highest energies probe smaller

deviations from the Standard Model. In particular, IceCube should be sensitive to n = 1 VLI effects

an order of magnitude smaller than the limits from this analysis ([110]; see also fig. 9.3). We note that

we have also only tested one particular manifestation of VLI in the neutrino sector. A search of the

atmospheric neutrino data for a unexpected directional dependence (for example, in right ascension)

could probe other VLI effects, such as a universal directional asymmetry (see e.g. [38]).

10.3.3 Astrophysical Tests of Quantum Gravity

Once high-energy astrophysical neutrinos are detected, analysis of the flavor ratio at Earth

can probe VLI, QD, and CPT violation [114, 116]. Another technique is to probe VLI via the

potential time delays between photons and neutrinos from gamma-ray bursts (GRBs). Given the

cosmological distances traversed, this delay could range from 1 µs to 1 year, depending on the power

of suppression by MPl [117]. Detection of high-energy neutrinos from multiple GRBs at different

redshifts would allow either confirmation of the delay hypothesis or allow limits below current levels

by several orders of magnitude [118]. Such a search is complicated by the low expected flux levels from

individual GRBs, as well as uncertainty of any intrinsic γ−ν delay due to production mechanisms in

the source (for a further discussion, see [119]). Other probes of Planck-scale physics may be possible

as well, but ultimately this will depend on the characteristics of the neutrino sources detected.
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Figure 10.3: Event display of a large coincident air shower and atmospheric muon event
in the 40-string IceCube detector, as seen from below. The colors indicate the relative
timing of the photon hits, with red being early and blue being late. Note the effect of the
large dust layer (the “pinched” region above the green-colored hits).
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Appendix A

Non-technical Summary

The 20th century saw the creation of two great theories of physics — one governing the very big, the

other the very small. Albert Einstein’s General Theory of Relativity, which explains how massive

objects produce gravity, revolutionized our view of space and time. The theory predicts all sorts of

strange effects, like clocks running slower on Earth than in outer space. Such predictions might seem

outlandish, but Global Positioning Satellites (GPS) could not function correctly without taking into

account Einstein’s theory.

The other great theory is that of quantum mechanics, which governs the behavior of the very

small. It operates in the realm of the atom, explaining how tiny elementary particles come together

to make up everything around us. If the predictions of general relativity are strange, the world of

quantum mechanics is truly bizarre: particles traveling through solid walls, being in two places at

once, and other mind-boggling ideas. Despite its strangeness, quantum mechanics has made possible

the technology of today, including the computer and the Internet.

Despite many attempts, no one has been able to devise any experimental test that general

relativity or quantum mechanics cannot pass. Yet these two great theories cannot apparently be

reconciled. If one imagines a scenario to which both theories apply — something very heavy and

very small, say — one will quickly run into major problems. What this tells us is that while each

theory works amazingly well in its own domain, each by itself is incomplete. What we need is a new

theory that combines the two, a theory of quantum gravity.

Physicists have been trying for decades to build such a theory. Current efforts go by names

such as string theory, loop quantum gravity, non-commutative geometry, and causal set theory, to
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name just a few. But no one has succeeded yet, so we continue to look for hints in nature. Perhaps

we will be able to find something that doesn’t quite agree with relativity or quantum mechanics, and

that will lead us toward a theory of quantum gravity.

Studying very high-energy subatomic particles in nature is one way to look for such hints.

Conveniently, our Galaxy is already filled with them: extremely high-energy particles called cosmic

rays bombard Earth all the time. Fortunately, the Earth’s atmosphere protects us on the surface,

but the cosmic rays still slam into the upper atmosphere and create huge showers of other particles,

a train wreck high in the sky with pieces flying to the ground. Within this wreckage is a zoo of other

particles: electrons, positrons, muons, pions, kaons, and tiny neutrinos.

The neutrino is related to the particles that make up matter around us, like protons, neutrons,

and electrons. For example, if you could pluck a neutron out of the chair you are sitting in, after

about 15 minutes, the neutron would decay into a proton, an electron, and a neutrino. The Sun also

produces neutrinos all the time as it burns hydrogen into helium via nuclear fusion. But we never

notice them; they zip right through us as if we weren’t there. Detecting neutrinos requires huge

experiments located deep underground, underwater, or under ice, in order to shield the sensitive

detectors from the other particles produced in the cosmic ray air showers.

AMANDA-II is one such neutrino detector. It is built deep into the ice at the geographic South

Pole. The ice not only acts as a shield, but has another advantage: if you drill deep enough, it is

extremely clear. AMANDA-II can use the huge ice sheet at the South Pole as a target for neutrinos.

While most of them pass right through without stopping, about every hour, one will crash into the ice

and produce another particle called a muon, which emits light as it continues through the detector.

By putting very sensitive light detectors into holes drilled into the ice, we can see this light. And by

only looking for muons coming from below the detector, we use the entire Earth as a filter to block

out other particles. An “up-going” muon could only have been produced by a neutrino that made it

most of the way through the Earth.

The neutrinos produced when cosmic rays hit the Earth are known as atmospheric neutrinos.

During seven years of taking data, AMANDA-II has detected over 5000 of these neutrinos, from

various directions and of different energies. By looking for certain unexpected features — for example,
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Figure A.1: A high-energy muon, produced from a neutrino collision with the ice or rock,
emits light as it travels through the ice. Sensitive light detectors deployed on cables detect
this light to track the muon and “see” which direction the neutrino came from.
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Figure A.2: Diagram (not to scale!) demonstrating the use of Earth as a filter to screen
out everything but neutrinos.
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missing neutrinos at the highest energies from a certain direction — we might detect a hint of quantum

gravity.

How would a neutrino “go missing”? To understand this, we must delve a bit more into the

types of particles that make up the Universe. In actuality, there is not just one type of neutrino,

but three: electron neutrinos, muon neutrinos, and tau neutrinos. Muon neutrinos produce the

light-emitting muon that give them away inside of AMANDA-II. Electron and tau neutrinos can, not

surprisingly, produce electrons and tau particles, but these do not create the same nice track of light

through the detector that the muon does.

And now we meet again some of the strangeness of quantum mechanics: these three types of

neutrinos can actually transform into one another as they travel. When scientists first measured the

number of electron neutrinos coming from the Sun, they were shocked to find only one-third of the

number they expected. It was only in the 1980s that we understood that the electron neutrinos were

transforming into other types on their way to Earth. Exactly why this happens is an interesting but

complicated story, but suffice it to say that the fact that the neutrinos have a tiny bit of mass allows

these “neutrino oscillations” to occur.

We do not expect this type of neutrino oscillation in the atmospheric neutrinos detected by

AMANDA-II, but transformations of neutrinos from one type to another can also be caused by

quantum gravity. Neutrinos could travel at slightly different speeds than what we expect, or they

could run into a “frothiness” of space itself caused by quantum gravity. Either of these possibilities1

would cause our atmospheric muon neutrinos to change into another type, so if we just counted the

muon neutrinos, we’d find some were missing. And that would be a tell-tale sign of quantum gravity.

This analysis has done just that — used AMANDA-II to count the muon neutrinos coming

from different parts of the sky, at different energies, and looked to see if any are missing. As it turns

out, they are all there. Predictions of how many to expect, without invoking quantum gravity, are

right. So, the search for quantum gravity continues — but we can now put a limit on how big these

effects from quantum gravity are.

1The technical terms for each of these quantum gravity effects are “violation of Lorentz invariance” or VLI, and
“quantum decoherence” or QD, both of which you will see throughout this thesis.
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Appendix B

Effective Area

The neutrino effective area is defined so that the number of events detected is

Nevents =
∫

dEν dΩ dt Φ(Eν , θ, φ) Aν
eff(Eν , θ, φ) (B.1)

for a differential neutrino flux Φ(Eν , θ, φ). Given the lack of a suitable neutrino calibration beam, we

generally calculate effective area using simulation. If we have a set of neutrino MC events that we

can weight to an arbitrary flux, we can use the same events to find the effective area.

Given a set of Ngen unweighted MC events, the number of detected events given a flux Φ is

Nevents =
Ngen∑
i=1

Φ(Ei, θi, φi) wi , (B.2)

where wi is the per-event weight needed to reweight from the generation spectrum back to an E0

flux. Combining the previous two equations, we have

∫
dE dΩ dt Φ(Eν , θ, φ) Aν

eff(Eν , θ, φ) =
Ngen∑
i=1

Φ(Ei, θi, φi) wi (B.3)

for any flux Φ.

If we want to calculate the effective area for a given energy E0 and angles (θ0, φ0), we can

calculate the average over a small energy range E0 ±∆E and solid angle range Ω0 ±∆Ω:
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T

∫ E0+∆E/2

E0−∆E/2

dEν

∫ Ω0+∆Ω/2

Ω0−∆Ω/2

dΩ Φ(Eν , θ, φ) Aν
eff(Eν , θ, φ) =

E,Ω range∑
i

Φ(Ei, θi, φi) wi (B.4)

where we have also assumed the flux and effective area are independent of time, so we can integrate

out the livetime T . Now, we can set Φ to whatever makes the calculation easiest, so we choose

Φ = E0:

T

∫ E0+∆E/2

E0−∆E/2

dEν

∫ Ω0+∆Ω/2

Ω0−∆Ω/2

dΩ Aν
eff(Eν , θ, φ) =

E,Ω range∑
i

wi . (B.5)

So, approximately, we have

T Aν
eff(E0,Ω0) ∆E ∆Ω =

E,Ω range∑
i

wi (B.6)

and thus

Aν
eff(E0, θ0, φ0) =

E,Ω range∑
i

wi

∆E ∆Ω T
. (B.7)

We note that in practice, an easy way to compute the above is to form a histogram of the

MC events versus true neutrino energy. For example, we can calculate the azimuth-averaged effective

area in a given zenith angle range ∆ cos θ by forming a histogram of the events versus true neutrino

energy, weighted with the quantity wi/(2π∆ cos θ ∆E T ), where ∆E is the histogram bin width. If

one wishes to visualize the effective area versus log10 E, we can easily do this by substituting the flux

Φ = E−1 into eq. B.4:

T

∫
∆E

dE

∫
∆Ω

dΩ
Aν

eff(E, θ, φ)
E

=
E,Ω range∑

i

wi

Ei
, (B.8)

so

T

∫
∆ log E

d log E

∫
∆Ω

dΩ ln 10 Aν
eff(E, θ, φ) =

E,Ω range∑
i

wi

Ei
(B.9)
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and thus

Aν
eff(E0, θ0, φ0) =

E,Ω range∑
i

wi

ln 10 · Ei ·∆ log E ·∆Ω · T
. (B.10)

The event weight for a histogram over log10 E thus changes to the summand of the previous equation.

The above calculation is valid either for ν or ν̄ — the effective area for neutrinos and antineu-

trinos is in general not the same because of the different cross sections. If we wish to calculate the

average effective area for ν and ν̄, we can sum the weights of both but add a factor of 1
2 :

Aν,ν̄
eff (E0, θ0) =

E,Ω range∑
i

wν,ν̄
i

2 ln 10 · Ei ·∆ log E ·∆Ω · T
. (B.11)

Finally, we put in explicit quantities for the weights wi to demonstrate the equivalence of

this approach with other working definitions of the effective area. Suppose we have a MC sample

generated with a power-law spectrum E−γ from EL to EH , with Ngen events each of neutrinos and

antineutrinos. Then the weight wi is

wi =
Pi

C E−γ
i

, (B.12)

where Pi is the interaction probability. The flux normalization constant C must be chosen such that

Ngen =
∫ EH

EL

dE

∫
Agen

dA

∫
Ωgen

dΩ
∫

T

dt C E−γ (B.13)

for a generation area of Agen (which could depend on, for example, the zenith angle), solid angle

generation of Ωgen, and livetime T . Solving for C, we find

C =
Ngen

CE ·Agen · Ωgen · T
, (B.14)

where the constant CE is given by the definite integral1

CE =
∫ EH

EL

E−γ dE . (B.15)

1As an example, for γ = 1, EL = 10 GeV, and EH = 108 GeV, CE = 16.12.
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While expressions B.7 and B.10 are useful for calculation, one may come across other working

definitions of the effective area, based on the number of detected events vs. the number generated.

To see the equivalence, note that the fraction of generated events in a region (∆ log E,∆Ω) is

∆Ngen = Ngen

∫
∆ log E

∫
∆Ω

d log E dΩ ln 10 E E−γ

CE

≈ Ngen
ln 10 · E−γ+1 ·∆ log E ·∆Ω

CE Ωgen
. (B.16)

Using this with the event weight given in eq. B.12 and the expression for the effective area in eq. B.10,

we find

Aν
eff(E0, θ0, φ0) =

E,Ω range∑
i

Pi

C E−γ
i

· 1
ln 10 · Ei ·∆ log E ·∆Ω · T

=
E,Ω range∑

i

Pi Agen
CE Ωgen

Ngen · ln 10 · E−γ+1
i ·∆ log E ·∆Ω

=

E,Ω range∑
i

Pi Agen

∆Ngen
. (B.17)

The latter expression is often used as a definition of effective area; we note here its equivalence with

the arguably more fundamental definition given in eq. B.1.
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Appendix C

Reweighting of Cosmic Ray Simulation

In order to optimize simulation time, the 2005 AMANDA dCORSIKA cosmic ray air shower Monte

Carlo is generated with a harder spectrum than is present in nature. Using the DSLOPE steering file

option, the primary spectrum is altered roughly from E−2.7 to E−1.7. More accurately, the DSLOPE

applies a slope difference to each component of the slope parametrization used, which in our case is

Hörandel. The generated events must then be reweighted to the original spectrum and an appropriate

normalization factor applied.

C.1 Event Weighting (Single Power Law)

In this section, we derive a simpler reweighting result for a single-component power-law spec-

trum E−γ generated with minimum energy EL and maximum energy EH . We first derive the

normalization on the flux generating N events:

N =
∫ EH

EL

dE A E−γ , (C.1)

and in our case, since EH � EL, we approximate EH ≈ ∞. We then have for the normalization

factor

A ≈ N (γ − 1)
E−γ+1

L

. (C.2)

So, suppose we are generating a sample of N events with a modified slope of γ̃ = γ +∆, where

∆ = DSLOPE (note the sign convention here). This sample corresponds to a flux of
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N (γ̃ − 1)
E−γ̃+1

L

E−γ̃ . (C.3)

We will apply two weighting factors to weight the sample as if it were N events of the original slope:

wE(E) to correct the slope, and wN to correct the normalization. That is,

wN wE(E)
N (γ̃ − 1)

E−γ̃+1
L

E−γ̃ =
N (γ − 1)

E−γ+1
L

E−γ . (C.4)

By inspection, we have:

wN =
γ − 1
γ̃ − 1

E−γ̃+1
L

E−γ+1
L

(C.5)

and

wE(E) =
E−γ

E−γ̃
. (C.6)

Therefore, the event weight for the ith event wi is:

wi = wN wE(Ei)

=
γ − 1
γ̃ − 1

E−γ̃+1
L

E−γ+1
L

E−γ
i

E−γ̃
i

=
γ − 1

γ − 1 + ∆
E−∆

L E∆
i . (C.7)

In the specific case of the 2005 dCORSIKA simulation, ∆ = −1, γ = 2.7, and EL = 800 GeV, so the

approximate weight wi would be

wi =
1.7
0.7

800 GeV
Ei (GeV)

. (C.8)

However, see section C.3 for a more accurate result.



114

C.2 Livetime

The advantage of reweighting the normalization back to N events of the unmodified spectrum

is that it makes the livetime reweighting simple, since one can now use the livetime of an unmodified

dCORSIKA run. We simply use an additional factor wL,

wL =
T

Nfile tfile
, (C.9)

where T is the data livetime (including any prescaling factors), Nfile is the number of MC files, and

tfile is the livetime of one file with an unmodified spectrum (with the same number of events, of

course). This technique avoids any confusion about dCORSIKA / ucr calculation of livetimes on

runs with modified DSLOPE.

For the 2005 CORSIKA MC, tfile = 0.0787 s (obtained with one run with an unmodified

spectrum), and the livetime of the filtered data set is 199.25 d. This results in a final livetime-

adjusted weight of:

wL wi =
1.7
0.7

800 GeV
Ei (GeV)

199.25 · 86400 s
Nfile · 0.0787 s

. (C.10)

C.3 Event Weighting (Hörandel)

One finds in practice that the expression in eq. C.10 is only accurate to about 30% when

applied to dCORSIKA generated with Hörandel. This is for two reasons: first, there are multiple

components in the flux, each with different spectral slope γk; second, with the SPRIC steering card

enabled, the minimum energy for a primary with mass Ak amu is Ak · EL, not EL.

In theory, one could construct a composite expression using the above equations for each

component, knowing the parameters of the Hörandel flux; however, dCORSIKA makes our life easier

by providing a composite integral FLUXSUM in the log file. The only trick is that the energy integral

is calculated internally in units of TeV, so when using it in our reweighting expression, we need to

correct for this.

The analogue to expression C.7 using the FLUXSUM approach is
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wi =
F̃γ

Fγ
1000−∆ E∆

i , (C.11)

where, as before, γ̃ = γ + ∆, and F̃γ is the FLUXSUM for one file with slope γ̃, and Fγ is the

FLUXSUM for one file with slope γ.

The FLUXSUM ratio allows us to use the original unweighted livetime in the full weight, so

adding the same livetime weight wL, we have

w = wi wL =
F̃γ

Fγ
1000−∆ E∆

i

T

Nfile tfile
, (C.12)

where T is the data livetime (including any prescaling factors), Nfile is the number of MC files, and

tfile is the livetime of one file with an unmodified spectrum (with the same number of events). The

1000−∆ term corrects the units to GeV.

However, knowing the unit conversion of FLUXSUM allows us to use the modified livetime

as calculated by ucr — in which case we can calculate w without using ratios between two different

dCORSIKA runs. Equivalently,

w = 1000−∆ E∆
i

T

Nfile t̃file

, (C.13)

where t̃file is the livetime reported by ucr for one file with modified spectrum.

For the original 2005 dCORSIKA generation, with Hörandel spectrum, EL = 800 GeV,

DSLOPE = −1, and 10K events/file, this results in a final reweighting expression of

w(∆ = −1) =
1000

Ei(GeV)
199.25 · 86400 s
Nfile 0.0306 s

. (C.14)

More recently, we have generated another sample of 2005 MC with DSLOPE = −0.4 and 1M

events/file. For this sample, t̃file = 6.20 s, so the weight is

w(∆ = −0.4, 1M events) =
15.8
E0.4

i

199.25 · 86400 s
Nfile 6.20 s

. (C.15)
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Appendix D

Effective Livetimes and their Applications

We consider the problem of determining the effective livetime of a sample of weighted events (such as

in Monte Carlo simulations). We derive the expression for an effective livetime, then provide a few

illustrative applications: optimization of cosmic ray simulation, and (more speculatively) estimating

the statistical error on zero Monte Carlo events.

D.1 Formalism

We first present the idea of an effective number of events neff , as in [120]. For a set of n

weighted events with observable xi, each with weight wi, the total number of weighted events T ,

given n simulated events, is

T =
n∑

i=1

wi , (D.1)

and the variance σ2 is

σ2 =
n∑

i=1

w2
i . (D.2)

This leads naturally to the idea of an effective number of events neff , defined so that the fractional

Poisson error on neff is the same as the weighted sample1:

1In ROOT, neff can be computed with TH1::GetEffectiveEntries().



117

n2
eff

(
√

neff)2
=

T 2

σ2
(D.3)

neff =
T 2

σ2
=

(
∑n

i=1 wi)2∑n
i=1 w2

i

. (D.4)

D.1.1 Constant Event Weight

For a constant weight wi = w ∀ i, the effective number of events is just the unweighted number

of Monte Carlo events:

neff =
(
∑n

i=1 wi)2∑n
i=1 w2

i

=
n2w2

n w2
= n . (D.5)

Equivalently, one can view the weight w as the ratio between the weighted number of events T and

neff :

T

neff
=

n w

n
= w . (D.6)

Also note that in the case of constant weight w, the error σ on the weighted number of events T is

just w
√

neff :

σ =

√√√√ n∑
i=1

w2
i = w

√
n = w

√
neff . (D.7)

One can view the weight w in terms of an effective livetime for the Monte Carlo sample, which

provides a more intuitive feeling of how the errors are scaling. Specifically, if we are simulating a

data sample (or integer-valued distribution) with livetime L, using Monte Carlo events with weight

w, our effective livetime Leff for the Monte Carlo sample is simply

Leff =
L

w
. (D.8)

Viewed this way, w is the fraction L/Leff by which we must scale the Monte Carlo distribution to

result in one that has a Poisson variance. This also is equivalent to how we normally calculate
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simulation livetimes in the case of constant event weights, using the ratio of the data events (or

weighted MC events normalized to data) to the number of simulated MC events:

Lconv = L
n

Ndata
= L

n

T
= L

n∑n
i=1 w

=
L

w
= Leff . (D.9)

D.1.2 Variable Event Weights

In many cases, Monte Carlo events have variable weights (such as in the case of spectral

reweighting). We want to find the effective “average” weight w̃ that we can use to calculate an

effective livetime. To do this, we generalize equation D.6:

w̃ =
T

neff

=
∑

wi

∑
w2

i

(
∑

wi)2

=
∑

w2
i∑

wi
. (D.10)

The weight w̃ is the contraharmonic mean of the wi, and for wi = w ∀ i, one can check that the

above reduces to w̃ = w. We also note that this definition of w̃ is equivalent to generalizing equation

D.7, so that

σ = w̃
√

neff . (D.11)

In the language of livetimes, we are now in the position to define a effective livetime of a Monte

Carlo subsample with variable event weights. Specifically, for a sample of events with weights wi

representing a data sample with livetime L, the effective livetime is

Leff =
L

w̃
=

L
∑

wi∑
w2

i

. (D.12)

Because w̃ is a function of the event subsample, one can define concepts like “the effective livetime

in bin 10” or “the effective livetime above 100 GeV”.
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Note that while we derived this expression based on our definition of w̃, equation D.12 is

equivalent to another intuitive definition of Leff based on neff :

L
neff

T
=

L
∑

wi∑
w2

i

= Leff . (D.13)

This is the variable-event-weight analogue to expression D.9.

D.2 Application 1: Cosmic Ray Simulation

As a first application and sanity check of this definition, we apply the above formalism to the

problem of cosmic ray simulation, in which one frequently simulates a harder spectrum than desired

and then reweights to the original.

Specifically, we consider simulation of a power law spectrum E−γ , using different spectral

slopes E−(γ+∆). The event weights wi for this case are

wi =
γ − 1

γ − 1 + ∆
E−∆

L E∆
i , (D.14)

where EL is the low-energy bound for the simulation, and where the high-energy bound EH � EL

(see appendix C).

One can then generate a small sample of events with different ∆ and compare the effective

livetimes of events that trigger our detector (AMANDA-II, in this case), as shown in table D.1. First,

we note that the effective livetime is behaving as desired, and the effective livetime of high-energy

events keeps rising as the spectrum gets harder. The effective livetime of low-energy events, however,

starts to get worse as we oversample high energies and then reweight to a steep power law.

Because of the energy-dependent effective area of our detector, this leads to an optimal ∆ to

maximize the effective livetime of events at trigger level (in this case, ∆best,L0 = −0.6). We can also

find the energy range of events that survive to higher filter levels (say, level 3 of the 2005 filtering)

and use this to estimate the best ∆ for maximizing livetime at L3 (in this case, ∆best,L3 = −0.8,

because the energy peak at L3 is slightly higher than at L0).

Furthermore, one can take into account the variable (in some cases, nonlinear) simulation times

for the different spectra (see the runtime column in table D.1). Then one can choose the spectrum
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∆ γ + ∆ Runtime Trig. Leff Leff (s) Leff (s) Leff (s) Leff/ runtime
(s) events (s) E < 5 TeV E > 5 TeV est. L3 est. L3

0 -2.7 154 33 0.39 0.39 0.39 0.39 0.0025
-0.2 -2.5 176 44 0.59 0.46 0.67 0.59 0.0034
-0.4 -2.3 299 99 1.0 0.55 1.1 1.0 0.0034
-0.6 -2.1 508 188 1.3 0.57 1.9 1.3 0.0025
-0.8 -1.9 1454 361 1.2 0.54 2.4 1.5 0.0011
-1.0 -1.7 3745 875 1.2 0.50 3.5 1.5 0.0004

Table D.1: Effective livetimes for cosmic ray MC samples with varying spectral slope.
50K events were simulated with dCORSIKA + SIBYLL, triggering AMANDA-II using
amasim.

with the highest livetime to runtime ratio. For optimizing effective livetime to runtime at level 3,

∆opt,L3 = −0.4. Note that simulation with ∆ = −1 is a factor of 6 times less efficient that using no

slope change at all!

Of course, because the effective livetime depends on the event sample, the optimal ∆ will

depend on the specific filtering scenario for which one is optimizing. For high-energy filters, the

harder slopes may be better, but keep in mind that this is only true if one has removed most of the

low-energy events — otherwise their large weights will lower the livetime.

D.3 Application 2: The Error on Zero

Consider a Monte Carlo simulation of some binned distribution fi(x) of an event observable

x (f is integer-valued in bins i), which falls off to zero at high x. A simulation of this distribution

will fall to zero at some x > x0. We argue that the statistical error on this bin must depend on the

number of simulated events n (unweighted) with x < x0.

D.3.1 A Worst-case Scenario

Consider a worst-case scenario in which we have a single Monte Carlo event in bin j representing

fi(x), that is, nj = 1. Then the weight for this event in bin j is roughly the number of events fj ,

if (as is most likely) the distribution peaks in bin j. The number of simulated events in bin j + 1

is zero by construction, but the number of expected events fj+1 can be arbitrarily large depending

on the distribution. Intuitively, we expect that the error on the simulated value nj+1 = 0 should be
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quite large, and ideally should cover the expected value fj+1.

Specifically, let’s suppose the expected number of events in bin j is 100, and the expected

number of events in bin j + 1 is 75, and that our single event is in bin j. So we could expect the

weight w ≈ 100 if the distribution peaks around this value, and thus

σ ≈ w
√

n = 100 (D.15)

and Tj = 100± 100.

With an idea toward extending this to the j + 1 bin, instead of using the error
√

n above,

we might also consider the Feldman-Cousins confidence interval [85] for nobs = 1, which gives µ1σ ∈

[0.37, 2.75], where µ is the “true” number of expected events (with infinite Monte Carlo). Then the

weighted confidence interval is w · µ ∈ [37, 275], or Tj = 100+175
−63 .

Now, in the j + 1 bin, we have nobs = 0, but now the event weight wi is undefined. However,

we’re still considering the case of a constant event weight, so we set w = 100 again. Now for

nobs = 0, the Feldman-Cousins confidence interval for the mean µ is µ1σ ∈ [0, 1.29]. Then the

weighted confidence interval for this bin is [0, 129], that is

Tj+1 ≈ 0+129
−0 . (D.16)

Our hypothetical expected value for Tj+1, 75, lies within this interval, but we note this is

because a) the weight w is a decent approximation for the expected value in bin j, and b) the expected

value of bin j + 1 is close to that of bin j. These are heuristic conditions for this approximation to

remain meaningful.

Despite all the hand waving, we are better off than before in that we have a handle on the

statistical error on the simulated zero events in bin j + 1, and we have an idea of how this depends

on the event weighting.

Specifically, for constant event weight w and nj+1 = 0, we have

Tj+1 ≈ 0+w·µCL

−0 , (D.17)
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where µ1σ = 1.29 and µ90 = 2.44.

D.3.2 Variable Event Weights

For variable event weights, we return to our “average” weight w̃ as defined in equation D.10. We

still have the problem, however, of the event weights being undefined in the zero bin. To approximate

the weighting in this region, we construct a sequence w̃1, w̃2, w̃3, ... where

w̃k =

∑j
bin=j−k−1 w2

i∑j
bin=j−k−1 wi

(D.18)

or, alternatively,

w̃k =

∑
bin=j−k−1 w2

i∑
bin=j−k−1 wi

(D.19)

and bin j + 1 is the first bin with zero simulated events. Then we construct an approximate limit

(which is really just an extrapolation)

w̃0 = lim
k→0

w̃k . (D.20)

Then we use the estimated w̃0 to construct the error on the zero bin j + 1:

Tj+1 ≈ 0+w̃0·µCL

−0 . (D.21)

From the viewpoint of effective livetimes, the sequence of w̃k extrapolated to w̃0 can be seen

as a sequence of effective livetimes Lk extrapolated to some estimated livetime representing the bin

with zero events, L0. The contents and error on that bin can equivalently be written as 0+(L/L0)·µCL

−0 .

Currently, we make no statement about the coverage of this modified confidence interval, as

the accuracy of this approximation is dependent specifically on the weighting scheme and the shape

of the observable distribution.
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D.3.3 An Example

As an illustration of this error procedure, we consider the simulation of the number of optical

modules hit (Nch) in AMANDA-II by cosmic-ray muons, an energy-correlated observable. A plot of

this distribution, simulated with a harder spectrum (∆ = −1.0, so γ = −1.7), is shown in Figure

D.1. One notes that the high-energy bins have rather small errors (sub-Poissonian).

chN
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50000
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310
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Figure D.1: Number of optical modules hit, from simulation of atmospheric muons with
∆ = −1.0.

In Figure D.2 one can see the effective weight w̃ calculated for each bin (as in eq. D.19), and

also summing backward from the high-Nch bin (as in eq. D.18). At low Nch, the weight is significantly

larger than 1, indicating that the statistics are worse than Poissonian, while at high Nch, the situation

is reversed. We note that because the energy, and thus the weights wi, are correlated with Nch, w̃

varies smoothly across the distribution. Thus we can fairly easily extrapolate to w̃0 for the bin

(414 < Nch < 420) — by eye, w̃0 ≈ 0.006, so

T414<Nch<420 ≈ 0+0.02
−0 (D.22)

at the 90% confidence level. We note this error is quite reasonable given the values and errors of the

final nonzero bins in figure D.1.
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Figure D.2: The effective weight w̃ calculated both for each bin of the Nch distribution
as well as the sample running back from the final bin.

D.3.4 A Caveat

The procedure to define the error on the zero bin with constant event weight w is always

well-defined (by D.17). It may be the case, however, that the sequence defined in eq. D.18 is not

well-behaved. This can happen if the event weight wi is not correlated with the observable chosen

in the binning. In this case, it may not be possible to determine a limit or extrapolation of the w̃k.

One may at least, however, be able to estimate the order of magnitude of w̃0.
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