

A FRAMEWORK FOR MANAGEMENT OF

DISTRIBUTED DATA PROCESSING AND EVENT

SELECTION FOR THE ICECUBE NEUTRINO

OBSERVATORY

by

Juan Carlos Dı́az Vélez

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2013

c© 2013
Juan Carlos Dı́az Vélez

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Juan Carlos Dı́az Vélez

Thesis Title: A Framework for management of distributed data processing and event
selection for the IceCube Neutrino Observatory

Date of Final Oral Examination: 22 May 2013

The following individuals read and discussed the thesis submitted by student Juan
Carlos Dı́az Vélez, and they evaluated his presentation and response to questions
during the final oral examination. They found that the student passed the final oral
examination.

Amit Jain, Ph.D. Chair, Supervisory Committee

Jyh-haw Yeh, Ph.D. Member, Supervisory Committee

Alark Joshi, Ph.D. Member, Supervisory Committee

Daryl Macomb, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Amit Jain, Ph.D., Chair,
Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGMENTS

The author wishes to express gratitude to Dr. Amit Jain and the members

of the committee as well the members of the IceCube Collaboration. The author

also acknowledges the support from the following agencies: U.S. National Science

Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Di-

vision, University of Wisconsin Alumni Research Foundation, the Grid Laboratory

of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison,

the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and

National Energy Research Scientific Computing Center, the Louisiana Optical Net-

work Initiative (LONI) grid computing resources; National Science and Engineering

Research Council of Canada; Swedish Research Council, Swedish Polar Research

Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and

Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research

(BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plas-

mas with Complex Interactions (Bochum), Germany; Fund for Scientific Research

(FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific

and technological research in industry (IWT), Belgian Federal Science Policy Office

(Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan

Society for Promotion of Science (JSPS); the Swiss National Science Foundation

(SNSF), Switzerland; This research has been enabled by the use of computing re-

sources provided by WestGrid and Compute/Calcul Canada.

iv

AUTOBIOGRAPHICAL SKETCH

Juan Carlos was born and raised in Guadalajara, Jal. Mexico. He initially came

to the U. S. as a professional classical ballet dancer and performed with several ballet

companies including Eugene Ballet and Ballet Idaho. In 1996, Juan Carlos returned to

school and graduated from Boise State University with a B. S. in Physics specializing

in Condensed Matter Theory under Dr. Charles Hanna where he was introduced to

computation. Juan Carlos currently works for the IceCube Neutrino Observatory at

the University of Wisconsin-Madison. In 2010, he traveled to the South Pole to work

on the completion of the IceCube Detector.

v

ABSTRACT

IceCube is a one-gigaton neutrino detector designed to detect high-energy cosmic

neutrinos. It is located at the geographic South Pole and was completed at the end

of 2010. Simulation and data processing for IceCube requires a significant amount

of computational power. We describe the design and functionality of IceProd, a

management system based on Python, XMLRPC, and GridFTP. It is driven by a

central database in order to coordinate and administer production of simulations and

processing of data produced by the IceCube detector upon arrival in the northern

hemisphere. IceProd runs as a separate layer on top of existing middleware and can

take advantage of a variety of computing resources including grids and batch systems

such as GLite, Condor, NorduGrid, PBS, and SGE. This is accomplished by a set of

dedicated daemons that process job submission in a coordinated fashion through the

use of middleware plug-ins that serve to abstract the details of job submission and

job management. IceProd fills a gap between the user and existing middleware by

making job scripting easier and collaboratively sharing productions more efficiently.

We describe the implementation and performance of an extension to the IceProd

framework that provides support for mapping workflow diagrams or DAGs consisting

of interdependent tasks to an IceProd job that can span across multiple grid or cluster

sites. We look at some use-cases where this new extension allows for optimal allocation

of computing resources and addresses general aspects of this design, including security,

data integrity, scalability, and throughput.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

1 Introduction . 1

1.1 IceCube . 2

1.1.1 IceCube Computing Resources . 2

2 IceProd . 5

2.1 IceProd . 5

2.2 Design Elements of IceProd . 7

2.2.1 IceProd Core Package . 8

2.2.2 IceProd Server . 11

2.2.3 IceProd Modules . 14

2.2.4 Client . 15

2.3 Database . 15

2.3.1 Database Structure . 16

2.4 Monitoring . 17

2.4.1 Web Interface . 19

vii

2.4.2 Statistical Data . 20

2.5 Security and Data Integrity . 20

2.5.1 Authentication . 20

2.5.2 Encryption . 21

2.5.3 Data Integrity . 21

2.6 Off-line Processing . 22

3 Directed Acyclic Graph Jobs . 24

3.1 Condor DAGMan . 24

3.2 Applications of DAGs: GPU Tasks . 24

3.3 DAGs in IceProd . 25

4 The IceProd DAG . 29

4.1 Design . 29

4.1.1 The IceProdDAG Class . 30

4.1.2 The TaskQ Class . 32

4.1.3 Local Database . 33

4.2 Attribute Matching . 33

4.3 Storing Intermediate Output . 37

4.3.1 Zones . 37

5 Performance . 43

5.1 Experimental Setup . 43

5.2 Performance . 46

5.2.1 Task Queueing . 46

5.2.2 Task Dependency Checks . 46

viii

5.2.3 Attribute Matching . 50

5.2.4 Load Balancing . 50

6 Artifacts . 56

6.1 Code . 56

6.2 Documentation . 56

7 Limitations of IceProd . 58

7.1 Fault Tolerance . 58

7.2 Database Scalability . 58

7.3 Scope of IceProd . 59

8 Conclusions . 60

8.1 Future Work . 61

REFERENCES . 63

A Python Package Dependencies . 65

B Job Dependencies . 66

C Writing an I3Queue Plugin a for New Batch System 67

D IceProd Modules . 69

D.1 Predefined Modules . 69

D.1.1 Data Transfer . 69

E Experimental Sites Used for Testing IceProdDAG 71

E.0.2 WestGrid . 71

ix

E.0.3 NERSC Dirac GPU Cluster . 71

E.0.4 Center for High Throughput Computing (CHTC) 72

E.0.5 University of Maryland’s FearTheTurtle Cluster 73

F Additional Figures . 74

x

LIST OF TABLES

1.1 Data processing CPU . 4

1.2 Runtime of various MC simulations. 4

4.1 Example zone definition for an IceProd instance 38

5.1 Sites participating in experimental IceProdDAG tests 45

5.2 Run times for task-queueing functions. 50

5.3 Task run times . 54

E.1 CHTC Resources . 72

E.2 UMD Compute Cluster . 73

xi

LIST OF FIGURES

1.1 The IceCube detector . 3

2.1 JEP state diagram . 9

2.2 Network diagram of IceProd system . 12

2.3 State diagram of queueing algorithm . 13

2.4 Diagram of database . 18

3.1 A simple DAG . 26

3.2 XML representation of a Dag . 27

3.3 A more complicated DAG . 28

4.1 IceProd DAG implementation . 31

4.2 TaskQ factory . 34

4.3 JEP state diagram for a task . 35

4.4 Task requirement expressions . 36

4.5 Distribution of file transfer speeds . 39

4.6 Distribution of file transfer speed over a long interval 40

4.7 Evolution of average transfer speed . 41

4.8 SQL query with zone prioritization . 42

5.1 DAG used for benchmarkin . 44

5.2 Worst case scenario for dependency check algorithm in a DAG 47

xii

5.3 Examples of best case scenario for dependency check algorithm in a DAG 48

5.4 Range of complexity for task dependency checks 49

5.5 Task completion by site . 51

5.6 Task completion by site (CPU tasks) . 52

5.7 Task completion by site (GPU tasks) . 53

5.8 Ratio of CPU/GPU tasks for Dataset 9544 . 55

C.1 I3Queue implementation . 68

D.1 IPModule implementation . 70

F.1 The xiceprod client . 74

F.2 IceProd Web Interface . 75

xiii

LIST OF ABBREVIATIONS

DAG – Directed Acyclic Graph

DOM – Digital Optical Module

EGI – European Grid Initiative

GPU – Graphics Processing Unit

JEP – Job Execution Pilot

LDAP – Lightweight Directory Access Protocol

PBS – Portable Batch System

RPC – Remote Procedure Call

SGE – Sun Grid Engine

XML – Extensive Markup Language

XMLRPC – HTTP based RPC protocol with XML serialization

xiv

1

CHAPTER 1

INTRODUCTION

Large experimental collaborations often need to produce large volumes of computa-

tionally intensive Monte Carlo simulations and process vast amounts of data. These

tasks are often easily farmed out to large computing clusters, or grids but for such

large datasets it is important to be able to document software versions and parameters

including pseudo-random number generator seeds used for each dataset produced.

Individual members of such collaborations might have access to modest computational

resources that need to be coordinated for production. Such computational resources

could also potentially be pooled in order to provide a single, more powerful, and

more productive system that can be used by the entire collaboration. IceProd is a

scripting framework package meant to address all of these concerns. It consists of

queuing daemons that communicate via a central database in order to coordinate

production of large datasets by integrating small clusters and grids [3]. The core

objective of this Master’s thesis is to extend the functionality of IceProd to include a

workflow management DAG tool that can span multiple computing clusters and/or

grids. Such DAGs will allow for optimal use of computing resources.

2

1.1 IceCube

The IceCube detector shown in Figure 1.1 consists of 5160 optical sensors buried

between 1450 and 2450 meters below the surface of the South Polar ice sheet and

is designed to detect neutrinos from astrophysical sources [1, 2]. However, it is also

sensitive to downward-going muons produced in cosmic ray air showers with energies

in excess of several TeV1. IceCube records ∼1010 cosmic-ray events per year. These

cosmic-ray-induced muons represent a background for most IceCube analyses as they

outnumber neutrino-induced events by about 500 000:1 and must be filtered prior

to transfer to the northern hemisphere due to satellite bandwidth limitations [4]. In

order to develop reconstructions and analyses, and in order to understand systematic

uncertainties, physicists require a comparable amount of statistics from Monte Carlo

simulations. This requires hundreds of years of CPU processing time.

1.1.1 IceCube Computing Resources

The IceCube collaboration is comprised of 38 research institutions from Europe, North

America, Japan, and New Zealand. The collaboration has access to 25 different

clusters and grids in Europe, Japan, Canada, and the U.S. These range from small

computer farms of 30 nodes to large grids such as the European Grid Infrastructure

(EGI), European Enabling Grids for E-sciencE (EGEE), Louisiana Optical Network

Initiative (LONI), Grid Laboratory of Wisconsin (GLOW), SweGrid, Canada’s West-

Grid, and the Open Science Grid (OSG) that may each have thousands of compute

nodes. The total number of nodes available to IceCube member institutions is

uncertain since much of our use is opportunistic and depends on the usage by other

11 TeV = 1012 electron-volts (unit of energy)

3

50 m

1450 m

2450 m

2820 m

IceCube Array
 86 strings including 8 DeepCore strings
5160 optical sensors

DeepCore
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m

IceCube Lab

IceTop
81 Stations
324 optical sensors

Bedrock

Figure 1.1: The IceCube detector: The thick lines at the bottom represent the
instrumented portion of the ice. The circles on the top surface represent the surface
air-shower detector IceTop.

projects and experiments. In total, IceCube simulation has run on more than 11,000

distinct nodes and a number of CPU cores between 11,000 and 44,000. On average,

IceCube simulation production has run concurrently on ∼4,000 cores at a given

time and it is anticipated to run on ∼5,000 cores simultaneously during upcoming

productions.

4

Table 1.1: Data processing demands. Data is filtered on 400 cores at the South
Pole using loose cuts to reduce volume by a factor of 10 before satellite transfer
to the northern hemisphere (Level1). Once in the North, more computationally
intensive event reconstructions are performed in order to further reduce background
contamination (Level2). Further event selections are made for each analysis channel
(Level3).

Filter livetime proc. time (2.8 GHz)
Level1 8 hrs/run 2400.0 h/run
Level2 9456.0 h/run
Level3 (µ) 14.88 h/run
Level3 (cscd) 10.1 h/run

Table 1.2: Runtime of various MC simulations of background cosmic-ray shower
events and neutrino (ν) signal with different energy spectra for different flavors of
neutrinos.

simulation livetime runtime (2.6 GHz)
single shower 10 sec 3.5 h/core
signal νµ(E−1) 9.4 sec/event
signal νµ(E−2) 5.5 sec/event
signal νe(E

−1) 12.7 sec/event
signal νe(E

−2) 5.3 sec/event

5

CHAPTER 2

ICEPROD

2.1 IceProd

The IceProd framework is a software package developed for the IceCube collaboration

in order to address the needs for managing productions across distributed systems

and in order to pool resources scattered throughout the collaboration [3]. It fills a gap

between the powerful middleware and batch system tools currently available and the

user or production manager. It makes job scripting easier and collaboratively sharing

productions more efficient. It includes a collection of interfaces to an expanding

number of middleware and batch systems that makes it unnecessary to re-write

scripting code when migrating from one system to another.

This Python-based distributed system consists of a central database and a set

of daemons that are responsible for various roles on submission and management of

grid jobs as well as data handling. IceProd makes use of existing grid technology and

network protocols in order to coordinate and administer production of simulations and

processing of data. The details of job submission and management in different grid

environments is abstracted through the use of plug-ins. Security and data integrity

are concerns in any software architecture that depends heavily on communication

through the Internet. IceProd includes features aimed at minimizing security and

data corruption risks.

6

IceProd provides a graphical user interface (GUI) for configuring simulations and

submitting jobs through a production server. It provides a method for recording

all the software versions, physics parameters, system settings, and other steering

parameters in a central production database. IceProd also includes an object-oriented

web page written in PHP for visualization and live monitoring of datasets. The

package includes a set of libraries, executables, and daemons that communicate with

the central database and coordinate to share responsibility for the completion of tasks.

Because of this, IceProd can thus be used to integrate an arbitrary number of sites,

including clusters and grids at the user level. It is not, however, a replacement for

Globus, GLite, or any other middleware. Instead, it runs on top of these as a separate

layer with additional functionality.

Many of the existing middleware tools including Condor-C, Globus, and CREAM

make it possible to pool any number of computing clusters into a larger pool. Such

arrangements typically require some amount of work by system administrators and

may not be necessary for general purpose applications. Unlike most of these appli-

cations, IceProd runs at the user level and requires no administrator privileges. This

makes it easy for individual users to build large production systems by pooling small

computational resources together.

The primary design goal of IceProd was to manage production of IceCube detector

simulation data and related filtering and reconstruction analyses but its scope is not

limited to IceCube. Its is design general enough to be used for other applications. As

of this writing, the Hight Altitude Water Cherenkov (HAWC) observatory has begun

using IceProd for off-line data processing [5].

Development of IceProd is an ongoing effort. One important current area of

development is the implementation of workflow management capabilities like Condor’s

7

DAGMan in order to optimize the use of specialized hardware and network topologies

by running different job sub-tasks on different nodes. The are two approaches to

DAGs in the IceProd frame work. The first is a plug-in-based approach that relies on

the existing workflow functionality of the batch system and the second, which is the

product of this Master’s thesis is native IceProd implementation that allows a single

job’s tasks to span multiple grids or clusters.

2.2 Design Elements of IceProd

The IceProd software package can be logically divided into the following components

or software libraries illustrated in Figure 2.2:

• iceprod-core - a set of modules and libraries of common use throughout IceProd.

• iceprod-server - a collection of deamons and libraries to manage and schedule

job submission and monitoring.

• iceprod-modules - a collection of predefined IceProdModule classes that provide

an interface between IceProd and an arbitrary task to be performed on a

compute node as will be defined in Section 2.2.3.

• iceprod-client - a client (both graphical and text) that can download, edit, and

submit dataset steering files to be processed.

• A database that stores configured parameters, libraries (including version infor-

mation), job information, and performance statistics.

• A web application for monitoring and controlling dataset processing.

The following sections will describe these components in further detail.

8

2.2.1 IceProd Core Package

The iceprod-core package contains modules and libraries common to all other IceProd

packages. These include classes and methods for writing and parsing XML, trans-

porting data, and this is also where the basic classes that define a job execution on

a host are themselves defined. Also included in this package is an interpreter for a

simple scripting language that provides some flexibility to XML steering files.

The JEP

One of the complications of operating on heterogeneous systems is the diversity of

architectures, operating systems, and compilers. For this reason, Condor’s NMI-

Metronome build and test system [6] is used for building the IceCube software for a

variety of platforms. IceProd sends a Job Execution Pilot (JEP), a Python script that

determines what platform it is running on, and after contacting the monitoring server

determines which software package to download and execute. During runtime, this

executable will perform status updates through the monitoring server via XMLRPC,

a remote procedure call protocol that works over the Internet [7]. This information

is updated on the database and is displayed on the monitoring web page. Upon

completion, the JEP will clean up its workspace, but if configured to do so will cache

a copy of the software used and make it available for future runs. When caching is

enabled, an MD5Sum check is performed on the cached software and compared to

what is stored on the server in order to avoid using corrupted or outdated software.

Jobs can fail under many circumstances. These can include submission failures

due to transient system problems and execution failures due to problems with the

execution host. At a higher level, errors specific to IceProd include communication

9

problems with the monitoring daemon or the data repository. In order to account for

possible transient errors, the design of IceProd includes a set of states through which

a job will transition in order to guarantee a successful completion of a well-configured

job. The state diagram for an IceProd job is depicted in Figure 2.1.

WAITING QUEUEING

RESET

QUEUED

False

PROCESSING
True

False

ok?

ok?
True

Move data to disk

False

requeue

ok?

True

COPIED

ERROR

CLEANINGOK

Submit

Max. time
 reached

SUSPENDED

CLEANING

Start

Figure 2.1: State diagram for the JEP. Each of the non-error states through which a
job passes includes a configurable timeout. The purpose of this timeout is to account
for any communication errors that may have prevented a job from setting its status
correctly

XML Job Description

In the context of this document, a dataset is defined to be a collection of jobs that

share a basic set of scripts and software but whose input parameters depend on the

enumerated index of the job. A configuration or steering file describes the tasks to

be executed for an entire dataset. IceProd steering files are XML documents with

a defined schema. This document includes information about the specific software

versions used for each of the sections known as trays (a term borrowed from IceTray,

10

the C++ software framework used by the IceCube collaboration [8]), parameters

passed to each of the configurable modules, and input files needed for the job. In

addition, there is a section for user-defined parameters and expressions to facilitate

programming within the XML structure. This is discussed further in Section 2.2.1.

IceProd Expressions

A limited programming language was developed in order to allow more scripting

flexibility that depends on runtime parameters such as job index, dataset ID, etc. This

allows for a single XML job description to be applied to an entire dataset following a

SPMD (Single Process, Multiple Data) operation mode. Examples of valid expressions

include the following:

1. $args(<var>) a command line argument passed to the job (such as job ID, or

dataset ID).

2. $steering(<var>) a user-defined variable.

3. $system(<var>) a system-specific parameter defined by the server.

4. $eval(<expr>) a mathematical expression (Python).

5. $sprintf(<format>,<list>) string formatting.

6. $choice(<list>) random choice of element from list.

7. $attr(<var>) system-dependent attributes to be matched against IceProdDAG

jobs (discussed in Chapter 4).

The evaluation of such expressions is recursive and allows for a fair amount of

complexity. There are, however, limitations in place in order to prevent abuse of this

11

feature. An example of this is that $eval() statements prohibit such things as loops

and import statements that would allow the user to write an entire Python program

within an expression. There is also a limit on the number of recursions in order to

prevent closed loops in recursive statements.

2.2.2 IceProd Server

The IceProd server is comprised of the four daemons mentioned in the list below

(items 1-4) and their respective libraries. There are two basic modes of operation:

the first is a non-production mode in which jobs are simply sent to the queue of a

particular system, and the second stores all of the parameters in the database and

also tracks the progress of each job. The soapqueue daemon running at each of the

participating sites periodically queries the database to check if any tasks have been

assigned to it. It then downloads the steering configuration and submits a given

number of jobs. The size of the queue at each site is configured individually based on

the size of the cluster and local queuing policies.

1. soaptray - a server that receives client requests for scheduling jobs and steering

information.

2. soapqueue - a daemon that queries the database for tasks to be submitted to a

particular cluster or grid.

3. soapmon - a monitoring server that receives updates from jobs during execution

and performs status updates to the database.

4. soapdh - a data handler/garbage collection daemon that takes care of cleaning

up and performing any post-processing tasks.

12

Figure 2.2 is a graphical representation that describes the interrelation of these

daemons.

Grid

Grid
Submit Node

Production
Database

soaptray
(iceprod-server)

iceprod-client

soapqueue
(iceprod-server)

Cluster

soapmon
(iceprod-server)

XMLRPC
Database Protocol
Batch Sys. Protocol
GridFTP

Cluster
Submit Node

GridFTP Storage

Figure 2.2: Network diagram of IceProd system: IceProd clients and JEPs com-
municate with iceprod-server modules via XMLRPC. Database calls are restricted to
iceprod-server modules. Queueing daemons called soapqueue are installed at each site
and periodically query the database for pending job requests. The soapman server
receives monitoring update from the jobs.

Plug-ins

In order to abstract the process of job submission for the various types of systems,

IceProd defines a base class I3Grid that provides an interface for queuing jobs. Plug-in

sub-classes then implement the required functionality of each system and include

13

Client

soaptray

Database

prod? Job

soapqueue jobs?

True

False

soapmon

True

False

prod?

True

ok?

True

Move data to data warehouse

False

requeue

Figure 2.3: State diagram of queueing algorithm: IceProd client sends requests to
the soaptray server that then loads the information to the database (in production
mode) or directly submits jobs to the cluster (in non-production mode). soapqueue
periodically queries the database for pending requests and handle job submission in
the local cluster.

14

functions for queuing jobs, removing jobs, and status checks. Plug-ins also support

the inclusion of job attributes such as priority, maximum allowed wall time, and

requirements such as disk, memory, etc. IceProd has a growing library of plug-ins

that are included with the software including Condor, PBS, SGE, Globus, GLite, Edg,

CREAM, SweGrid, and other batch systems. In addition, one can easily implement

user-defined plug-ins for any new type of system that is not included in this list.

2.2.3 IceProd Modules

IceProd modules, like plug-ins, implement an interface defined by a base class IP-

Module. These modules represent the atomic tasks to be performed as part of the

job. They have a standard interface that allows for an arbitrary set of parameters

to be configured in the XML document and passed from the IceProd framework. In

turn, the module returns a set of statistics in the form of a string-float dictionary

back to the framework so that it can be automatically recorded in the database and

displayed on the monitoring web page. By default, the base class will report the

module’s CPU usage but the user can define any set of values to be reported such

as number of events that pass a given processing filter, etc. IceProd also includes

a library of predefined modules for performing common tasks such as file transfers

through GridFTP, tarball manipulation, etc.

External IceProd Modules

Included in the library of predefined modules is a special module i3, which has two

parameters, class and URL. The first is a string that defines the name of an external

IceProd module and the second specifies a Universal Resource Locator (URL) for

a (preferably version-controlled) repository where the external module code can be

15

found. Any other parameters passed to this module are assumed to belong to the

referred external module and will be ignored by the i3 module. This allows for the

use of user-defined modules without the need to install them at each IceProd site.

External modules share the same interface as any other IceProd module.

2.2.4 Client

The IceProd-Client contains two applications for interacting with the server and

submitting datasets. One is a pyGtk-based GUI (see Figure F.1) and the other is a

text-based application that can run as a command-line executable or as an interactive

shell. Both of these applications allow the user to download, edit, submit, and control

datasets running on the IceProd-controlled grid. The graphical interface includes drag

and drop features for moving modules around and provides the user with a list of valid

parameter for know modules. Information about parameters for external modules is

not included since these are not known a priori. The interactive shell also allows the

user to perform grid management tasks such as starting and stopping a remote server,

adding and removing participation of specific sites in the processing of a dataset, as

well as job-specific actions such as suspend and reset.

2.3 Database

At the time of this writing, the current implementation of IceProd works exclusively

with a MySQL database but all database calls are handled by a database module

which abstracts queries and could be easily replaced by a different relational database.

This section describes the relational structure of the IceProd database.

16

2.3.1 Database Structure

A dataset in IceProd represents a job description and a collection of jobs associated

with. Each dataset describes a common set of modules and parameters but operate

on separate data (single instruction, multiple data). At the top level of the database

structure is the dataset table. The primary key database id is the unique identifier

for each dataset though it is possible to assign nemonic string alias. Figure 2.4 is a

simplified graphical representation of the relational structure of the database. The

IceProd database is logically divided into two classes that could in principle be entirely

different databases. The first describes a steering file or dataset configuration (items

1 - 8 in the list below) and the second is a job-monitoring database (items 9 - 12).

The most important tables are described below.

1. dataset: unique identifier as well as attributes to describe and categorize the

dataset including a textual description.

2. meta project: describes a software environment including libraries and exe-

cutables.

3. module: describes an IPModule class.

4. module pivot: relates a module to a given dataset and specifies the order in

which this module is called.

5. tray: describes a grouping of modules that will execute given the same software

environment or meta project

6. cparameter: describes the name, type, and value of parameter associated with

a module.

17

7. carray element: describes an array element value in the case the parameter

is of type vector or a name-value pair if the parameter is of type dict.

8. steering parameter: describes general global variables that can be referenced

from any module.

9. job: describes each job in the queue related to a dataset. Columns include

state, error msg, previous status, and last update.

10. task def: describes a taks definition an related trays.

11. task rel: describes the relationship of task definitions or task def s

12. task: keeps track of the state of a task in a similar way that job does.

2.4 Monitoring

The status updates and statistics reported by the JEP via XMLRPC and stored in the

database provide useful information for monitoring not only the progress of datasets

but also for detecting errors. The monitoring daemon soapmon is an HTTP daemon

that listens to XMLRPC requests from the running processes (instances of JEP). The

updates include status changes and information about the execution host as well as

job statistics. This is a multi-threaded server that can run as a stand-alone daemon

or as a cgi-bin script within a more robust Web server. The data collected from each

job can be analyzed and patterns can be detected with the aid of visualization tools

as described in the following section.

18

Figure 2.4: Diagram of database (only most relevant tables are shown)

19

2.4.1 Web Interface

The current web interface for IceProd was designed by a collaborator, Ian Rae. It

works independently from the IceProd framework but utilizes the same database. It

is written in PHP and makes use of the CodeIgniter object-oriented framework [9].

The IceCube simulation and data processing web monitoring tools provide different

views that include, from top level downwards,

• general view: displays all datasets filtered by status, type, grid, etc.

• grid view: displays everything that is running a particular site,

• dataset view: displays all jobs and statistics for a given dataset including every

site that it is running on, and

• job view: displays each individual job including status, job statistics, execution

host, and possible errors.

There are some additional views that are applicable only to the processing of real

detector data:

• calendar view: displays a calendar with a color-coding indicating the status of

job associated with a particular data-taking day.

• day view: displays the status of detector runs for a given calendar day.

• run view: displays the status of jobs associated with a particular detector run.

The web interface also uses XMLRPC in order to send commands to the soaptray

daemon and provides authenticated users the ability to control jobs and datasets.

Other features include graphs displaying completion rates, errors, and number of jobs

in various states.

20

2.4.2 Statistical Data

One aspect of IceProd that is not found in most grid middleware is the built-in collec-

tion of user-defined statistical data. Each IceProd module is passed a <string,float>

map object to which it can add entries or increment a given value. IceProd collects

this data on the central database and reports it on the monitoring page individually

for each job and collectively for the whole dataset as a sum, average, and standard

deviation. The typical type of information collected on IceCube jobs includes CPU

usage, number of events passing a particular filter, number of calls to a particular

module, etc.

2.5 Security and Data Integrity

Whenever dealing with network applications one must always be concerned with

security and data integrity in order to avoid compromising privacy and the validity of

scientific results. Some effort has been made to minimize security risks in the design

and implementation of IceProd. This section will summarize the most significant of

these. Figure 2.2 indicates the various types of network communication between the

client, server, and worker node.

2.5.1 Authentication

IceProd integrates with an existing LDAP server for authentication. If one is not

available, authentication can be done with database accounts though the former is

preferred. Whenever LDAP is available, direct database authentication should be

disabled. LDAP authentication allows the IceProd administrator to restrict usage

to individual users that are responsible for job submissions and are accountable to

21

improper use. This also keeps users from being able to directly query the database

via a MySQL client.

2.5.2 Encryption

Both soaptray and soapmon can be configured to use SSL certificates in order to

encrypt all data communication between client and server. The encryption is done by

the HTTPS server with either a self-signed certificate or preferably with a certificate

signed by a trusted CA. This is recommended for client-soaptray communication but

is generally not considered necessary for monitoring information sent to soapmon by

the JEP as this just creates a higher CPU load on the system.

2.5.3 Data Integrity

In order to guarantee data integrity, an MD5sum or digest is generated for each file

that is transmitted. This information is stored in the database and is checked against

the file after transfer. Data transfers support several protocols but preference is to

primarily rely on GridFTP, which makes use of GSI authentication [10, 11]. When

dealing with databases one also needs to be concerned about allowing direct access

to the database and passing login credentials to jobs running on remote sites. For

this reason, all monitoring calls are done via XMLRPC and the only direct queries

are performed by the server, which typically operates behind a firewall on a trusted

system. The current web design does make direct queries to the database but a

dedicated read-only account is used for this purpose. An additional security measure

is the use of a temporary random-generated string that is assigned to each job at the

time of submission. This passkey is used for authenticating communication between

the job and the monitoring server and is only valid during the duration of the job.

22

If the job is reset, this passkey will be changed before a new job is submitted. This

prevents stale jobs that might be left running from making monitoring updates after

the job has been reassigned.

2.6 Off-line Processing

This section describes the functionality of IceProd that is specific to detector data

processing. For Monte Carlo productions, the user typically defines the output to be

generated including the number of files. This makes it easy to determine the size of

a dataset a priori such that the job table is generated at submission time. Unlike

Monte Carlo production, real detector data is typically associated with particular

times and dates and the total size of the dataset is typically not know from the start.

In IceCube, a dataset is divided in to experiment runs that span over ∼ 8 hours (see

Table 1.1 on Page 3). Each run contains an variable number of sub-runs with files of

roughly equal size.

A processing steering configuration generates an empty dataset with zero jobs. A

separate script is then run over the data in order to map a file (or files) to a particular

job as an input. Additional information is also recorded such as date, run number,

and sub-run number mostly for display purposes on the monitoring web page but

this information is not required for functionality of IceProd. Once this mapping has

been generated, there is a processing-specific base class derived from IceProdModule

that automatically gets a list of input files from the soapmon server. This list of files

includes information such as URL, file size, MD5Sum, and type of file. The module

then downloads the appropriate files and performs a checksum to make sure there was

no data corruption during transmission. All output files are subsequently recorded

23

on the database with similar information. The additional information about the run

provides a calendar view on the monitoring page.

24

CHAPTER 3

DIRECTED ACYCLIC GRAPH JOBS

Directed acyclic graphs or DAGs allow you to define a job composed of multiple tasks

that are to be run on separate compute nodes and may have interdependencies. DAGs

make it possible to map a large workflow problem into a set of jobs that may have

different hardware requirements and to parallelize portions of the workflow. Examples

of DAGs are graphically represented in Figures 3.1 and 3.3.

3.1 Condor DAGMan

DAGMan is a workflow manager developed by the HTCondor group at University of

Wisconsin-Madison and included in with the HTCondorTM batch system [12]. Condor

DAGMan describes job dependencies as directed acyclic graphs. Each vertex in the

graph represents a single instance of a batch job to be executed while edges correspond

the execution order of the jobs or vertices. A DAGMan submit script describes the

relationships of vertices and associates a Condor submit script for each vertex or task.

3.2 Applications of DAGs: GPU Tasks

The instrumented volume of ice at the South Pole is an ancient glacier that has formed

over several thousands of years. As a result, it has a layered structure of scattering

and absorption coefficients that is complicated to model. Recent developments in

25

IceCube’s simulation include a much faster approach for direct propagation of photons

in the optically complex Antarctic ice [13] by use of GPUs. This new simulation

module runs much faster than a CPU-based implementation and more accurately than

using parametrization tables [14], but the rest of the simulation requires standard

CPUs. As of this writing, IceCube has access to ∼ 20k CPU cores distributed

throughout the world but has only a small number of nodes equipped with GPU

cards. The entire simulation cannot be run on the GPU nodes since it is CPU bound

and would be too slow in addition to wasting valuable GPU resources. In order to

solve this problem, the DAG feature in IceProd is used along with the modular design

of the IceCube simulation chain in order to assign CPU tasks to general purpose grid

nodes while running the photon propagation on GPU-enabled machines as depicted

in Figure 3.1.

3.3 DAGs in IceProd

The original support for DAGs in IceProd was through Condor’s DAGMan and was

implemented by Ian Rae, a colleague from University of Wisconsin. The Condor plug-

in for IceProd provides an interface for breaking up a job into multiple interdependent

tasks. In addition to changes required in the plug-in, it was necessary to add a way to

describe such a graph in the IceProd dataset XML steering file. This is accomplished

by associating a given module sequence or tray to a task and declaring a parent/child

association for each interdependent set of tasks as shown in Figures 3.1 and 3.2.

Similar plug-ins have also been developed for PBS and Sun Grid Engine plug-ins.

One limitation of this type of DAG is that it is restricted to run on a specific cluster

and does not allow you to have tasks that are distributed across multiple sites.

26

background

OK

ppc

OK

ic86det2011

OK

ic86det2012

OK

corsika

OK

trashcan

OK

Figure 3.1: A simple DAG in IceProd. This DAG corresponds to a typical IceCube
simulation. The two root nodes require standard computing hardware and produce
different types of signal. Their output is then combined and processed on specialized
hardware. The output is then used as input for two different detector simulations.

27

<taskRel>

<taskParent taskId="background"/>

<taskChild taskId="ppc"/>

</taskRel>

<taskRel>

<taskParent taskId="corsika"/>

<taskChild taskId="ppc"/>

</taskRel>

<taskRel>

<taskParent taskId="ppc"/>

<taskChild taskId="ic86det2012"/>

</taskRel>

<taskRel>

<taskParent taskId="ppc"/>

<taskChild taskId="ic86det2011"/>

</taskRel>

<taskRel>

<taskParent taskId="ic86det2011"/>

<taskChild taskId="trashcan"/>

</taskRel>

<taskRel>

<taskParent taskId="ic86det2012"/>

<taskChild taskId="trashcan"/>

</taskRel>

Figure 3.2: XML description of the relational dependence of nodes for the DAG in
Fig. 3.1.

28

bg
OK

ppc
OK

IC86:11
OK

IC86:12
OK

bg
OK

ppc
OK

IC86:11
OK

IC86:12
OK

bg
OK

ppc
OK

IC86:11
OK

IC86:12
OK

bg
OK

ppc
OK

IC86:11
OK

IC86:12
OK

bg
OK

ppc
OK

IC86:11
OK

IC86:12
OK

level3:2011
OK

level3:2012
OK

corsika
OK

corsika
OK

corsika
OK

corsika
OK

corsika
OK

trashcan
OK

Figure 3.3: A more complicated DAG in IceProd with multiple inputs and multiple
outputs that are eventually merged into a single output. The nodes in the second
level run on nodes equipped with Graphical Processing Units.

29

CHAPTER 4

THE ICEPROD DAG

The primary objective for this thesis has been to implement a DAG that is driven

by IceProd and is independent from any batch system. This chapter describes the

design and implementation of a workflow management system similar to Condor’s

DAGMan that is primarily based on the plug-in feature of IceProd. There has been

some work recently to incorporate work flow management DAGs into grid system. For

example, Cao et al. have developed a sophisticated workflow manager that relies on

performance modeling and predictions in order to schedule tasks [15]. By contrast,

IceProd relies on a consumer-based approach to scheduling where local resources

consume tasks on demand. This approach naturally lends itself to efficient utilization

of computing resources.

4.1 Design

The IceProdDAG consists of a pair of plug-ins that take the roles of a master queue

and a slave queue, respectively. The master queue interacts solely with the database

rather than acting as an interface to a batch system while the slave task queue

manages task submission via existing plug-in interfaces. Both of these classes are

implemented in a plug-in module simply called dag.py. In order to implement this

design, it was also necessary to write some new methods for the database module and

30

to move several database calls such that they are called from within the plugin. These

calls are now normally handled by the plug-in iGrid base class but are overloaded by

the dag plug-in.

The current database design already includes a hierarchical structure for represent-

ing DAGs and this can be used for checking task dependencies. A major advantage

of this approach is that it allows a single DAG to span multiple sites and thereby

make optimal use of resources. An example application would allow to combine one

site with vast amounts of CPU power but no GPUs available and another site better

equipped with GPUs.

4.1.1 The IceProdDAG Class

The primary role of the IceProdDAG class is to schedule tasks and handle their

respective inter-job dependencies. This class interacts with the database in order to

direct the execution order of jobs on other grids. The IceProdDAG class assumes the

existence of a list of sub-grids in its configuration. These are manually configured by

the administrator, though in principle it is possible to dynamically extend a dataset

to include other sub-grids via the database. The algorithm that determines inclusion

or exclusion of a sub-grid in the execution of a task for a given dataset is described

in Section 4.2.

The IceProdDAG plug-in queues jobs from the database just as any other batch

system plug-in would but rather than writing submit scripts and submitting jobs to

a cluster or grid, it updates the status of the child tasks associated with each job

and leaves the actual job submission to the respective sub-grids. The pseudo-code in

Figure 4.1 shows the main logic used for determining the execution order of tasks.

31

for job in dataset.jobs:

for taskname,td in db.download_tasks(dataset.id,steering).items()

db.download_tasks(dataset_id,steering)

task_defs = steering.GetTaskDefinition

parents_finished = True

for parent in td.parents: # check task dependencies

if not task_is_finished(parent.id, job.id):

parents_finished = False

break

if parents_finished:

td_id = td.id

for idx,tray in td.trays.items():

for iter in tray.GetIters():

tid = db.get_task_id(td_id,job.GetDatabaseId(), idx, iter)

if db.task_status(tid) == ’IDLE’:

db.task_update_status(tid,’WAITING’,key=job.key)

Figure 4.1: Python pseudo-code for checking task dependencies in workflow DAG

32

The initial state of all tasks is set to IDLE, which is equivalent to a hold state.

When scheduling a new job, the IceProdDAG then traverses the dependency tree,

starting with all tasks a level 0 until it finds a task that is ready to be released by

meeting one of the following conditions:

1. The task has no parents (a level 0 task).

2. All the task parents have completed and are now in a state of OK.

If a task meets these requirements, its status is set to WAITING and any sub-grids

that meet the task requirements is free to grab this task and submit it to its own

scheduler. As with other plugins, the IceProdDAG will only keep track of a maximum

sized set of “queued” jobs determined by the iceprod.cfg configuration.

4.1.2 The TaskQ Class

The TaskQ class is an abstract base class from which other plug-in classes can extend

their own functionality by means of inheritance. This class treats the task as a

single job rather than a component of one. TaskQ overloads many of the database

method calls and handles treatment of a node in a DAG or task in the same way that

the iGrid class and the derived plug-ins handle jobs. The implementation of batch

system-specific plugins takes advantage of Python’s support for multiple inheritance

[16]. In order to implement an IceProd-based dag on a system X, one can define a

class Xdag that derives from both dag.TaskQ and X. The dag.TaskQ class provides

the interaction to the database while class X provides the interface to the batch

system. Inheritance order is important in order to properly resolve class methods.

The dag module includes a TaskQ factory function (Figure 3.2) that can automatically

define a new TaskQ-derived class for any existing plug-in. The IceProd administrator

33

simply needs to specify a plug-in of type BASECLASS::TaskQ. The plug-in factory

understands that it needs to generate an instance that is derived from BASECLASS

and TaskQ with the proper methods overloaded when inheritance order needs to be

overridden.

The TaskQ class handles task errors, resets, and time outs in a similar way that

other plug-ins do for jobs but also takes additional task states into account. The

state diagram for a task is shown in Figure 4.3. Each instance of a TaskQ needs to

handle its own garbage collection and set the appropriate states independent of the

job being handled by the IceProdDAG instance.

4.1.3 Local Database

A goal of this thesis was to implement most of the new functionality at the plug-in

level. The existing database structure assumes a single batch system job ID for each

job in a dataset. The same is true for submit directories and log files. Rather than

changing the current database structure to accommodate task-level information, a

low-impact SQLite database is maintained locally by the TaskQ plug-in in order to

keep track of this information. The use of SQLite at the plug-in level had already

been established by both PBS and SGE DAGs in order to keep track of the local

queue ID information for each task.

4.2 Attribute Matching

A new database table has been added to assign attributes to a particular grid or

IceProd instance. These attributes are used in the mapping of DAG tasks to special

resources. These attributes are added in the iceprod.cfg configuration file as a set of

34

def MkI3Task(BASECLASS):

"""

class factory function: Generates new plugin class derived from a

given base class and the TaskQ class.

@param BASECLASS: plugin class to extend

@returns: a new class that inherits from dag.TaskQ and BASECLASS

"""

inheritance resolution order is important!!!!

class mydag(TaskQ,BASECLASS):

def __init__(self):

BASECLASS.__init__(self)

TaskQ.__init__(self)

self.__name__ = BASECLASS.__name__+ TaskQ.__name__

self.logger = logging.getLogger(self.__name__)

...

def CheckJobStatus(self,jobs):

"""

Querie status of job on queue

@param jobs: list of I3Job or I3Task objects to check

"""

if isinstance(jobs,list):

job_list = jobs

else:

job_list = [jobs]

self.localdb.FillTaskInfo(jobs)

return BASECLASS.CheckJobStatus(self,jobs)

...

Figure 4.2: TaskQ factory function to automatically generate TaskQ implementations
of arbitrary iGrid plug-ins. This function automatically invoked by requestion a batch
system plug-in module of type BASECLASS::TaskQ.

35

WAITING QUEUEING

RESET

QUEUED

PROCESSING

True

False

ok?
True

Move intermediate data to temporary storage

False

reset job

ok?

ERROR

COPYINGOUTPUTOK

Submit

Max. time
 reached

SUSPENDED

CLEANING

Start

COPYINGINPUT

ok?

ok?

False

True

True

False

IDLE

Figure 4.3: JEP state diagram for task. Each of the non-error states through which
a task passes includes a configurable timeout. Tasks need to account for additional
states such as ”COPYINGINPUT and ”COPYINGOUTPUT.

name value pairs, which can be numerical or boolean. Examples of such attributes

are:

• HasGPU = True

• CPU = True

• Memory = 2000

• HasPhotonicsTables = True

• GPUSPerNode = 4

The IceProdDAG does an evaluation of each task requirements and matches them

against the attributes advertised by each of the subgrids during each job scheduling

interval. The XML schema already included a tag for task requirements that is

used to specify Condor requirements or ClassAds directly in the DAGMan plug-in.

The expressions for requirements in the IceProd dag are pretty similar to those in

36

Condor and allow for complex boolean expressions involving attribute variables and

IceProd expressions as described in Section 2.2.1. A new expression keyword $attr()

has been added to the IceProd scripting language for this purpose. The database

pivot table (grid statistics) that pairs grids and datasets now includes a new column,

task def id, that references a task definition. By default, this column value is set

to −1, indicating that this mapping applies to the entire dataset at the job level.

A non-negative value indicates a matching at a specific task level. If an expression

evaluates to true when applied to a particular task-grid pair, an entry is created or

updated in the grid statistics table. By default, all grids are assumed to have CPUs

(unless otherwise specified) and any task without requirements is assumed to require

a CPU. Examples of task requirements are shown in Figure 4.4.

<task id="background">

<taskTray iters="0" tray="0"/>

<taskReqs>$attr(CPU)</taskReqs>

</task>

<task id="ppc_bg">

<taskTray iters="0" tray="1"/>

<taskReqs>$attr(hasGPU)</taskReqs>

</task>

<task id="corsika">

<taskTray iters="0" tray="2"/>

<taskReqs>$attr(CPU) and ($attr(Mem) > 2000) </taskReqs>

</task>

<task id="ppc">

<taskTray iters="0" tray="3"/>

<taskReqs>$attr(hasGPU)</taskReqs>

</task>

Figure 4.4: Task Requirement Expressions: Any boolean or mathematical expressions
involving IceProd keywords can be evaluated to match against a grid resource.

37

4.3 Storing Intermediate Output

Most workflow applications require the passing of data between parent and child

nodes in the DAG. One can envision using a direct file transfer protocol between

tasks but this is impractical for three main reasons:

1. Firewall rules may prevent such communication between compute nodes.

2. This requires a high level of synchronization to ensure that a child task starts

in time to receive the output of it’s parents.

3. With such synchronous scheduling requirements, it is very difficult to recover

from failures without having to reschedule the entire DAG.

It is therefore more convenient to define a temporary storage location for holding

intermediate out from tasks. A pleasant side effect of this approach is the ability

to have a coarse checkpointing from which to resume jobs that fail due to transient

errors or that get evicted before they complete. For a local cluster, especially those

with a shared file system, this is trivial but on wide-spread grids one should consider

bandwidth limitations. In order to optimize performance, an IceProd instance should

be configured to use a storage server with a fast network connection. Under most

circumstances, this corresponds to a server that has a minimal distance in terms of

network hops.

4.3.1 Zones

The concept of a zone ID is introduced in order to optimize performance. Each site

is configured with a particular zone ID that loosely relates to the geographical zone

where the grid is located. This is an arbitrarily defined numbering scheme and the

38

relative numbers do not reflect distances between zones. For example, University of

Wisconsin sites have been assigned a zone ID of 1 and DESY-Zeuthen in Germany

has been assigned zone ID 2. A mapping of zone ID to URL is also defined in the

configuration file of each instance of IceProd. The distance metric is a measure of

Table 4.1: Example zone definition for an IceProd instance. The IceProd instance in
this example is assumed to be located in zone 1.

zone ID URL distance
1 gsiftp://us-server.domain.edu/path 0
2 gsiftp://german-server.domain.de/path 10
3 gsiftp://canadian-server.domain.ca/path 2
4 gsiftp://japan-server.domain.jp/path 20

latency with arbitrary units. The distances can be initially assigned arbitrarily at each

site in order to minimize network latency. One could in principle just calculate an

average network speed for each server. However, in reality, this is a time-dependent

value that needs to be optimized periodically. This is accomplished by weighted

running average that favors new values over old ones. Figures 4.5 and 4.6 illustrate

how the average network speed can vary with time. During a sufficiently short-

term period, speeds are randomly distributed around mean approximating a Gaussian

distribution. Over a longer term, time-dependent factors such as network load can

shift mean of distribution so that it no longer resembles a Gaussian. The calculation

of the mean value

x̄i =
1

n

n∑

i

xi (4.1)

can be replaced

x̄i =
x̄i−1 + wxi

w + 1
(4.2)

39

where xi is the distance metric measured a interval i, w < 1 is the weight, and x̄i

is the weighted running average. The value w = 0.01 was chosen arbitrarily to be

sensitive to temporal variation but not too sensitive to high-frequency fluctuations

based on Figure 4.7 in an effort to improve performance.

0 5 10 15 20
distance parameter x (MB/s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

co
u
n
ts

Distribution of relative speeds for Dataset 9036

Gaussian fit
data (10000 entries)

Figure 4.5: Distribution of file transfer speeds for intermediate DAG data. Dur-
ing a sufficiently short-term period, speeds are randomly distributed around mean
approximating a Gaussian distribution.

The database has been updated to include a new column “zone” in the job table

that is used for determining priorities in scheduling of tasks. Figure 4.8 shows the

algorithm for setting priorities in the scheduling of tasks. The distance is periodically

calculated based on Equation (4.2) and is used to order the selection of tasks within

a dataset from the database. By default, all jobs are initialized to zone 0, which is

defined to have a distance of 0.

40

0 5 10 15 20
distance parameter x (MB/s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

co
u
n
ts

Distribution of relative speeds for Dataset 9036

Gaussian fit
data (100000 entries)

Figure 4.6: Distribution of file transfer speeds for intermediate DAG data over a longer
term. Time-dependent factors such as network load can shift mean of distribution so
that it no longer resembles a Gaussian.

41

0 200 400 600 800 1000
Interval

6

7

8

9

10

11

12

13

d
is
ta
n
ce
 p
a
ra
m
e
te
r
x
 (
M
B
/s
)

Evolution of Average Speed (Dataset 9036)

average
w=0.01
w=0.1

Figure 4.7: Evolution of average transfer speed with time. Average speed becomes less
sensitive to fluctuations with time. Weighted running average is allowed to fluctuate
more and reflect time-dependent changes. This weight can be adjusted to optimize
performance.

42

SELECT ...

CASE j.zone

WHEN 0 THEN 0 // default local

WHEN 1 THEN %f // values filled in by

WHEN 2 THEN %f // Python loop over zones

WHEN 3 THEN %f

...

ELSE NULL // Inf. ignore

END AS distance

FROM task

JOIN job j

ON

t.job_id = j.job_id

JOIN grid_statistics gs

ON

j.dataset_id = gs.dataset_id

AND

t.task_def_id = gs.task_def_id

WHERE

gs.grid_id = %u

AND

task.status = ’WAITING’

AND

distance IS NOT NULL

...

ORDER BY

j.dataset_id, distance, j.job_id

...

LIMIT %u

Figure 4.8: SQL query with zone prioritization. The distance is periodically calcu-
lated based on Equation (4.2) and is used to order the selection of task within a
dataset from the database. By default, all jobs are initialized with to zone 0, which
is defined to have a distance of 0.

43

CHAPTER 5

PERFORMANCE

5.1 Experimental Setup

For the purposes of testing the implementation of the IceProdDAG, Dataset 9544 was

submitted to IceCube’s production system. This dataset is representative of typical

Monte Carlo productions and is represented by the DAG in Figure 5.1. Dataset

9544 consists of 10k jobs that run on CPUs and GPUs and was generated using the 7

separate sites shown on Table 5.1 and distributed throughout in the U.S. and Canada.

The test dataset performed at least as well as a batch system driven DAG but allowed

for better optimization of resources. The DAG used in Dataset 9544 consists of the

following tasks:

1. corsika generates an energy-weighted primary cosmic-ray shower.

2. background generates a uniform background cosmic-ray showers with a real-

istic spectrum in order to simulate random coincidences in the detector.

3. ppc propagates photons emitted by corsika. This task requires GPUs.

4. ppc bg propagates photons emitted by background. This task also requires

GPUs.

44

background
OK

ppc_bg
OK

ic86det0
OK

level2
OK

trashcan
OK

corsika
OK

ppc
OK

Figure 5.1: DAG used for benchmarking. Dataset 9544 is highly representative of the
typical IceCube simulation jobs.

45

5. ic86det0 combines the output from the two sources and simulates the detector

electronics and triggers.

6. level2 applies the same reconstructions and filters uses for real detector data.

This task requires the existence of large pre-installed tables of binned multi-

dimensional probability density functions.

7. trashcan cleans up temporary files generated by previous tasks.

Sites in Table 5.1 were chosen to test the implementation of the IceProdDAG while

minimizing interfere with current Monte Carlo productions. At the same time, it was

important that the resources utilized are representative of the those that will be used

in a real production environment. The GPU cluster in WestGrid consists of 60 nodes

with 3 GPU slots each and is fully dedicated to GPU processing. For this reason,

WestGrid is not well suited for standard DAG configurations that rely on the batch

system for scheduling tasks and was a driving reason for this thesis. CHTC and NPX3

also include GPUs but are primarily genera-purpose CPU clusters. Each of these sites

Table 5.1: Participating Sites.

Site Name Location OS queue GPUs PDF tab.
Parallel (WG) Alberta, CA CentOS 5 PBS(Torque) Y N
Jasper (WG) Alberta, CA CentOS 5 PBS(Torque) N N
Breezy (WG) Alberta, CA CentOS 5 PBS(Torque) N Y
UMD Maryland, USA Ubuntu11 SGE N Y
Dirac California, USA SLC5 PBS Y N
CHTC Wisconsin, USA SLC6/5 Condor Y N
NPX3 Wisconsin, USA SLC6 Condor Y Y

was configured with the appropriate attributes such as HasPhotonics, HasGPU, and

CPU to reflect resources listed in Table 5.1. The attribute HasPhotonics indicates

that the probability density function (PDF) tables are installed and corresponds to

46

the column labelled “PDF tab.” Appendix E provides more information about each

of the sites listed in Table 5.1.

5.2 Performance

5.2.1 Task Queueing

The mechanism for queueing tasks is identical to that of queueing simple serial

jobs. As was described in Section 4.2, each grid checks the grid statistics table for

dataset,task id pairs mapped to it and queues tasks associated to it.

5.2.2 Task Dependency Checks

The execution time for the dependency checking algorithm described in Section 4.1.1

can be expressed on a per job basis by

T (n, p) = Θ(n · p̄) (5.1)

where p̄ is the average number of parents for each task and n is the number of tasks

in the DAG. In general, the performance of this algorithm is given by

T (n) = O(n(n − 1)/2) (5.2)

since n(n− 1)/2 is the largest number of edges in a DAG size n and each edge needs

to be visited. For a DAG of size n, the worst case scenario is given by a maximally

connected DAG with p̄ = (n − 1)/2 such as the one shown in Figure 5.2 where the

ith vertex has n − i children. The best case scenario is given by p̄ = n/(n − 1) ∼ 1

corresponding to a minimally connected DAG such as the one show in Figure 5.3,

47

task0

task1

task2

task3

task4

task5

task6

task7

task8

task9

Figure 5.2: Worst case scenario of a DAG configuration for dependency check
algorithm has T (n) = Θ(n(n − 1)/2). The DAG has n(n − 1)/2 edges that need
to be checked.

48

which has an execution time given by T (n) = Θ(n) since there are n vertices and

n− 1 edges as the vertex must have at least one incoming or outgoing edge. The fact

that T (n) 6= Θ(n2/n − 1) is due to the fact that every vertex has to be counted once

even if it has no parents. The average time for dependency checks is reduced if we use

task0

task1 task2 task3 task4 task5 task6 task7 task8 task9

(a) One-to-many

task0

task1

task2

task3

task4

(b) Line

task0

task1 task2

task3 task4 task5 task7

(c) k-ary tree with k = 2

Figure 5.3: Examples of best case scenario DAG configurations for dependency check
algorithm. The DAG in each case has n− 1 edges that need to be checked since each
vertex must have at least one incoming or outgoing edge.

a topologically sorted DAG and exit the loop as soon as we find a task that has not

completed. The savings depend on the topology of the particular DAG. For a linear

49

DAG such as the one in Figure 5.3(b), the average number of dependency checks is

(n − 1)/2 and for for a k-ary tree (Figure 5.3(c)), the average number of checks is

1

logk n

logk n∑

i

ki =
1

logk n

k(n − 1)

(k − 1)
(5.3)

1 2 3 4 5 6 7 8 9 10
n

0

10

20

30

40

50

T
(n
)

Dataset 9544 with |V|,|E| = 7,6

Figure 5.4: Range of complexity for task dependency checks corresponds to shaded
area. The top curve corresponds to the worst case scenario with T (n) = Θ(n(n−1)/2)
and the bottom curve is the best case scenario with T (n) = Θ(n − 1) where n = |V |
corresponds to the number of vertices for a DAG G = (E, V).

The actual values from the distribution of run times of dependency checks for

Dataset 9544 are given in Table 5.2.

50

5.2.3 Attribute Matching

The algorithm described in Section 4.2 involves periodical checks to see if attributes

for sub-grids have changed and subsequent updates to the grid-statistics table. The

run time for this algorithm is proportional to the number of tasks in a DAG and the

number of sub-grids. The time complexity for matching a dataset to a set of sub-grids

is therefore given by

T (nt, ng) = Θ(nt · ng) (5.4)

where ng is the number of sub-grids and nt is the number of tasks or vertices in a DAG.

This has a similar functional for to that of Equation (5.1). One important difference is

that the task dependency check is applied to every queued job where as the attribute

matching algorithm described by Equation (5.4) is applied on a per-dataset basis.

The actual execution time for each of the algorithms described in Sections 5.2.3,

5.2.1 and 5.2.2 is summarized in Table 5.2.

Table 5.2: Run times for task-queueing functions for Dataset 9544.

Function Unit µ σ x̃
Attribute Matching ms/task site 0.20 0.06 0.18
Dependency Check ms/task job 3.83 3.01 3.58
Task Queueing1 ms/task job 52.49 58.66 37.74

5.2.4 Load Balancing

One of the intended benefits of spreading the DAG over multiple sites was to optimize

the usage of resources. Given that TaskQ instances are task consumers that pull tasks

from the queue (as opposed to being assigned tasks by a master scheduler), each site

1Task queuing only considers database queries and does not include actual batch system calls
that can vary significantly from on system to another.

51

will take what it can consume based on factors such as how many compute slots

available or how slow the compute nodes are. This avoids situations in which some

clusters is being starved while others are overwhelmed. The pie graph in Figures

5.5,5.6, and 5.7 show the relative number of jobs processed at each of the sites listed

in Table 5.1. The larger slices correspond to resources that had the highest throughput

during the processing of Dataset 9544.

CHTC:background

9.0%

CHTC:corsika

7.7%

CHTC:ic86det0

13.4%

CHTC:level2
8.2%

CHTC:ppc
4.1%

CHTC:ppc_bg

4.3%

npx3:level2

5.1%

npx3:ppc

3.0%

npx3:ppc_bg

3.2%

parallel:level2

2.1%

parallel:ppc

9.8%

parallel:ppc_bg

9.4%
breezy:background

1.2%

breezy:corsika

1.1%

breezy:ic86det0

1.0%
breezy:level2

0.8%
jasper:background6.6%

jasper:corsika

8.0%

jasper:ic86det0

1.0%

UMD:ic86det0

1.1%

Task assignment

Figure 5.5: Task completion by site for Dataset 9544. The larger slices correspond to
resources that had the highest throughput during the processing of Dataset 9544.

The performance of DAG jobs is always limited by the slowest component in

52

CHTC
56.6%

npx3

13.4%

breezy
4.1%

jasper

23.0%

UMD

2.9%

CPU Task Assignment

Figure 5.6: Task completion by site for Dataset 9544. Only CPU-based tasks are
shown and are grouped by site.

53

CHTC:ppc_bg

23.4%

npx3

21.1%
parallel

55.5%

GPU Task Assigment

Figure 5.7: Task completion by site for Dataset 9544. Only GPU-based tasks are
shown and are grouped by site.

54

the workflow. The major impetus for this thesis was the concern that simulation

production was limited by the small number of GPUs relative to the available CPUs

on some clusters and the opposite case for the WestGrid Parallel cluster. This problem

can be optimized by pooling resources together as was done with this test run. Table

5.3 shows the run-time numbers for each of the tasks that make up the DAG in Figure

5.1. The ratio of CPU to GPU tasks should roughly be determined by the ratio of

Table 5.3: Run times for tasks in Dataset 9544
Task µ (sec) σ (sec) x̃ (sec)
corsika 1689.02 475.50 1540.0
background 3294.89 789.24 3048.5
ppc 489.79 793.71 452.0
ppc bg 1059.95 1708.74 999.0
ic86det0 1218.07 401.14 1171.0
level2 816.8 326.97 781.0
trashcan 1.8 4.67 0.0
combined corsika 2492.73 1034.12 2458.0
combined ppc 774.98 1362.58 663.0

average run times for input CPU tasks to that of GPU tasks plus the ratio of the sum

of run times for output CPU tasks to the average runtime of GPU tasks

R̄gpu =
(t̄corsika+background)

(t̄ppc+ppc bg)
+

(t̄ic86det0 + t̄level2)

(t̄ppc+ppc bg)
, (5.5)

which from Table 5.1, we get

R̄gpu ≈ 5.84 (5.6)

or using the median instead of the mean,

R̃gpu ≈ 6.65 (5.7)

55

Figure 5.8 show the ratio of CPU tasks to GPU tasks during the run of Dataset

9544. Both the median and mean values are higher than the values given by Equations

(5.6) and (5.7), though the values are skewed by the beginning of the run but seem

to approach R̄gpu at a later point. In reality, the performance of Dataset is affected

0 20 40 60 80 100 120
Time interval (hr)

0

10

20

30

40

R
a
ti
o
 o
f
C
P
U
/G
P
U
 t
a
sk
s

Relative number of processing tasks

ratio

median=7.90
µ=11.77

µ+1σ

R̄

R̃

Figure 5.8: Ratio of CPU processing tasks to GPU processing tasks.

by the variable availability of resources as a function of time.

56

CHAPTER 6

ARTIFACTS

IceProd is undergoing active development with the aim of improving various aspects

of the framework including security, data integrity, scalability, and throughput with

the intent to make it generally available for the scientific community in the near future

under public licensing.

6.1 Code

Note: The following code and documentation is currently not open to the general

public but it will become physically available in the near future.

1. The code for IceProd is currently hosted on IceCube’s Subversion repository:

http://code.icecube.wisc.edu/svn/meta-projects/iceprod

http://code.icecube.wisc.edu/svn/projects/iceprod-core

http://code.icecube.wisc.edu/svn/projects/iceprod-server

http://code.icecube.wisc.edu/svn/projects/iceprod-client

http://code.icecube.wisc.edu/svn/projects/iceprod-modules

6.2 Documentation

1. A wiki containing documentation and a manual is located at

57

https://wiki.icecube.wisc.edu/index.php/IceProd

2. Epydoc documentation for IceProd Python classes

http://icecube.wisc.edu/~juancarlos/software/iceprod/trunk/

58

CHAPTER 7

LIMITATIONS OF ICEPROD

7.1 Fault Tolerance

Probably the most important problem with the current design of IceProd is its

dependence on a central database. This is a single point of failure that can bring

the entire system to a halt if compromised. We have experienced some problems in

the past as a result of this. Originally, the IceProd database was hosted on a server

that also hosted the calibration database. The load on the calibration database was

impacting performance of IceProd. This problem was solved by having a dedicated

server.

7.2 Database Scalability

The centralized database also limits the scalability of the system given that adding

more and more sites can cause heavy loads on the database server requiring more

memory and faster CPUs. This issue and the single point of failure are both being

addressed in a second generation design described on Page 61.

59

7.3 Scope of IceProd

Finally, it should be noted that much of the ease of use of IceProd comes at the price.

This is not a tool that will fit every use case. There are many examples that one

can come up with where IceProd is not a good fit. However, there are plenty similar

applications that can take advantage of IceProd’s design.

60

CHAPTER 8

CONCLUSIONS

The IceProd framework provides a simple solution to manage and monitor distributed

large datasets across multiple sites. It allows for an easy way to integrate multiple

clusters and grids with distinct protocols. IceProd makes use of existing technology

and protocols for security and data integrity.

The details of job submission and management in different grid environments are

abstracted through the use of plug-ins. Security and data integrity are concerns in any

software architecture that depends heavily on communication through the Internet.

IceProd includes features aimed at minimizing security and data corruption risks.

The aim of this thesis was to extend the functionality of workflow management

directed acyclic graphs (DAGs) so that they are independent of the particular batch

system or grid and, more importantly, so they span multiple clusters or grids. The

implementation of this new model is currently running at various sites throughout

the IceCube collaboration and is playing a key role in optimizing usage of resources.

We will soon begin expanding use of IceProdDAGs to include all IceCube grid sites.

Support for batch system independent DAGs is achieved by means of two separate

plug-ins: one handles the task hierarchical dependencies while the other treats tasks

as regular jobs. This solution was chosen so as to minimize changes to the core of

IceProd. Only minor changes to the database structure were required.

61

A simulation dataset of 10k jobs that run on CPUs and GPUs was generated using

7 separate sites located in the U.S. and Canada. The test dataset was similar in scale

to the average IceCube simulation production sets and performed at least as well as

a batch system driven DAG but allowed for better optimization of resources.

IceProd is undergoing active development with the aim of improving security, data

integrity, scalability, and throughput with the intent to make it generally available

for the scientific community in the near future. The High Altitude Water Cherenkov

Observatory has also recently began using IceProd for off-line data processing.

8.1 Future Work

IceProd has been a success for mass production in IceCube but further work is needed

to improve performance. Another collaborator in IceCube is working on a new design

for a distributed database that will improve scalability and fault tolerance. Much of

the core development for IceProd has been completed at this point in time and is

currently being used for Monte Carlo production as well as data processing in the

northern hemisphere. Current efforts in the development of IceProd aim to expand

its functionality and scope in order to provide the scientific community with a more

general-purpose distributed computing tool.

There are also plans to provide support for MapReduce as this may become an

important tool for indexing and categorizing events based on reconstruction parame-

ters such as arrival direction, energy, and shape and thus an important tool for data

analysis.

It is the hope of the author that this framework will be released under a public

license in the near future. One prerequisite is to remove any direct dependencies on

62

IceTray software.

63

REFERENCES

[1] F. Halzen. IceCube A Kilometer-Scale Neutrino Observatory at the South Pole.
In IAU XXV General Assembley, Sydney, Australia, 13-26 July 2003, ASP
Conference Series, Vol. 13, 2003, volume 13, pages 13–16, July 2003.

[2] Aartsen et al. Search for Galactic PeV gamma rays with the IceCube Neutrino
Observatory. Phys. Rev. D, 87:062002, Mar 2013.

[3] J. C. Dı́az-Vélez. Management and Monitoring of Large Datasets on Distributed
Computing Systems for the IceCube Neutrino Observatory. In ISUM 2011
Conference Proceedings., San Lúıs Potośı, Mar. 2011.

[4] Francis Halzen and Spencer R. Klein. Invited Review Article: Icecube: An
Instrument for Neutrino Astronomy. Review of Scientific Instruments, AIP, 81,
August 2010.

[5] Tom Weisgarber. personal communication, March 2013.

[6] Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, Ian D. Al-
derman, and Miron Livny. The NMI build and test laboratory: Continuous
integration framework for distributed computing software. In In The 20th
USENIX Large Installation System Administration Conference (LISA), pages
263–273, 2006.

[7] Dave Winer. XML/RPC Specification. Technical report, Userland Software,
1999.

[8] T R De Young. IceTray: a Software Framework for IceCube. In Computing in
High Energy Physics and Nuclear Physics 2004, Interlaken, Switzerland, 27 Sep
- 1 Oct 2004, p. 463, page 463, Interlaken, Switzerland, Oct. 2004.

[9] Rick Ellis and the ExpressionEngine Development Team. CodeIgniter User
Guide. http://codeigniter.com, online manual.

[10] W Allcock et al. GridFTP: Protocol extensions to FTP for the Grid. http:

//www.ggf.org/documents/GWD-R/GFD-R.020.pdf, April 2003.

64

[11] The Globus Security Team. Globus Toolkit Version 4 Grid Security Infrastruc-
ture: A Standards Perspective, 2005.

[12] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber, and Kent Wenger. Workflow
in Condor. In Workflows for e-Science, 2007.

[13] The IceCube Collaboration. Study of South Pole Ice Transparency with Icecube
Flashers. In Proceedings of the 32nd International Cosmic Ray Conference,
Beijing, China 2011, International Cosmic Ray Conference, Beijing, China, 2011.

[14] D. Chirkin. Photon Propagation Code: http://icecube.wisc.edu/~dima/

work/WISC/ppc. Technical report, IceCube Collaboration, 2010.

[15] J. Cao, S.A. Jarvis, S. Saini, and G.R. Nudd. GridFlow: Workflow Management
for Grid Computing, May 2003.

[16] Mark Lutz. Learning Python. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2 edition, 2003.

[17] Western Canada Research Grid. Parallel QuickStart Guide. http://www.

westgrid.ca/support/quickstart/parallel, 2013.

[18] NERSC. Dirac GPU Cluster Configuration. http://www.nersc.gov/users/

computational-systems/dirac/node-and-gpu-configuration, 2006.

[19] The CondorHT Team. The Center for Hight Throughput Computing. http:

//chtc.cs.wisc.edu, 2011.

[20] Wisconsin Particle and Astrophysics Center. WIPAC Computing. http:

//wipac.wisc.edu/science/computing, 2012.

65

APPENDIX A

PYTHON PACKAGE DEPENDENCIES

An effort has been made to minimize IceProd’s dependency on external Python

packages. In most cases, all that is needed is the basic system Python 2.3 (default

on RHEL4 or equivalent and above). Only on the server (where daemons run)

MySQL-python is also needed. This is not generally included in the system Python.

For MySQL, you have two options: request installation of python-MySQL by your

system administrator or install the package in a private directory.

The following are the package requirements for IceProd:

1. PyXML 0.8.3 (default on Python 2.3 and above)

2. python-MySQL 1.2.0 (only needed by server)

3. pygtk 2.0.0 (only needed for GUI client, default on Python 2.3 and above)

4. SQLite3 (included in Python ≥ 2.5) or python-sqlite (for Python < 2.5)

In addition, if you want to use SSL encryption (https), you will need pyOpenSSL

(server) and Python should be compiled with OpenSSL support (at least for the

client). The system Python is typically compiled with OpenSSL support.

66

APPENDIX B

JOB DEPENDENCIES

For systems without a shared file system (e.g., grid systems), all software dependencies

must be shipped to the computing nodes. This file transfer is initiated from the

compute node but it can alternatively be done by the submit node. The parameter

that controls where data is copied from is lib url. Currently, FTP,HTTP,file (i.e., local

system) and GridFTP (if available). If a project needs some external tools or tables

that are not part of the meta-project tarball, these must also be sent along with the

job. Additional dependencies can be listed in the steering file. This is done through

the steering parameter <dependency> in the <steering> section of your xml steering

file. In the GUI, you can add a dependency in the dependencies tab of the main

window. The typical installation of Python on most compute nodes contains all the

modules that are needed to run IceProd jobs. However, it is possible to ship Python

as a dependency. The JEP can start using a different Python. It will automatically

restart itself after downloading and unpacking the Python package dependency. This

is done by configuring the pythonhome config parameter to a url rather than a path.

67

APPENDIX C

WRITING AN I3QUEUE PLUGIN A FOR NEW BATCH

SYSTEM

There are already several plug-ins included in IceProd for various batch systems.

Developers are encouraged to contribute new plug-ins to the svn repository in order

to extend the functionality of IceProd. There are a few methods that need to be

implemented but most of the code is simply inherited from I3Queue. The WriteConfig

method is the class method that writes the submit script. The most important thing

is to define how the submit script for a given cluster is formatted and what are the

commands for checking status, queueing, and deleting of jobs. Also, the output from

issuing the submit command should get parsed by get id to determine the queue id

of this job. Figure C.1 is an excerpt of an I3Queue plug-in implementation.

68

"""

A basic wrapper for submitting and monitoring jobs to my cluster.

"""

from i3queue import I3Queue

class MyCluster(I3Queue):

def __init__(self):

I3Queue.__init__(self)

self.enqueue_cmd = "condor_submit"

self.checkqueue_cmd = "condor_q"

self.queue_rm_cmd = "condor_rm"

def WriteConfig(self,job,config_file):

"""

@param job: i3Job object

@param config_file: submit file

"""

if not job.GetExecutable():

raise Exception("no executable configured")

submitfile = open(config_file,’w’)

job.Write(submitfile,"Executable = %s" % job.GetExecutable())

job.Write(submitfile,"Log = %s" % job.GetLogFile())

...

def get_id(self,submit_status):

"""

Parse string returned by condor on submission to extract the

id of the job cluster

@param submit_status: string returned by condor_submit

"""

matches = re.findall(

"[0-9]+ job\(s\) submitted to cluster [0-9]+",

submit_status)

if matches:

return matches[0].split()[-1]

Figure C.1: An implementation of an abstract class to describe how to interact with
a batch or system.

69

APPENDIX D

ICEPROD MODULES

IceProd Modules are Python classes that are executed in a specified sequence. They

are configured through similar interface to that of IceTray modules/services.

D.1 Predefined Modules

D.1.1 Data Transfer

The module gsiftp contains the following classes, which are used for transferring files

via GridFTP:

1. GlobusURLCopy - for copying individual files

2. GlobusGlobURLCopy - for using wildcard expressions (e.g., *.i3) to copy mul-

tiple files

3. GlobusMultiURLCopy - for copying multiple listed files.

70

from iceprod.modules import *

prod = IceProd()

Configure modules

prod.AddModule("fileutils.RenameFile","mv")(

("outfile",".corsika.in.i3.gz"),

("infile",".corsika.out.i3.gz"),

)

prod.Execute() # Execute modules in the order that they were added

Figure D.1: An implementation of an abstract class to execute in sequence.

71

APPENDIX E

EXPERIMENTAL SITES USED FOR TESTING

ICEPRODDAG

E.0.2 WestGrid

The WestGrid Parallel cluster consists of multi-core compute nodes. There are 528 12-

core standard nodes and 60 special 12-core nodes that have 3 general-purpose GPUs

each. The compute nodes are based on the HP Proliant SL390 server architecture,

with each node having 2 sockets. Each socket has a 6-core Intel E5649 (Westmere)

processor, running at 2.53 GHz. The 12 cores associated with one compute node

share 24 GB of RAM. The GPUs are NVIDIA Tesla M2070s, each with about 5.5

GB of memory. WestGrid also provides 1TB of storage accessible through GridFTP,

that was used as a temporary intermediate file storage for DAGs [17].

E.0.3 NERSC Dirac GPU Cluster

Dirac is a 50 GPU node cluster. Each node has 8 Intel 5530 Nahalem cores running

at 2.4 GHz, and 24 GB RAM divided the following configurations [18]:

• 44 nodes: 1 NVIDIA Tesla C2050 (Fermi) GPU with 3 GB of memory and 448

parallel CUDA processor cores.

72

• 4 nodes: 1 C1060 NVIDIA Tesla GPU with 4 GB of memory and 240 parallel

CUDA processor cores.

• 1 node: 4 NVIDIA Tesla C2050 (Fermi) GPU’s, each with 3GB of memory and

448 parallel CUDA processor cores.

• 1 node: 4 C1060 Nvidia Tesla GPU’s, each with 4G B of memory and 240

parallel CUDA processor cores..

E.0.4 Center for High Throughput Computing (CHTC)

CHTC provides a powerful set of resources summarized on Table E.1 free of charge for

University of Wisconsin Researchers and sponsored collaborators. These resources are

funded by the National Institute of Health (NIH), the Department of Energy (DOE),

the National Science Foundation (NSF), and various grants from the University itself

[19].

Table E.1: Computing Resources Available on CHTC

Pool/Mem (GB) ≥ 1 ≥ 2 ≥ 4 ≥ 8 ≥ 16 ≥ 32 ≥ 64
glow.cs.wisc.edu 8923 6405 53 53 52 3 0
cm.chtc.wisc.edu 3792 2764 644 303 189 58 27
condor.cs.wisc.edu 1386 765 320 108 3 1 0
condor.cae.wisc.edu 1435 1111 112 9 5 3 2
Totals 15536 11045 1129 473 249 65 29

As part of a collaborative arrangement with CHTC, the Wisconsin Particle and

Astrophysics Center (WIPAC) added a cluster of GPU nodes on the CHTC network.

The cluster, called GZK9000, is housed at the Wisconsin Institutes for Discovery and

contains 48 NVIDIA Tesla M2070 GPUs. This contribution was made specifically for

IceCube simulations in mind [20].

73

E.0.5 University of Maryland’s FearTheTurtle Cluster

UMD’s FearTheTurtle consists of a 58 nodes with AMD Opteron processors in the

configuration given on Table E.2. The queue is managed by Sun Grid Engine (SGE)

and is shared between MC production and IceCube data analysis.

Table E.2: FearTheTurtle Cluster at UMD
Cores/Node Nodes Cores Memory
4x 11 44 8 GB
8x 14 112 32 GB
12x 8 96 32 GB
16x 15 240 64 GB
32x 10 320 64 GB
Total 58 813

74

APPENDIX F

ADDITIONAL FIGURES

Figure F.1: The xiceprod client uses pyGtk and provides a graphical user interface to
IceProd. It is both a graphical editor of XML steering files and an XMLRPC client
for dataset submission.

75

Figure F.2: Web interface for monitoring MC production. Users can monitor datasets
through different views and production managers can control datasets.

