

PIERRE AUGER OBSERVATORY

Detection of Radio Transients: Digital Requirements from Cosmic Ray Experiments

John Kelley Radboud University Nijmegen, Netherlands

> Lunar Radio Explorer Workshop, ESTEC 28 April 2010

- Goal: impulsive radio transients on the moon
 - cosmic ray emission in regolith (Askaryan effect)
 - other sources? (talk by O. Scholten)

- Radio cosmic ray detection on Earth
 - emission mechanism different, but pulses similar
 - experience with triggering, background rejection
 - modest power budget

Radio Emission from Cosmic Ray Air Showers

- Primary cosmic ray interacts and causes cascade of particles in atmosphere (or in the moon)
- Broadband radio pulse
 - width \sim 50 ns
 - due to interaction with Earth's magnetic field
- Emission is coherent up to 100 MHz
 - RF power scales as $(energy)^2$
- Trigger on bandwidth-limited pulse

Radio Detection Station

- Prototype array in Argentina

 at the Pierre Auger Cosmic Ray Observatory
- Autonomous, solar power
- LPDA antenna
 - two polarizations
 - to 30-80 MHz bandpass filter
- Local digitizer and trigger
 four channels
- Multi-station coincidence via central DAQ

Auger Engineering Radio Array

- AERA: Auger Engineering Radio Array
- 20 km² extension to southern Auger site
- Phase I: 20 stations, June 2010 (total: 150)

Digital Electronics (NIKHEF and RU)

Ethernet

DC/DC conv. (shielded)

> XScale-based PC card (buffering, comms)

serial interface

04.28.2010

J. Kelley, LRX Workshop ESTEC

Triggering in FPGA

- Main challenge: impulsive RFI
- Time-domain pulse analysis
- Basics
 - threshold trigger
 - baseline integration / subtraction
- Enhancements
 - (max, min) number of threshold crossings
 - time between crossings
 - veto period before pulse
 - pulse height vs. number of crossings
 - dynamic noise levels
 - ...
- Complexity: 3K logic gates / channel
- Optional(?) narrowband rejection
 - FFT \rightarrow filter \rightarrow iFFT
 - digital notch filters (e.g. LOFAR)

7

Comparison with Lunar Requirements

	AERA	Moon	Notes
Trigger rate	>100 Hz	30 Hz	OK; can also relax trigger
Frequency range	30-80 MHz	10-200 MHz	Faster sampling: see below
Background	Man-made RFI	?	With self-shielding, OK?
Power	9W 35% ADCs 15% FPGA 15% CPU etc.	1-2 W?	CPU hard or soft core (buffering, comms, compression?) Low-power digitizer (e.g. ATWD / Labrador): switching cap. array, > 1Gs/s, O(10 mW) / channel