Table Of Contents

Previous topic

The filter

Next topic

Observables

This Page

Processed datasets

Simulation

Processed simulation datasets are temporarily stored in /data/sim/IceCube/2010/filtered/level3-cscd.

Note

The location of the simulation datasets is temporary! They will be moved to /data/ana when that filesytem is expanded in June 2012.

Corsika
Dataset No. generated files L2 files per L3 file Size [GB] Processing time [CPU-days] Percent complete
Mass production
6939 100000 100 16.6 7.7 100
6451 100000 100 17 7.8 100
6514 100000 50 1100 70 100
7260 30000 10 774 142 100
Corsika systematics sets
Dataset Good files Hadronic model Base ice model Variation
7834 10000 QGSJET II Photonics SpiceMie  
8357 12703 EPOS Photonics SpiceMie  
8260 9990 DPMJET Photonics SpiceMie  
8316 2000 SYBILL Photonics SpiceMie DOM efficiency 1.08
8419 2000 SYBILL PPC SpiceMie DOM efficiency 1.08
8641 2000 SYBILL PPC SpiceMie DOM efficiency 0.99
8704 2000 SYBILL PPC SpiceMie Absorption +10%
9342 19998 SYBILL PPC SpiceMie Absorption +10%
8816 2000 SYBILL PPC SpiceMie Scattering +10%
9343 20000 SYBILL PPC SpiceMie Scattering +10%
8782 2000 SYBILL PPC SpiceMie Absorption/Scattering -7.1%
9344 20000 SYBILL PPC SpiceMie Absorption/Scattering -7.1%
Neutrino-Generator
Dataset Primary No. generated files L2 files per L3 file Size [GB] Processing time [CPU-days] Percent complete
6725 \(E^{-2} \,\, \nu_{e}\) 10000 50 43 17.2 100
7785 \(E^{-2} \,\, \nu_{e}\) 10000 50 41 17.6 100
6461 \(E^{-1} \,\, \nu_{e}\) 9983 1 356 147 20
6726 \(E^{-2} \,\, \nu_{\mu}\) 10000 50 4.7 2.2 100
6467 \(E^{-2} \,\, \nu_{\mu}\) 14480 250 [1] 13 6 100
6454 \(E^{-1} \,\, \nu_{\mu}\) 9981 5 39 12.5 5
6937 \(E^{-2} \,\, \nu_{\mu}\) + Corsika 10000 500 4.7 1.9 100
6593 \(E^{-2} \,\, \nu_{\tau}\) 9688 10 35 12.4 5
6466 \(E^{-1} \,\, \nu_{\tau}\) 9970 5 38 13.9 5
[1]This set was generated with 5 times the nominal number of events per file; see Run numbers in NeutrinoGenerator + PPC simulation.
Neutrino-Generator systematics sets
Dataset Primary Base ice model Variation
8432 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie No oversize DOMs
8485 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie DOM efficiency 0.99
7693 \(E^{-2} \,\, \nu_{e}\) Photonics SpiceMie DOM efficiency 0.99
8508 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie DOM efficiency 0.99
9168 \(E^{-1} \,\, \nu_{\mu}\) Photonics SpiceMie DOM efficiency 0.99
8498 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie DOM efficiency 1.08
8408 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie DOM efficiency 1.08
8590 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie DOM efficiency jittered
7694 \(E^{-2} \,\, \nu_{e}\) Photonics SpiceMie DOM efficiency 0.81
9195 \(E^{-1} \,\, \nu_{\mu}\) Photonics SpiceMie DOM efficiency 0.81
8591 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie DOM efficiency 0.81
8639 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie RDE=1.32 for highQE
8681 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie RDE=1.38 for highQE
8682 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie RDE=1.32 for highQE
8682 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie RDE=1.38 for highQE
9405 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie Scattering +10%
9407 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie Absorption +10%
9408 \(E^{-2} \,\, \nu_{\mu}\) PPC SpiceMie Absorption & Scattering -7.1%
9411 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie Absorption +10%
9412 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie Scattering +10%
9413 \(E^{-2} \,\, \nu_{e}\) PPC SpiceMie Absorption & Scattering -7.1%

Data

Processed data are stored in /data/exp/IceCube/2010/filtered/level3-cscd. There is one file per run.

The burn sample consists of 119 runs with a total livetime of 33 days, 13:32:54 (2899974 seconds). A manifest is provided with the start, stop, and duration of each individual run.

Burn sample: good runs ending in 0
Size [GB] Livetime [days] Processing time [CPU-days] Percent complete
29 33.6 47.8 100

Errata

Run numbers in NeutrinoGenerator + PPC simulation

In order to properly normalize the weights in NeutrinoGenerator simulation, one needs to know the total number of generated events. Since normal production simulation assigns unique run numbers to the events produced in each generation job, the easiest way to calculate the normalization is to count the number of unique runs and multiply by I3MCWeightDict.NEvents. For some sets produced with PPC light propagation, however, the events all have the same run number. These sets were post-processed with a script that detects events produced by different jobs, assigns unique run numbers to the events from each generator, and reorders the events so that the runs appear in order.

NuGen sets with fixed run numbers
Dataset Notes
6467
  • All run numbers were 1
  • 5 generator jobs per L2(a) file
7785
  • All run numbers were 1