

Exploring Wavelet Techniques for Filtering and Triggering

John Kelley RU Nijmegen 26 October 2009

Previous Work!

Ansatz to a wavelet analysis of radio signals

A.M. van den Berg¹, J. Coppens^{2,3}, S. Harmsma^{1,3}, C. Timmermans³

November 26, 2007

¹KVI, University of Groningen, the Netherlands.
²IMAPP, Radboud University Nijmegen, the Netherlands.
³NIKHEF Nijmegen and Amsterdam, the Netherlands.

• This work is basically at the same stage... hopefully motivate us to continue

Why Wavelets?

- A decomposition of a time series that provides both spectral and temporal information
 - Possibly better than DFT for transient analysis
- Successful use in other fields for weak transient extraction
 - Radar reflections (see e.g. Ehara, Sasasi, and Mori 1994)
 - GRB light curves (see e.g. thesis by N. Butler, MIT 2003)
- Transforms can be fast
 - Possible implementation in FPGA for trigger

Discrete Wavelet Transform

- Basis functions
 - finite in time
 - scaled and shifted versions of a "mother wavelet"
- Decomposition results
 - wavelet coefficients
 - time on one axis
 - period scale (often factors of 2) on the other

Visualization of Haar DWT

Visualization of Haar DWT

6

Example Radio Pulse (2007)

Projection (200 MHz)

Projection (100 MHz)

Projection (50 MHz)

Projection (25 MHz)

Projection (12.5 MHz)

Projection (6.3 MHz)

Projection (3.1 MHz)

Another Example

Another Example

Filtering

- Hard threshold on wavelet coefficients (or power) can keep pulses but reject white noise
- Coefficient threshold by Donoho & Johnstone:

 $\tau = \delta \sqrt{\ln N_{\rm samp}}$

$$\delta = \frac{\text{median}(|c_{\text{HF},j}|)}{0.6745}$$

- All coefficients below τ in magnitude set to 0
- Inverse transform to reconstruct filtered time series

26.10.2009

J. Kelley, Auger NL meeting

Difficulties

- Filtering alone doesn't distinguish between good and bad pulses
- Transform + filtering + inverse probably too much for L1 trigger in FPGA

- Possible exception: short timescale Haar

Could be useful for L2 or offline pulse extraction

Trigger?

rolling integral over 25-100 MHz coefficient bins (abs. value)

Rolling Sum

- Looks promising but triggering on golden events trivial
- Will likely still trigger on TTL pulse
- May be good for power line noise — still looking
- Don't know about pulse trains yet

Summary

- In principle, wavelet analysis is appropriate
 provides temporal and spectral information
- Threshold filtering can pull pulses out of noise
 - could also use for data compression, but impact on spectral information?
- Haar wavelet transform feasible in FPGA
- A wavelet L1 trigger is possible but needs much more work on discrimination power
 - ratio in different frequency bands?