Analysis of Atmospheric Neutrinos: AMANDA 2000-2006

John Kelley April 30, 2008 IceCube Collaboration Meeting

Outline

- Hypotheses
- Analysis Methodology
- Systematic Errors
- Data Sample
- Sensitivities

Figure from Los Alamos Science 25 (1997)

- New physics (high-energy flavor-changing phenomena)
 - violation of Lorentz invariance
 - quantum decoherence
- Conventional theory
 - measure normalization, spectral slope relative to current models (Bartol, Honda 2006)

New Physics

Violation of Lorentz Invariance (VLI)

- occurs naturally in many quantum gravity theories
- phenomenologically modeled via effective field theory: Standard Model Extension (SME)*
- specific form we are interested in: neutrinos have distinct maximum velocity eigenstates $\neq c$, and difference $\delta c/c$ results in oscillations

^{*} Colladay and Kostelecký, PRD 58 116002 (1998)

VLI + Atmospheric Oscillations

$$\begin{split} P_{\nu_{\mu} \rightarrow \nu_{\mu}} &= 1 - \sin^2 2\Theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E} \, \mathcal{R}\right) \\ \sin^2 2\Theta &= \frac{1}{\mathcal{R}^2} (\sin^2 2\theta_{23} + \mathcal{R}^2 \sin^2 2\xi + 2\mathcal{R} \sin 2\theta_{23} \sin 2\xi \cos \eta) \,, \\ \mathcal{R} &= \sqrt{1 + \mathcal{R}^2 + 2\mathcal{R} (\cos 2\theta_{23} \cos 2\xi + \sin 2\theta_{23} \sin 2\xi \cos \eta)} \,, \end{split}$$

$$R=rac{\delta c}{c}rac{E}{2}rac{4E}{\Delta m^2_{23}}$$

- For atmospheric v, conventional oscillations turn off above ~50 GeV (L/E dependence)
- VLI oscillations turn on at high energy (*L* E dependence), depending on size of $\delta c/c$, and distort the zenith angle / energy spectrum (other parameters: mixing angle ξ , phase η)

- Another possible low-energy signature of quantum gravity: quantum decoherence
- Heuristic picture: foamy structure of space-time (interactions with virtual black holes) may not preserve certain quantum numbers (like v flavor)
- Pure states interact with environment and decohere to mixed states

Decoherence + Atmospheric Oscillations

derived from Barenboim, Mavromatos et al. (hep-ph/0603028)

Energy dependence depends on phenomenology: $\gamma_i = \gamma_i^* E^n$, $n \in \{-1, 0, 2, 3\}$

n = -1n = 0n = 2n = 3preservessimplestrecoilingPlanck-suppressedLorentz invarianceD-branes*operators‡

*Ellis et al., hep-th/9704169 [‡] Anchordoqui et al., hep-ph/0506168

Testing the Parameter Space

Given observables *x*, want to determine values of parameters $\{\theta_r\}$ that are allowed / excluded at some confidence level

> Binned likelihood + Feldman-Cousins

- For each point in parameter space $\{\theta_r\}$, sample many times from parent Monte Carlo distribution (MC "experiments")
- For each MC experiment, calculate likelihood ratio: $\Delta L = LLH$ at parent $\{\theta_r\}$ - minimum LLH at some $\{\theta_{r,best}\}$ (compare hypothesis at this point to best-fit hypothesis)
- For each point $\{\theta_r\}$, find ΔL_{crit} at which, say, 90% of the MC experiments have a lower ΔL
- Once you have the data, compare ΔL_{data} to ΔL_{crit} at each point to determine exclusion region

How to include nuisance parameters $\{\theta_s\}$:

- test statistic becomes profile likelihood

$$l = \frac{L(x|\theta_{r0}, \hat{\hat{\theta}}_s)}{L(x|\hat{\theta}_r, \hat{\theta}_s)} \qquad \begin{array}{c} \begin{array}{c} \text{Variable Meaning} \\ \hline \theta_r & \text{physics parameters} \\ \theta_s & \text{nuisance parameters} \\ \hline \hat{\theta}_r, \hat{\theta}_s & \text{unconditionally maximize } L(x|\hat{\theta}_r, \hat{\theta}_s) \\ \hline \hat{\theta}_s & \text{conditionally maximize } L(x|\theta_{r0}, \hat{\hat{\theta}}_s) \end{array}$$

- MC experiments use "worst-case" value of nuisance parameters (Feldman's profile construction method)
 - specifically, for each θ_r , generate experiments fixing n.p. to data's $\hat{\theta}_s$, then re-calculate profile likelihood as above

- Observables (x)
 - cos(Zenith_{Pandel}), [-1, 0], 10 bins
 - N_{ch}, [20, 120], 10 bins
- Physics: parameters of interest (θ_r)
 - VLI: $\delta c/c$, sin 2 ξ , cos η
 - QD: γ_3 and $\gamma_8,$ γ_6 and γ_7
- Nuisance parameters (θ_s) ... time for systematics study
 - must try and limit dimensionality (already 2- or 3-dimensional space to search)
 - still want to account for shape effects on zenith, $N_{\rm ch}$ not just normalization

- Separate systematic errors into four classes, depending on effect on observables:
 - normalization
 - e.g. atm. flux normalization
 - slope: change in primary spectrum
 - e.g. primary CR slope
 - tilt: tilts zenith angle distribution
 - e.g. π/K ratio
 - OM sensitivity (large, complicated effects)

Systematics List

Add Con Contractor and the Add Con Contractor and Add Contractor and Contractor a			
error	type	size	method
atm. v flux model	norm.	±18%	MC study
σ_{v} , v- μ scattering angle	norm.	±8%	MC study
reconstruction bias	norm.	-4%	MC study
v_{τ} -induced muons	norm.	+2%	MC study
charm contribution	norm.	+ %	MC study
timing residuals	norm.	±2%	5-year paper
μ energy loss	norm.	±1%	5-year paper
rock density	norm.	< %	MC study
primary CR slope (incl. He)	slope	$\Delta \gamma = \pm 0.03$	Gaisser et al.
charm (slope)	slope	$\Delta \gamma = +0.05$	MC study
π/K ratio	tilt	tilt +1/-3%	MC study
charm (tilt)	tilt	tilt -3%	MC study
OM sensitivity, ice	OM sens.	sens. ±10%	MC, downgoing μ

Atmospheric Flux Models

Norm. difference between Bartol, Honda2006: -7% But difference in v_{μ} : -18%; 1/3 v_{μ} -bar: +11%

side note: effect of mass-induced neutrino oscillations is O(1%)

OM Sensitivity

Unfortunately not possible to parametrize all effects on observables (I tried) \Rightarrow new simulation for every year + sensitivity (above right plot is 63 sets)!

- Compare muon rate in data (trigger level + cleaning) with AHA simulation at various OM sensitivities
- Error band on normalization from spread in hadronic models (EPOS, QGSJET-II, and SibyII)
- Pull out a range of allowed OM sensitivities and a mean for this ice model

Estimated Error

OM sensitivity (AHA)

85% +10%/-7%

- Zeuthen estimate using atm. v zenith angle shape: 100% +3%/-10% (PTD/MAM)
- Error spread is close via two methods (17% here vs. 13% Zeuthen)
- Difference in mean is from ice model

Ice Models

Atm. v MC (various ice models, 2005 L3) Millennium + 100% OM, • 600 I AHA + 100% OM: both have too much light (at least with v1.54-caustic) 500 400 Turn down OM sensitivity to • correct muon rate (also fixes neutrino simulation), combine ice + 300 **OM** errors 200 PTD (100% OM) AHA (85% OM sens.) Atm. v vs. PTD/MAM: AHA (100% OM sens.) 100 Millennium +39% Millennium (75% OM sens.) AHA +23% Millennium (100% OM sens.) -8% AHA (85% OMs) <u>0</u>1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 $\cos \theta_{Pan}$

-0

Ice Model Uncertainty

Covered by $\pm 10\%$ in OM sensitivity (roughly same uncertainty as muon analysis)

Pion/Kaon Ratio

Spectral Slope

• Uncertainty in primary CR slope dominated by He: $\Delta \gamma_{He} = \pm 0.07^*$

to first order: $\Delta \gamma \approx \Delta \gamma_{p} + f_{He} \Delta \gamma_{He} = \pm 0.03$

- Tweak atmospheric model by $(E/E_{median})^{\Delta\gamma}$, $E_{median} = 630 \text{ GeV}$
- Other uncertainties (charm) increase range of $\Delta\gamma$

*Gaisser, Honda et al., 2001 ICRC

7-year Data Sample

- 2000-2006 data
 - 2000-04: Zeuthen combined filtering
 - 2005-06: Madison filtering
 - 1387 days livetime
- Zeuthen final cuts
 - purity is important (small unsimulated b.g.)
 - not specifically optimized for high energy
 - after cuts: 6099 events below horizon (4.4/day)
 - rate similar to 4-year Mainz sample (4.2/day)
- N_{ch}, zenith angle removed from files until unblinding

• 2000-03 analysis (Ahrens):

 $\delta c/c < 5.3 \times 10^{-27}$ (90%CL)

• Median sensitivity (χ^2 approx.):

 $\delta c/c < 4.3 \times 10^{-27}$ (90%CL)

• Sample sensitivity (1 MC experiment, full construction):

 $\delta c/c < 4.5 \times 10^{-27}$ (90%CL)

(maximal mixing, $\cos \eta = 0$)

• ANTARES sensitivity (3 years)*:

 $\gamma^* < 2 \times 10^{-30} \text{ GeV}^{-1}$ (2-flavor)

• This analysis (I MC experiment, full construction):

 $\gamma^* < 2.0 \times 10^{-31} \text{ GeV}^{-1}$

(E² model,
$$\gamma_3 = \gamma_8 = \gamma_6 = \gamma_7$$
)

* Morgan et al., astro-ph/0412618

Conventional Analysis

- Parameters of interest: normalization, slope change $\Delta\gamma$
- Nuisance parameters: remove atm. flux norm. and slope uncertainty, keep others
- Sensitivity: roughly ±15% in normalization, ±0.07 in slope

Energy Spectrum

- Allowed band: range of parameters from previous plot
- Energy range: intersection of 5-95% regions, MC final cut level, various OM sens.
- With data: will use both Bartol and Honda as reference shapes, allowed regions should be similar

- May add E³ decoherence, E² VLI
 - analysis procedure the same, just computation time
- Possible mid-to-high-N_{ch} excess in data
 - discussion violates blindness, but excess would be inconsistent with any proposed new physics hypothesis
 - will design two-step unblinding procedure to address any serious contamination
- Unblinding request out to working group very shortly!

Extra Slides

Analysis Methodology: Binned Likelihood Test

Optimal Binning

- In general: finer binning is always better for LLH analysis
- But gain after a certain point is nominal, could run into data/MC artifacts
- Use 10 bins in each observable

Computational Details

• Weighted MC observable histograms precomputed on a grid in $\{\theta_r, \theta_s\}$ space (θ_r more finely binned)

- ~2min./histogram x 16k-32k points/hypothesis = 1 CPU-month / hypothesis
- 1000 MC experiments per point in $\{\theta_r\}$ space
 - likelihood minimization over $\{\theta_r, \theta_s\}$ exhaustive search because of discrete parameter space
 - construction: about 12h / hypothesis (still manageable)
- Recording confidence level at each point (instead of just yes/no at a CL) allows some contour interpolation

- nusim: zenith range (80,180) with $\gamma = 1.5$
- Amasim Aluminum-opt5 + AHA ice (v1) + Photonics
 I.54-caustic
- (9 periods) x (7 OM sens.) = 63 MC sets
 - everything else via weighting
- For atm. neutrinos: ~60 years of effective livetime at each OM sensitivity

$$L\frac{n_{\text{eff}}}{T} = \frac{L\sum w_i}{\sum w_i^2} = L_{\text{eff}}$$