
Effective Livetimes and their Applications

John Kelley and Gary Hill

August 3, 2007

1 Introduction

We consider the problem of determining the effective livetime of a sample of weighted events (such

as in Monte Carlo simulations). We derive the expression for an effective livetime, then provide

a few illustrative applications: optimization of cosmic ray simulation, and (more speculatively)

estimating the statistical error on zero Monte Carlo events.

2 Formalism

We first present the idea of an effective number of events neff , as in [1]. For a set of n weighted

events with observable xi, each with weight wi, the total number of weighted events T , given n

simulated events, is

T =
n∑

i=1

wi , (1)

and the variance σ2 is

σ2 =
n∑

i=1

w2
i . (2)

This leads naturally to the idea of an effective number of events neff , defined so that the fractional

Poisson error on neff is the same as the weighted sample1:

n2
eff

(
√

neff)2
=

T 2

σ2
(3)

neff =
T 2

σ2
=

(
∑n

i=1 wi)2∑n
i=1 w2

i

. (4)

1In ROOT, neff can be computed with TH1::GetEffectiveEntries().

1



2.1 Constant Event Weight

For a constant weight wi = w ∀ i, the effective number of events is just the unweighted number of

Monte Carlo events:

neff =
(
∑n

i=1 wi)2∑n
i=1 w2

i

=
n2w2

n w2
= n . (5)

Equivalently, one can view the weight w as the ratio between the weighted number of events T and

neff :

T

neff
=

n w

n
= w . (6)

Also note that in the case of constant weight w, the error σ on the weighted number of events T is

just w
√

neff :

σ =

√√√√ n∑
i=1

w2
i = w

√
n = w

√
neff . (7)

One can view the weight w in terms of an effective livetime for the Monte Carlo sample,

which perhaps results in a more intuitive feeling of how the errors are scaling. Specifically, if we

are simulating a data sample (or integer-valued distribution) with livetime L, using Monte Carlo

events with weight w, our effective livetime Leff for the Monte Carlo sample is simply

Leff =
L

w
. (8)

Viewed this way, w is the fraction L/Leff by which we must scale the Monte Carlo distribution

to result in one that has a Poisson variance. This also is equivalent to how we normally calculate

simulation livetimes in the case of constant event weights, using the ratio of the data events (or

weighted MC events normalized to data) to the number of simulated MC events:

Lconv = L
n

Ndata
= L

n

T
= L

n∑n
i=1 w

=
L

w
= Leff . (9)

2.2 Variable Event Weights

In many cases, Monte Carlo events have variable weights (such as in the case of spectral reweight-

ing). We want to find the effective “average” weight w̃ that we can use to calculate an effective

livetime. To do this, we generalize equation 6:

2



w̃ =
T

neff

=
∑

wi
∑

w2
i

(
∑

wi)2

=
∑

w2
i∑

wi
. (10)

w̃ is the contraharmonic mean of the wi, and for wi = w ∀ i, one can check that the above reduces

to w̃ = w. We also note that this definition of w̃ is equivalent to generalizing equation 7, so that

σ = w̃
√

neff . (11)

In the language of livetimes, we are now in the position to define a effective livetime of a Monte

Carlo subsample with variable event weights. Specifically, for a sample of events with weights wi

representing a data sample with livetime L, the effective livetime is

Leff =
L

w̃
=

L
∑

wi∑
w2

i

. (12)

Because w̃ is a function of the event subsample, one can define concepts like “the effective livetime

in bin 10” or “the effective livetime above 100 GeV”.

Note that while we derived this expression based on our definition of w̃, equation 12 is equivalent

to another intuitive definition of Leff based on neff :

L
neff

T
=

L
∑

wi∑
w2

i

= Leff . (13)

This is the variable-event-weight analogue to expression 9.

3 Application 1: Cosmic Ray Simulation

As a first application and sanity check of this definition, we apply the above formalism to the

problem of cosmic ray simulation, in which one frequently simulates a harder spectrum than desired

and then reweights to the original.

Specifically, we consider simulation of a power law spectrum E−γ , using different spectral slopes

E−(γ+∆). The event weights wi for this case are

wi =
γ − 1

γ − 1 + ∆
E−∆

L E∆
i (14)

3



where EL is the low-energy bound for the simulation, and where the high-energy bound EH � EL

[2].

One can then generate a small sample of events with different ∆ and compare the effective

livetimes of events that trigger our detector (AMANDA-II, in this case), as shown in table 1.

First, we note that the effective livetime is behaving as desired, and the effective livetime of high-

energy events keeps rising as the spectrum gets harder. The effective livetime of low-energy events,

however, starts to get worse as we oversample high energies and then reweight to a steep power

law.

Because of the energy-dependent effective area of our detector, this leads to an optimal ∆ to

maximize the effective livetime of events at trigger level (in this case, ∆best,L0 = −0.6). We can also

find the energy range of events that survive to higher filter levels (say, level 3 of the 2005 filtering)

and use this to estimate the best ∆ for maximizing livetime at L3 (in this case, ∆best,L3 = −0.8,

because the energy peak at L3 is slightly higher than at L0).

∆ γ + ∆ Runtime Trig. Leff Leff (s) Leff (s) Leff (s) Leff/ runtime
(s) events (s) E < 5 TeV E > 5 TeV est. L3 est. L3

0 -2.7 154 33 0.39 0.39 0.39 0.39 0.0025
-0.2 -2.5 176 44 0.59 0.46 0.67 0.59 0.0034
-0.4 -2.3 299 99 1.0 0.55 1.1 1.0 0.0034
-0.6 -2.1 508 188 1.3 0.57 1.9 1.3 0.0025
-0.8 -1.9 1454 361 1.2 0.54 2.4 1.5 0.0011
-1.0 -1.7 3745 875 1.2 0.50 3.5 1.5 0.0004

Table 1: Effective livetimes for cosmic ray MC samples with varying spectral slope. 50K events
were simulated with dCORSIKA + SIBYLL, triggering AMANDA-II using Amasim.

Furthermore, one can take into account the variable (in some cases, nonlinear) simulation times

for the different spectra (see the runtime column in table 1). Then one can choose the spectrum

with the highest livetime to runtime ratio. For optimizing effective livetime to runtime at level 3,

∆opt,L3 = −0.4. Note that simulation with ∆ = −1 is a factor of 6 times less efficient that using

no slope change at all!

Of course, because the effective livetime depends on the event sample, the optimal ∆ will depend

on the specific filtering scenario for which one is optimizing. For high-energy filters, the harder

slopes may be better, but keep in mind that this is only true if one has removed most of the

low-energy events — otherwise their large weights will lower the livetime.

4



4 Application 2: The Error on Zero

Consider a Monte Carlo simulation of some binned distribution fi(x) of an event observable x (f is

integer-valued in bins i), which falls off to zero at high x. A simulation of this distribution results

will fall to zero at some x > x0. We argue that the statistical error on this bin must depend on the

number of simulated events n (unweighted) with x < x0.

4.1 A Worst-case Scenario

Consider a worst-case scenario in which we have a single Monte Carlo event in bin j representing

fi(x), that is, nj = 1. Then the weight for this event in bin j is roughly the number of events fj ,

if (as is most likely) the distribution peaks in bin j. The number of simulated events in bin j + 1

is zero by construction, but the number of expected events fj+1 can be arbitrarily large depending

on the distribution. Intuitively, we expect that the error on the simulated value nj+1 = 0 should

be quite large, and ideally should cover the expected value fj+1.

Specifically, let’s suppose the expected number of events in bin j is 100, and the expected

number of events in bin j +1 is 75, and that our single event is in bin j. So we’d expect the weight

w ≈ 100 if the distribution peaks around this value, and thus

σ ≈ w
√

n = 100 . (15)

and Tj = 100± 100.

With an idea toward extending this to the j+1 bin, instead of using the error
√

n above, we might

also consider the Feldman-Cousins confidence interval [3] for nobs = 1, which gives µ1σ ∈ [0.37, 2.75],

where µ is the “true” number of expected events (with infinite Monte Carlo). Then the weighted

confidence interval is w · µ ∈ [37, 275], or Tj = 100+175
−63 .

Now, in the j + 1 bin, we have nobs = 0, but now the event weight wi is undefined. However,

we’re still considering in the case of a constant event weight, so we set w = 100 again. Now for

nobs = 0, the Feldman-Cousins confidence interval for the mean µ is µ1σ ∈ [0, 1.29]. Then the

weighted confidence interval for this bin is [0, 129], that is

Tj+1 ≈ 0+129
−0 . (16)

Our hypothetical expected value for Tj+1, 75, lies within this interval, but we note this is because

a) the weight w is a decent approximation for the expected value in bin j, and b) the expected

value of bin j + 1 is close to that of bin j. These are heuristic conditions for this approximation to

remain meaningful.

5



Despite all the hand-waving, we are better off than before in that we have a handle on the

statistical error on the simulated zero events in bin j + 1, and we have an idea of how this depends

on the event weighting.

Specifically, for constant event weight w and nj+1 = 0, we have

Tj+1 ≈ 0+w·µCL
−0 , (17)

where µ1σ = 1.29 and µ90 = 2.44.

4.2 Variable Event Weights

For variable event weights, we return to our “average” weight w̃ as defined in equation 10. We still

have the problem, however, of the event weights being undefined in the zero bin. To approximate

the weighting in this region, we construct a sequence w̃1, w̃2, w̃3, ... where

w̃k =

∑j
bin=j−k−1 w2

i∑j
bin=j−k−1 wi

(18)

or, alternatively,

w̃k =
∑

bin=j−k−1 w2
i∑

bin=j−k−1 wi
(19)

and bin j + 1 is the first bin with zero simulated events. Then we construct an approximate limit

(really, just an extrapolation)

w̃0 = lim
k→0

w̃k . (20)

Then we use the estimated w̃0 to construct the error on the zero bin j + 1:

Tj+1 ≈ 0+w̃0·µCL
−0 . (21)

From the viewpoint of effective livetimes, the sequence of w̃k extrapolated to w̃0 can be seen as a

sequence of effective livetimes Lk extrapolated to some estimated livetime representing the bin with

zero events, L0. The contents and error on that bin can equivalently be written as 0+(L/L0)·µCL
−0 .

Currently, we make no statement about the coverage of this modified confidence interval, as the

accuracy of this approximation is dependent specifically on the weighting scheme and the shape of

the observable distribution.

6



4.3 An Example

As an illustration of this error procedure, we consider the simulation of the number of optical

modules hit (Nch) in AMANDA-II by cosmic-ray muons, an energy-correlated observable. A plot

of this distribution, simulated with a harder spectrum (∆ = −1.0, so γ = −1.7), is shown in Figure

1. One notes that the high-energy bins have rather small errors (sub-Poissonian).

chN
20 40 60 80 100 120 1400

10000

20000

30000

40000

50000

chN
50 100 150 200 250 300 350 400

-310

-210

-110

1

10

210

310

410

Figure 1: Number of optical modules hit, from simulation of atmospheric muons with ∆ = −1.0.

In Figure 2 one can see the effective weight w̃ calculated for each bin, and also running backward

from the high-Nch bin (as in 18). At low Nch, the weight is significantly larger than 1, indicating

the statistics are worse than Poissonian, while at high Nch, the situation is reversed. We note that

because the energy, and thus the weights wi, are correlated with Nch, w̃ varies smoothly across the

distribution. Thus we can fairly easily extrapolate to w̃0 for the bin (414 < Nch < 420) — by eye,

w̃0 ≈ 0.006, so

T414<Nch<420 ≈ 0+0.02
−0 (22)

at the 90% confidence level. We note this error is quite reasonable given the values and errors of

the final nonzero bins in figure 1.

4.4 A Caveat

The procedure to define the error on the zero bin with constant event weight w is always well-defined

(by 17). It may be the case, however, that the sequence defined in equation 18 is not well-behaved.

This can happen if the event weight wi is not correlated with the observable chosen in the binning.

7



Binwise
Running

chN
0 50 100 150 200 250 300 350 400

w~

-310

-210

-110

1

10 Binwise
Running

Figure 2: The effective weight w̃ calculated both for each bin of the Nch distribution as well as the
sample running back from the final bin.

In this case, it may not be possible to determine a limit or extrapolation of the w̃k. One may at

least, however, be able to estimate the order of magnitude of w̃0.

References

[1] L. Lyons, Statistics for nuclear and particle physicists, Cambridge University Press (1986),

12-13.

[2] See http://www.icecube.wisc.edu/∼jkelley/simulation/dcors weighting.pdf.

[3] G. J. Feldman and R. D. Cousins. Phys. Rev. D57, 873 (1998).

8


