The IceCube Data Acquisition System

John Kelley for the IceCube Collaboration Univ. of Wisconsin – Madison

10 December 2014 Detector Design and Technology for Next Generation Neutrino Observatories Aachen, Germany

. 10

Overview

- The IceCube detector
- High-level data flow
- Software DAQ highlights
 - time calibration
 - triggering
 - supernova system
- Recent improvements

 untriggered data
 SNDAQ muon subtraction
- Adaptations for next generation

The IceCube Detector

digital optical module (DOM)

IceCube Data Flow

IceCube Lab (ICL)

Computing in the IceCube Lab (ICL)

- 18 racks
- 97 DOMHubs
 - Atom D525 SBCs
 - custom PCI readout cards
 - GPS clock fanout
 - in-ice: I hub/string
- ~45 Dell PowerEdge R720 servers
 - 4 DAQ
 - 23 filtering
 - 6 monitoring & verification
 - 7 networking, backup, kickstart, NTP, NFS, etc.
 - DB, spares
- GPS receivers + fanouts, switches, UPS, special devices

IceCube DAQ

pDAQ

forms triggers (e.g. 8-fold multiplicity) stores DOM waveforms + hit times

pDAQ: mostly Java with some C (DOMs) and Python (control)

J. Kelley, HAP 2014

Uptime

- Total detector uptime, including partial-detector and failed runs: ~99%
- Clean (''golden'') uptime: no missing strings, no problems found: ~95%
- "Good" run start/stop times recover data even from runs that may crash

IceCube Live

SPS Status

Data Acquisition

Current run: 122346 (8h:12m:41s) Run config: sps-IC86-adios-Skorpionen-again- V228 DAQ release: Capital_14431:103430M Total events: 75480758 Active DOMs: 5406					
Light mode: dark Cha	ange: LID				
Control Details 🖃					
pdaq RUNNING					
Other Componer	Other Components				
DB	RUNNING stop				
GammaFollowUp	UNKNOWN waiting				
I3DAQDispatch	RUNNING stop				
I3MoniDomMon	RUNNING stop				
13MoniDomSn	RUNNING stop				
I3MoniDomTcal	RUNNING stop				
13MoniMover	RUNNING stop				

I3MoniPhysA RUNNING

OpticalFollowUp RUNNING

PFFiltDispatch RUNNING

PFFiltWriter RUNNING

stop

stop

stop

stop

Currently Watched Alerts

multirunfail	ОК
runfail	ОК
ICL overtemp max2	ОК
/mnt/data/pdaqlon.tar file count	ОК
Detector not taking data	ОК
ICL overtemp max1	ОК
ICL overtemp min2	ОК
ICL temperature too high	ОК
Lots of LBM overflows	ОК
Max WXGoose 3 Temp	ОК
Max WXGoose 3 Temp (pages)	ОК
Max WXGoose 6 Temp	ОК
Min WXGoose 1 Temp	ОК
Minimum Active DOMs	ОК
OFU latency too high	ОК
PnF latency too high	ОК
PnF rate too low	ОК
SERIOUS SN alert triggered!	ОК
Supernova DAQ state check	ОК
Test Alert	ОК
Time since SNDAQin running state	ОК

Graphs

(Detailed rates page) pDAQ Event Rate (Hz)

PnF Latency (sec)

SNDAQ Processing Latency (sec)

800			
000			

DOM Time Synchronization

Local Coincidence

LC

Span 2

- Physical connection along in-ice cable and between IceTop tanks
- DOM firmware flags hits that have neighbor hits within Ι μs
- DOMs can forward LC signal (current span = 2)
- Only LC hits "HLC" are used in triggering
- Rate (per DOM): reduces 600
 Hz darknoise to 5-15 Hz LC

Simple Multiplicity Trigger

- At least N HLC hits in a sliding time window
- Trigger is extended as long as majority condition satisfied
- Readout windows extend both sides; capture early, late light and SLC hits

Sub-detector	HLC hits	Window (μs)	Rate (Hz)
In-ice	8	5	2100
DeepCore	3	2.5	250
ІсеТор	6	5	25

Topological Triggers

Volume trigger: *N* hits within a cylindrical volume around DOM in a time window

String trigger: *N* hits of *M* DOMs on a string in a time window

Trigger	HLC hits	Topology	Window (µs)	Rate (Hz)
Volume	4	cylinder r=175m, h=75m	1	3700
String	5	of 7 DOMs on string	1.5	2200
2/9/14		I. Kelley, HAP 20) 4	3

Global Trigger / Merging

- Design goal: avoid overlapping events!
- Combine individual triggers into event if readout windows overlap
- Retain individual trigger information

Supernova (SN)DAQ

GEANT simulation of detected inverse beta decay events

- Detection principle: global noise rate increase from many ~10 MeV neutrino interactions
- Scaler dark noise counts from inice DOMs (4b count / 1.6 ms)
- Artificial dead-time introduced
 - reduces bursts of correlated noise hits
 - avg. rate lowered: 540 Hz to 290 Hz
- Real-time significance of any global rise estimated

Sensitivity

see Abbasi et al., A&A 535 A109 (2011)

J. Kelley, HAP 2014

Alerts + SNEWS

Supernova DAQ Alarm on SPS

- Iridium link allows:
 - near real-time monitoring of SNDAQ light curve
 - e-mail, SMS in case of highsignificance alert
 - forwarding of alarms to
 SuperNova Early Warning
 System (SNEWS)
- Automated fast (+0:10) follow-up analysis at Univ. of Mainz

New Feature: Hitspooling

- Some analyses can take advantage of sub-threshold hits
- Hitspooling: save <u>all</u> DOM hits to hub disks
 - 2 MB/s per string
 - ring buffering in files on hubs
 - 16-hour buffer
- Interfaced to supernova DAQ
 raw data stored if significant alarm
- Link active since mid-April 2013
- Still to do:
 - longer buffers (~5 days)
 - daemonize hubs

New Feature: SNDAQ Muon Subtraction

V. Baum

Correlation between short-term muon hit rate and SN alarm signficance

- Near-real-time link from trigger system to SNDAQ to reduce impact of muon rate fluctuations
- Example: significance corrected from 6.04 to 2.97

DAQ R&D for Gen2 Arrays

High-energy extension

Low-energy and high-energy extensions in development phase

J. Kelley, HAP 2014

No Hardware Local Coincidence

- Simplifies in-ice cable
- Compression of dark noise (800 Hz) becomes more important
- Investigating in-DOM feature extraction (SPE pulse template unfolding*)

^{*}M. G. Aartsen *et al.* 2014 *JINST* **9** P03009

IceCube+PINGUTriggering

Separate PINGU trigger component

- trigger on PINGU DOMs and possibly DeepCore; readout both detectors
- modular design: architecture can be used as-is

DOM Readout (IceCube)

- IceCube scheme:
 - passive junction box at hole top
 - surface cable very similar to down-hole cable
 - readout computers (DOMHubs) in ICL
- Pros: easy to service DOMHubs; warm
- Cons: expensive; resistive losses add up; limited scalability

5 cm OD

DOM Readout (Extension)

- Hubs at top of hole for HEX
 - simplified DOM-to-Ethernet functionality (+timing)
 - AC high voltage + fiber to counting house
 - White Rabbit^{*} to synchronize hubs

- Pros: reduced cable costs, power; higher-speed comms
- Challenges: cold; hubs not easily serviceable during winter 12/9/14

I. Kelley, HAP 2014

*J. Serrano et al., ICALEPCS 2013 (San Francisco).

Gen2 Timing Calibration

S. Vanheule

- White Rabbit to readout hubs
 - eliminates custom GPS fanout tree
- Down-hole DOM synchronization
 - QAM carrier phase recovery
 - dispersion could be an issue
 - RAPCal strategy still an option

Conclusions

- IceCube DAQ mature and stable
 - 99% average uptime
 - development still active with new features improving physics capability
- Modifications under investigation for Gen2 extensions
 - updated DOM (P. Sandstrom) and readout hub design
 - investigating new comms, timing calibration
 - software architecture likely to be very similar

Thank you!

Specialized trigger: monopoles

T. Glüsenkamp

Signature of some exotic particles (magnetic monopoles, Q-balls, etc.): slow ($v \sim 0.001-0.01c$) tracks with intermittent cascades

SLOP Trigger

- Consider pairs of hits with LC condition
- Remove pairs if too close in time (T_{prox})
- Form 3-tuples of pairs within time window (T_{min}, T_{max})
- Track-like check on 3-tuples:
 - minimum inner angle $lpha_{min}$
 - normalized velocity difference v_{rel}
- Condition on minimum number of 3tuples

Trigger	N _{tuple}	T _{prox} (μs)	T _{min} , T _{max} (μs)	$\boldsymbol{\alpha}_{min}$	v _{rel}	Rate (Hz)
SLOP	5	2.5	[0, 500]	140°	0.5	12

SLOP Trigger Details

$$\texttt{rel_v} = \frac{\Delta v_{\text{inverse}}}{v_{\text{mean/inverse}}} = \frac{\frac{1}{v_{12}} - \frac{1}{v_{23}}}{\frac{1}{v_{12}} + \frac{1}{v_{23}} + \frac{1}{v_{13}}} \cdot 3$$

Various Trigger Rates

•	Simple Multiplicity Trigger (SMT) – N HLC hits or more in a time window – Example: InIce SMT8 with N_hits ≥ 8 in 5 μ s – readout window around this captures early and late hits (-4 μ s, +6 μ s)	In-ice: DeepCore: IceTop:	2100 Hz 250 Hz 26 Hz
•	 String trigger (a.k.a. Cluster trigger in DAQ-land) N hits of M DOMs on a string in a time window Example: 5 hits from a run of 7 adjacent DOMs, time window of 1500 ns 		2230 Hz
•	 Volume trigger (a.k.a Cylinder trigger in DAQ-land) simple majority of HLC hits (SMT4) with volume element including one layer of strings around a center string cylinder height is 5 DOM-layers (2 up and down from the selected DOM). 		3700 Hz
•	 Slow Particle trigger (SLOP) slow-moving hits along a track lengths of the order of 500 µ s and extending up to milliseconds 		I2 Hz
•	Fixed Rate trigger, Minimum Bias trigger, Calibration trigger	FRT:	0.003 Hz
		Global: 27	'00 Hz

Multiplicity and Exclusive Rates

Trigger Condition	Rate (Hz)
SMT8 + Volume + String	1200
Volume	330
Volume + SMT8	330
Volume + String	240
SMT8 + SMT3 + Volume + String	180
SMT8	100

DOM Hit Time Sorting

- Cascaded binary merge "HKN1" of in-order input streams (DOM hit times)
- Fundamental node: two input linked lists, a comparator, and output list
- Cascade tree to handle
 many inputs
- Pushing into L or R:
 - if peer is not empty, compare and push into sink
 - continues through tree

Future Improvements

- Multithreaded sort using built-in Java min-heaps
 - performance +300% in initial tests on 4-core system
 - integration pending
- Trigger system modified to use multiple threads (complete)
- Server and DOMHub singleboard computer January 2014
 - SBC: Atom D525 dual-core
 - servers: Dell PowerEdge R720

