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1 Introduction

1.1 Motivation

This work deals with the problem of reconstructing the location, direction, and energy of an
electromagnetic cascade in a large, mostly transparent, and sparsely-instrumented medium (such
as the glacial ice under the South Pole) from the Cherenkov light signatures of the relativistic
charged particles in the cascade. The information about an energetic event in the ice is carried
by the arrival times of Cherenkov photons at detectors at fixed locations, and is smeared out
by scattering caused by dust and bubbles in the ice. As such, the resolution of a reconstruction
algorithm can be highly variable, and it can be useful to know the quality of the reconstruction
for an individual event.

The problem of extracting information about the underlying event from a small number of arrival
times is best approached using the methods of statistical inference. In particular, it is possible
to define a statistical model of the measurement process and an associated likelihood function
that describes the degree to which a given data set supports a particular event hypothesis. This
function can be used to describe both the best-fitting hypothesis (the reconstruction) and the
range of hypothesis that are compatible with the data. This allows one to calculate the resolution
of the reconstruction for individual events.

This work presents a method for estimating the error of a maximum-likelihood estimate and
shows how this can be applied to the reconstruction of cascade-like events in the IceCube
neutrino detector. Furthermore, it shows how this method can be used to find errors in the
formulation of the likelihood function used in the reconstruction. Finally, it presents some
corrections to the likelihood function that produce better agreement between simulation and
reconstruction as well as produce more accurate estimates of the reconstruction error.

1.2 Overview

This section introduces the neutrino, presents a brief motivation for neutrino astronomy, and
provides a broad overview of the IceCube detector. Section 2 introduces the physical processes
that give rise to detectable signals in IceCube and provides relevant details of the readout
electronics. Section 3 discusses the software used to simulate cascade events, as it is relevant
to the special simulation chain that will be presented later. Section 4 then introduces the
parameters of the cascade model that will be used for reconstruction; it also gives an overview
of the low-level reconstructions which are the algorithms used to generate physically meaningful
data for more advanced reconstructions from the raw, uncalibrated data stream. Section 5
gives a theoretical motivation for the Method of Maximum Likelihood as a basis for the most
powerful reconstruction algorithms as well as a likelihood function for cascade-like events that
was developed by [29]. It introduces the concept of error and ways of estimating the error from
the shape of the likelihood function for each individual event. The most general way of estimating
the error by the latter method is to perform an N -dimensional integral over the entire parameter
space. Section 6 introduces the theory of Markov chains and their use in generating a sample
of points that can be used to efficiently approximate such an integral. It goes on to introduce
the Metropolis Algorithm as well as the relevant details of its implementation in the Python
programming language, particularly the criteria for determining correlation and convergence of
the chain.
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Section 7 details the actual work done for this thesis. First, the Markov-chain reconstruction
is applied to data produced by the cascade event simulation with the existing implementation
of the cascade likelihood function and is shown to give inconsistent results. After listing the
implicit assumptions and approximations in the likelihood function, it describes how they were
removed from the simulation and reconstruction one by one until consistency was achieved.
Some detector effects were added to the simulation and reconstruction again, with appropriate
and well-motivated corrections to the likelihood function. The detector resolution is shown to
be significantly better in this simplified, corrected model, with reconstruction errors consistent
with the estimates from the likelihood function.

1.3 Neutrinos

Neutrinos are the neutral partners of the charged leptons; they exist is three flavors, corre-
sponding to the e, µ, and τ leptons. They are the lightest of the fermions; the current upper
bound on the νe mass is roughly 2 eV. Since they carry neither electric nor color charge, they
participate only in gravitational and weak interactions. This allows them to propagate through
the interstellar medium (indeed, most matter) without being deflected or absorbed. Neutrinos
have another interesting property: their flavor eigenstates do not match their mass eigenstates.
Neutrinos produced in weak interactions in definite flavor states will oscillate to other flavors as
they propagate through space [39].

1.4 Motivation for neutrino astronomy

The field of astroparticle physics is largely concerned with exploring the mechanisms by which
energy is transferred from larger structures in the universe, such as stars and galactic nuclei,
to the highly energetic elementary particles, such as protons, electrons, photons, and neutrinos
that are observed from Earth or orbiting satellites. The accelerators producing these particles
must be powerful: the Earth is subject to a constant, nearly isotropic flux of charged particles
(cosmic rays) with energies up to 1020 eV, and point sources of high-energy photons (gamma
rays) have been observed with energies up to 1014 eV. Even though we know that the accelerators
are powerful, their natures remain a mystery: possible mechanisms include shock acceleration
[9] in shell-type supernova remnants (SNR) or in the jets of active galactic nuclei (AGN) [26].
Precision observation of high-energy neutrinos can illuminate this mystery by adding information
not accessible through either gamma- or cosmic-ray astronomy.

Neutrinos will be produced whenever a beam of high-energy hadrons (like the hadronic cosmic
ray flux) impinges on matter or radiation fields. Proton-proton collisions will produce both
charged and neutral mesons, the lightest and most common of which are the pions. Neutral
pions decay almost immediately (τ ∼ 10−17 s [17]) to a pair of photons, while the charged pions,
which can only decay weakly, are much longer lived (τ ∼ 10−8 s [17]). If the target is dense, then
most of the charged pions will interact before they can decay, producing more pions and leading
to a hadronic shower in the target. Thin targets are more interesting for astrophysics. When the
mean free path in the target is much longer than the decay length γcτ , most of the pions will
decay weakly, producing muon- and electron-neutrinos that can escape the target rather than
depositing their energy locally. Thin targets convert a portion of a hadronic particle flux into a
flux of neutrinos.

Radiation fields also provide a suitable target. Protons may also interact with photons to
create a ∆+ baryon, which can decay to either p + π0 or n + π+ and thence to photons or
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neutrinos as in thin hadronic targets. This group of scenarios is usually referred to as a “cosmic
beam dump” in analogy to the conventional method of producing a neutrino beam at a particle
accelerator1.

This makes high-energy neutrino production a hallmark of hadronic accelerators. Beam dumps
on gas clouds or thermal photons in the vicinity of a cosmic accelerator will produce both charged
and neutral pions. The charged pions decay leptonically, producing neutrinos, and the neutral
pions electromagnetically to photons. These photons are an object of principal interest in TeV
gamma-ray astronomy (see e.g. [13]). However, they are an ambiguous signature of hadronic
cosmic ray acceleration, as they could just as well originate from a leptonic accelerator via inverse
Compton scattering. Observation of a high energy neutrino signal then provides an important
and unique diagnostic of hadronic acceleration in the source.

Direct observation of cosmic ray particles also presents its difficulties. Unlike gamma rays, the
charged cosmic rays are deflected by interstellar and intergalactic magnetic fields and thus do not
necessarily point back to their sources. If a cosmic ray source is near a thin target such as a gas
cloud, neutrinos would be produced in the beam dump and would reach the Earth undeflected.
Since they interact only weakly, the neutrinos will propagate with very little absorption, even
through dense intervening clouds, and since they are electrically neutral, they are not deflected
by magnetic fields. This makes neutrinos ideal messengers from the universe’s most violent
regions.

1.5 IceCube

IceCube is cubic-kilometer neutrino detector currently under construction deep in the glacial
ice at the South Pole [14]. The instrument itself, when complete, will consist of 5160 Digital
Optical Modules (DOMs), glass pressure spheres housing a photomultiplier tube (PMT) and
readout electronics. 4800 of these DOMs are arranged on 80 ∼ 2.5 km long “strings” spaced
on a hexagonal grid 125 m apart as shown in Figure 1. The last kilometer of each string
is instrumented with 60 DOMs, spaced 17 m apart. The remaining 360 DOMs make up the
DeepCore extension at the horizontal center of the detector [38]. The 6 DeepCore strings
are spaced 72 m apart, instrumented with higher quantum-efficiency DOMs concentrated along
the last 350 m of the string, spaced 7 m apart. The DOMs detect the light emitted by charged
particles as they move faster than the local speed of light in the ice; this allows the array to
detect the sudden appearance of relativistic charged particles in the ice, a signature of a neutrino
interaction.

The experiment focuses mainly on the the muons produced in charged-current interactions of
muon-neutrinos, which leave long “tracks” of light through the sparsely-instrumented detector
due to their large mass and relatively long lifetime. Up-going muon tracks, caused by neutrino
interactions, can be distinguished from down-going muons, the vast majority of which are the
products of cosmic ray interactions in the atmosphere. In this channel, the detector observes
the northern sky through the Earth.

Work is underway to extend the sensitivity and resolution of the detector to other neutrino
flavors (e and τ), whose interaction products deposit energy in a relatively small portion of the
detector. Since electrons and tau leptons have a short range in ice, this detection channel is also

1Collisions of cosmic rays with molecules in the upper atmosphere give rise to an associated “atmospheric”
neutrino flux by the same mechanism.
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Figure 1: An illustration of the IceCube array, with the 324 m tall Eiffel Tower for scale
comparison. The hexagonal array covers a square kilometer of surface area, and the instrumented
volume of the ice is one kilometer thick. The top of the array is ∼ 1500 m below the surface. The
colors of the surface stations indicate the season in which each string was or will be deployed.

free of background from cosmic rays and is not limited to up-going events, making observation
of the full sky possible. This work is a small part of that larger effort.
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2 Detecting neutrinos with IceCube

Since neutrinos interact only weakly, they are difficult to detect. Being uncharged, they do
not emit light or exert forces2 electronic detectors. Accelerator experiments study the collisions
of beams of particles with known momentum, producing both directly detectable particles and
neutrinos. The charged particles, strongly-interacting particles, and photons will be registered
in the detectors surrounding the interaction point, but the production of neutrinos must be
inferred from missing transverse momentum. Observatory experiments like IceCube [14] take a
different approach, searching for the products of weak interactions of high-energy (E > 1 TeV)
neutrinos with matter.

2.1 Deep inelastic neutrino-nucleon scattering

Deep inelastic scattering of neutrinos on nuclei in the target material can give rise to measurable
signals. All neutrino flavors participate equally in the charged-current (CC) and neutral-current
(NC) reactions, given by

νl +N → l +X (CC)
νl +N → νl +X (NC) ,

where νl represents an incoming neutrino or antineutrino of a particular flavor (electron, muon,
or tau), N the nucleon, l an outgoing charged antilepton or lepton of the appropriate flavor, and
X the system of emerging hadrons. Figure 2 shows Feynman diagrams for these processes.

�u(d)

W∓

N

ντ (ντ )

d(u)

τ±

1(a) Charged-current scattering

�u(d)

Z

N

νe,µ,τ (νe,µ,τ )

u(d)

νe,µ,τ (νe,µ,τ )

1(b) Neutral-current scattering

Figure 2: Feynman diagrams for deep inelastic neutrino-nucleon scattering.

Due to the universality of the weak interaction, the cross-sections for these reactions only depend
on the kinematics of the reaction and the distribution of charged quarks within the nucleon.
The cross-sections for an isoscalar target can be given in terms of the Bjorken scaling variables
x = Q2/2Mν and y = ν/Eν as [21]

d2σ

dxdy
=
G2
FMEν
π





2
(

M2
W

Q2+M2
W

)2 [
xq(x,Q2) + xq̄(x,Q2)(1− y)2

]
(CC)

1
2

(
M2

Z

Q2+M2
Z

)2 [
xq0(x,Q2) + xq̄0(x,Q2)(1− y)2

]
(NC)

, (1)

2With the exception of an extremely weak gravitational force that is neglected in the Standard Model [39].
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where −Q2 is the 4-momentum transfer between the incident neutrino and outgoing lepton, ν =
Eν−E{l,νl} is the energy loss in the target’s rest frame,M is the mass of the nucleon,MW andMZ

are the masses of the bosons that mediate the weak interaction, and GF = 1.16632×10−5 GeV−2

is the Fermi constant. The cross-sections are linear in energy up to a few TeV where the slope
decreases because of the 1/Q2 term in the propagator. The quark distribution functions q, q,
q0 and q0 depend on −Q2 and the parton momentum fraction x; they must be extrapolated to
low x by means of perturbative quantum chromodynamic calculations [12]. Total cross-sections
can be obtained by integrating over all x and y.

2.2 Neutrino-electron scattering

For most energies of interest to IceCube, the charged-current scattering of electron antineutrinos
on electrons in the target matter can be neglected. However, at a neutrino energy of 6.3 PeV,
the center-of-mass energy (80.5 GeV) is large enough to produce a real W boson [20]

νe + e →W− → νl + l

νe + e →W− → X ,

as shown in Figure 3, which then decays into a leptonic system νl + l or hadronic system X.
At this energy, the total cross-section for the reaction is much larger than the cross-sections for
neutrino-nucleon scattering.

�W−

e−

νe

1
Figure 3: Feynman diagram for resonant W− production at a neutrino energy of 6.3 PeV.

2.3 Neutrino event signatures

The signature of the above reactions is the emergence of a high-energy charged lepton or hadronic
particle shower in the ice. These events can be divided into two broad classes:

• Track-like events arise from CC interactions of muon neutrinos. A highly relativistic
muon can travel large distances through the detector before it decays, depositing energy
along its path and leaving a track of light through the detector.

• Cascade-like events arise from the remaining interactions. A high-energy electron
emerging from the interaction vertex will cause an electromagnetic particle shower, de-
positing most of its energy close to the interaction point. The emerging hadronic system
will generate a shower as well.
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Figure 4: Neutrino-nucleon and antineutrino-electron scattering cross-sections as a function of
neutrino energy from [33] based on data from [21]. From bottom to top at low energy, the
cross-sections are for ν̄ NC, ν NC, ν̄ CC, ν̄ total, ν CC, and ν total. The resonance peaked at
6.3 PeV is the antineutrino-electron resonance.
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While tracks are relatively easy to reconstruct, cascades require more elaborate methods. This
work focuses on problems specific to the cascade channel.

2.4 The Cherenkov Effect

Charged particles moving through an optical medium with a velocity v = βc greater than
the local speed of light c/n emit Cherenkov radiation concentrated at the Cherenkov angle
θC = cos−1(1/nβ) as illustrated in Figure 5. The energy lost to radiation per unit track length
can be obtained by integrating the Frank-Tamm formula over all frequencies f [24]

−
(
dE

dx

)

rad

=
2πα
cvac

∫

βn(f)≥1

(
1− 1

β2n2(f)

)
df , (2)

so that the amount of Cherenkov light produced by all particles in the ice is primarily a function
of the track length of the charged particles in the event.

ct/n
vt

ct/n
vt

Figure 5: Illustration of the Cherenkov effect by Huygens’ construction. When a charged particle
travels at β = 0.5, the spherical wave fronts are only slightly concentrated along the direction
of travel. At β = 1 with n = 1.33, however, the wave fronts interfere constructively to produce
a cone of light at an angle of 41 ◦ to the direction of the charged particle.

2.5 Physics of showers

The light signature of a neutrino-induced cascade depends on the distribution of charged particle
tracks within the shower. The following sections will briefly discuss the physics of cascade
development and the empirical models that can be used to describe a shower’s shape.
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2.5.1 Electromagnetic showers

As a high-energy electron passes through matter, it is deflected by the electric fields of electrons
and nuclei in the target and radiates photons through bremsstrahlung. The bremsstrahlung
photons can then produce an electron-positron pair in the electric field of an atom; the electron
and positron will similarly radiate bremsstrahlung photons and produce more pairs. In a sim-
plistic model, one can assume that the electron loses half of its energy to the bremsstrahlung
photon at every stage. The average distance a particle travels before its energy is reduced by
1/e is called the radiation length X0. The shower continues until the energies of the electrons
in the shower drop below the critical energy EC where energy loss due to ionization dominate
over bremsstrahlung. The total track length of the shower is then

X = X0 ln
E

EC
. (3)

In ice, the typical values for radiation length and critical energy are X0 ∼ 40 cm and EC ∼ 80
MeV [25]. In this simple model, the length of the cascade scales with the logarithm of the energy,
while the total number of electrons and hence the total track length depend linearly on the energy.
Detailed simulations have shown the same behavior for realistic models of cascade development
as well [37, Figures 7.48 and 7.52]. The longitudinal energy deposition of an electromagnetic
cascade can be described by a Gamma distribution

dE

dx
= E0b

(bt)a−1e−bt

Γ(a)
, (4)

where t = x/X0 is the distance along the shower axis in units of the radiation length. Fits to
simulations of electromagnetic cascades in water [37] give values of a = 2.03+0.604 ln(E0/GeV)
and b = 0.633 for the shape parameters of the longitudinal distribution. The maximum of a 100
TeV electromagnetic cascade occurs 5 m from the neutrino interaction vertex.

2.5.2 Hadronic showers

The hadronic shower resulting from the struck nucleon is more complicated. The shower consists
mostly of protons, neutrons, and charged and neutral pions. While the nucleons and charged
pions live long enough to interact further and produce more hadrons, the neutral pions decay
almost immediately to pairs of photons that can initiate electromagnetic sub-cascades. This
electromagnetic leakage continues until the energy of the hadronic interactions falls below the
threshold for π0 production [19]; this happens sooner for lower-energy hadronic showers.

The total Cherenkov light yield from a hadronic shower is the sum of contributions from the
charged hadrons and π0-induced electromagnetic cascades. The hadronic component includes
uncharged neutrons that contribute no light at all, and the number of neutral pions produced
depends on the shower energy. This makes the light yield from a hadronic shower both smaller
than that from an electromagnetic shower and no longer simply proportional to the energy of
the hadron that initiated the cascade.

The longitudinal profile of a hadronic cascade depends on both the nuclear interaction length
and the electromagnetic interaction length in the detector medium. In IceCube simulation and
analyses to date, the shower profile has been assumed to be indistinguishable from that of an
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electromagnetic cascade to within the positional resolution of the detector; this assumption is
discussed in more detail in [25].

2.6 Light propagation in Antarctic ice

While the IceCube detector has a large active volume, it is sparsely instrumented. The strings
are spaced on a hexagonal grid 125 m apart, with the DOMs on each string 17 m apart. Even
though the glacial ice at the South Pole is very pure, it contains small concentrations of dust and
bubbles that scatter and absorb photons before they can be registered at the detector. Figure 6
shows measurements of the scattering and absorption coefficients of the ice at different depths.
These coefficients are the inverses of the scattering and absorption lengths, respectively. The
dust deposits are concentrated at certain depths, giving the ice a distinct layered structure [15].
The Cherenkov signature from relativistic charged particles in the ice is smeared out in time
and space by scattering, and absorption limits the effective range from which useful information
can be gathered about an event.

correlation between Cdust and the contribution from dust to
be(400), were used to derive the dust profile for absorption
(Figure 21, right) from the dust profile for scattering
(Figure 21, left). The third parameter in our model, a, is
used to calculate scattering at any wavelength from be(400)
via a power law:

be l nm½ "ð Þ ¼ l=400ð Þ&abe 400ð Þ: ð25Þ

The remaining three parameters (k, AIR, and l0) are used to
calculate absorptivity from adust(400) through the two-
component model:

a l nm½ "ð Þ ¼ l=400ð Þ&kadust 400ð Þ þ AIRe
&l0=l: ð26Þ

Maps of effective scattering coefficient and absorptivity,
generated from our model and summarizing our knowledge
of optical properties of South Pole ice, are shown in
Figure 22 for depths between 1100 and 2300 m.
[79] Our measurements of depth dependences of the

optical properties had a resolution of on the order of ten
meters, and our methods probed up to two hundred meters
of ice between emitter and receiver. The techniques used in
this work could not resolve individual dust layers much
thinner than ten meters, such as highly absorbing layers of
ash deposited by volcanic eruptions. Such thin ash layers
may affect the performance of AMANDA and IceCube as
neutrino telescopes. Building on the remote sensing techni-
ques presented here, a dust logger [Miočinović et al., 2001;
Bay et al., 2001] was developed and used in both Antarctic

and Greenland boreholes, where it was able to resolve
centimeter-thick layers of volcanic ash. Analysis of data
from a dust logger operated in the first hot-water-drilled
IceCube hole confirmed that ash layers are also present in
South Pole ice and can be detected with the logger tech-
nique [Bramall et al., 2005]. However, the South Pole ash
layers are weaker and less numerous than those detected at
Siple Dome (West Antarctica) [Bay et al., 2004], which is
partly explained by the higher altitude of the South Pole and
greater distance from Antarctic volcanoes. Highly absorbing
ash layers will affect light propagation, mainly by localized
depletion of photons traveling at an acute angle relative to a
layer, which modifies the angular dependence of the photon
yield. Scattering in thin ash layers should be similar to
scattering by dust and the effect on timing should be small.
Furthermore, unambiguous identification of ash layers in
the depth profiles at boreholes up to one kilometer apart in
the IceCube array would make it possible to measure
deviations of optical properties from the horizontal. In the
present analysis, we assumed that the dust structure is
horizontal over the length scale probed and within the
sensitivity of the measurements. However, isochronal maps
made with deeply penetrating radar at the South Pole
[Blankenship and the Instrument Definition Team for a
Europa Radar Sounder, 2001] show that dust layers can
tilt by up to 50 m over a square kilometer. Given the strong
fluctuations in optical properties over such a depth scale,
tilting dust layers would strongly affect IceCube perfor-
mance and must be fully mapped. This could be achieved
by using dust loggers in several widely spaced boreholes
along the perimeter of the array and matching up features in

Figure 22. Maps of optical scattering and absorption for deep South Pole ice. The depth dependence
between 1100 and 2300 m and the wavelength dependence between 300 and 600 nm (left) for the
effective scattering coefficient and (right) for absorptivity are shown as shaded surfaces, with the bubble
contribution to scattering and the pure ice contribution to absorption superimposed as (partially obscured)
steeply sloping surfaces. The dashed lines at 2300 m show the wavelength dependences: a power law due
to dust for scattering and a sum of two components (a power law due to dust and an exponential due to
ice) for absorption. The dashed line for scattering at 1100 m shows how scattering on bubbles is
independent of wavelength. The slope in the solid line for absorptivity at 600 nm is caused by the
temperature dependence of intrinsic ice absorption.
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Figure 6: Wavelength and depth dependence of the scattering and absorption coefficients in
South Pole ice from [15]. The IceCube coordinate z = 0 is located at a depth of 1946 m.

2.7 Light detection and readout

The IceCube detector relies on photomultiplier tubes (PMTs) to convert Cherenkov photons
emitted by relativistic charged particles in the ice to electric signals. Each PMT is housed
in a Digital Optical Module (DOM), which digitizes and time-stamps the PMT signal before
transmitting it to the data acquisition hub on the surface. The operating principles of the PMT
and the functions of the DOM will be explained in the following sections.

2.7.1 Photomultiplier tubes

A schematic representation of a PMT is shown in Figure 7. A PMT consists of a photocathode
and several dynodes housed in an evacuated blown-glass tube. The photocathode is a thin
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metallic coating on the inside surface of the face of the tube. When a photon strikes the
photocathode, it may eject an electron with energy hc/λ− φ, where h is the Planck constant, λ
is the wavelength of the photon, and φ is the work function, a characteristic of the photocathode.
This is the photoelectric effect. The probability that an incident photon will eject an electron is
the quantum efficiency and depends on the wavelength and angle of incidence of the photon [30].
The Hamamatsu R7081-02 PMT used in IceCube has a quantum efficiency of 25% for normally-
incident 390 nm photons [35]. An external voltage divider creates an electric potential difference
between the photocathode and the first dynode, causing the ejected electron to accelerate along
the associated electric field towards the dynode. When it strikes the dynode, it knocks ∼ 10–
20 electrons out of the metal of the dynode [35]; these electrons also accelerate towards the
next dynode stage along the electric field created by the voltage divider and knock out further
electrons. This process is repeated at every dynode stage, converting a single photoelectron into
a pulse of ∼ 107 electrons and giving a measurable current.

Nγ Ne−

+

GNe−

U

Photocathode Dynodes Base transformer

1300 V

Figure 7: A schematic representation a photomultiplier tube in the configuration used in the
IceCube DOMs. The voltage divider circuitry for the dynodes has been omitted for purposes of
clarity. Nγ photons strike the photocathode, ejecting Ne− electrons. These are accelerated in
the electric field of the dynodes, each knocking out more electrons each time it strikes a dynode
stage. On average, Ne− photoelectrons create a pulse of GNe− electrons, where G is the nominal
gain of the PMT. The last dynode stage is inductively coupled to the readout amplifier.

2.7.2 The Digital Optical Module

The basic unit of the IceCube detector is the Digital Optical Module (DOM), a pressure-resistant
glass sphere containing a 10-inch PMT and readout electronics. Figure 8(a) shows a drawing
of a DOM. The PMT is enclosed in a µ-metal cage to shield it from the earth’s magnetic field,
which would otherwise distort the paths of electrons traveling from the photocathode to the
first dynode. The cage and PMT face are bonded to the pressure sphere with room-temperate
vulcanizing gel, which provides mechanical stability and enhances light transmission between the
glass of the sphere and the PMT. The readout electronics are located on a circuit board around
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the neck of the PMT; power and communications lines run to the surface and to neighboring
DOMs on the string through the penetrator at the top of the sphere.

Figure 8(b) shows a block diagram of the DOM motherboard. The output of the PMT base
transformer is split into three signal paths. The first, the trigger line, is routed through a discrim-
inator that provides a trigger signal to the DOM firmware running on the field-programmable
gate array (FPGA). To avoid generating data for noise signals (thermal ionization in a dynode,
decays of radioactive isotopes in the housing glass, etc.), the DOM only triggers on local coin-
cidence. If the PMT output voltage rises above the discriminator threshold, the DOM firmware
sends coincidence signals to the DOMs above and below it on the string. If the neighboring
DOMs also register an above-threshold signal, indicating a light source in the ice rather than
DOM noise, the DOM reads out the PMT signal over the second signal path.

The second signal path is routed through a 75 ns delay line to allow time for a trigger decision.
The delay line is read out by three amplifiers of different gains for maximum dynamic range. Each
of the amplifiers is connected to a channel of custom-designed chip called the Analog Transient
Waveform Digitizer (ATWD). Once trigger discriminator crosses threshold, the amplifier output
voltage is sampled for ∼ 3.3 ns on each of a bank of 128 capacitors. If local coincidence leads
to a trigger decision, the voltage stored on each of the capacitors is digitized using a set of
128 10-bit ramping analog-to-digital converters (ADCs). The digitization process takes 29 µs; a
second ATWD is available to capture signals during this dead time.

The third signal path is connected through a pulse-shaping amplifier to a flash ADC (fADC)
that continuously samples the PMT waveform every 25 ns. This ADC provides information
about signals that last longer than the ATWD time window, up to 6.4 µs, albeit with much
coarser timing resolution.

The series of ADC counts (128 for each of the three ATWD channels and 256 for the fADC)
and a time-stamp are transmitted digitally to the DOM hub controller on the surface. The
IceCube data acquisition (DAQ) software packages this information into a data structure called
a I3DOMLaunch. An event consists of series of I3DOMLaunches, one for each DOM that triggered,
along with information about the overall trigger decision. The first step of reconstruction is to
convert these data structures into information about the instantaneous PMT cathode current.
A more detailed discussion of the IceCube data acquisition system can be found in [16].
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(a) The IceCube Digital Optical Module (DOM).

Conservative engineering practices dictate that the PMT
photocathode be operated at ground potential with respect to
the DOM MB. With capacitive coupling, the signal droop
limitation would require an impractically large value (!1mF for
a 50O termination). Furthermore, leakage currents in faulty/
degraded high-voltage ceramic capacitors can produce noise
resembling PMT pulses. An analysis of the signal and power
supply loops reveals that, with transformer coupling, HV power
supply noise couples much more weakly into the DOM MB input
than with capacitor coupling.

A wide-band high-voltage pulse transformer satisfies the
engineering requirements. The 30pF of anode to front-end
capacitance reduces the risk of damage to the DOM MB by
discharge in the PMT base because the available energy is small.

The transformer exceeds the pulse rise-time requirements for
short pulses (o8ns FWHM). Good performance depends on
shunting the primary winding with a 100O resistor, which also
provides back-termination for the DOM MB input circuit and
damps ringing in the PMT anode circuit. It is important to note
that long time-constants can be employed in the DOM because
the average pulse rate is very low; otherwise, field build-up in the
core would cause a significant baseline shift.

The time constants of the transformer pass the high-frequency
components of the signals with negligible loss, but lead to a droop
after large amplitude signals. The DOM MB digitizer pedestals are
set at !10% of the maximum scale, to permit the capture of
waveforms with below-baseline excursions.

2.4.2. Analog input amplifiers
The amplifiers for the trigger subsystem tap into the decoupled

PMT signal right at the DOM MB input coax connector. Also from
this input, the signal is passed through a serpentine 75ns delay
line, embedded in a custom printed circuit board made with
superior signal propagation materials. The delayed signal is split
to three separate wide-band amplifiers ("16, "2, and "0.25),
which preserve the PMT analog waveform with only minor
bandwidth losses. Each amplifier sends its output to separate
inputs of the ATWD. The amplifiers have a 100MHz bandwidth,
which is roughly matched to the 300 MSPS ATWD sampling rate.

The circuitry confines the ATWD input signal within a 0 to 3V
range. If the input voltage were below #0.5V, then the ATWD
could be driven into latch-up; an input signal above 3.3V would
drive the ATWD into an operating condition from which it would
recover slowly. Resistor-diode networks protect the inputs of the
amplifiers from spikes, which might be produced by the PMT, or
from static discharge.

2.4.3. ATWD
The ATWD, which is a custom designed ASIC, is the waveform

digitizer for four analog inputs. Its analog memory stores 128
samples for each input until it digitized or discarded. Three
amplified PMT signals provide the input to the first three ATWD
channels. In addition, two 4-channel analog multiplexer chips,
which can be individually selected, are the fourth input channel.
The ATWD is normally quiescent, dissipating little power, and
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(b) A block diagram of the DOM motherboard.

Figure 8: The IceCube DOM and DOM motherboard from [16].
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3 The IceCube cascade simulation chain

Reconstructions and analysis techniques must be tested on data where the true event parameters
are known. Since it is impossible to create neutrino-induced cascades under controlled conditions
as with a test beam3, the next best option is to simulate the data.

The task of a detector simulation is to reproduce the physics discussed in Section 2 from the
time an incident neutrino enters the Earth’s atmosphere to the data readout. The simulation
should reflect all physics processes that have a significant influence on the data, converting
event parameters into readout data. The task of reconstruction is the inverse, producing event
parameters from readout data. If reconstructions are to be tested with simulated data, an
understanding of the simulation and its limitations is necessary in order to understand the
performance of a reconstruction algorithm. The following is a description of the IceCube νe
simulation as currently used in large-scale production.

3.1 The IceTray software framework

The simulation and data processing software used in IceCube is based on a custom software
framework called IceTray [3]. In this framework, the data belonging to an event are packaged
in a Physics Frame. Each frame contains one or more named frame objects. A processing script
consists of services, or program units that provide commonly used functions (such as a service
to query a database for PMT calibration constants), and a chain of modules, which are program
units that directly generate or manipulate data. Each frame is passed down the module chain in
turn; a module can add or remove objects from the frame. In this way, tasks are separated into
manageable units, and simulation and real data processing/reconstruction can be implemented
in the same software framework. Each stage of the simulation discussed here is implemented as
an IceTray module. The sequence of modules used to create the simulated data are shown in
Figure 9.

3.2 Event generation

The NeutrinoGenerator module [2] generates an isotropic flux of neutrinos of a given fla-
vor4according to a given power-law energy distribution. For a given neutrino, the module sim-
ulates its propagation through the Earth until it reaches the detector’s active volume. Once
inside the active volume, the neutrino is forced to interact; the interaction probability (see Sec-
tion 2.1) is used to calculate a statistical weight for the event. This weight can later be used
along with the power-law index to convert the quantities related to the bulk properties of a
simulated data set (such as number of events passing a filter criterion) to those expected for real
data. NeutrinoGenerator adds a structure called an I3MCTree to the frame which contains
the parameters of all the energy-loss events along the neutrino’s path up to the final interaction.
This is used as the input for the next stage of the simulation.

The I3MCTree contains the physics events that generate signals in the detector, for example
a neutral-current scattering on a nucleon. The development of the resulting hadronic shower

3Even though there is no test beam, there are calibration light sources in the ice. Each DOM is equipped
with LED “flashers” for timing calibration that can serve as vaguely cascade-like light sources in the sense that
they are localized and transient [16].

4Here, only electron-neutrinos are considered. Other generator programs are used to simulate the background
of atmospheric muons for use in realistic filter studies.
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Figure 9: A schematic representation of the data flow in the IceCube detector simulation. The
light propagation simulation is only done once; the results are tabulated for later use. The event
simulation, on the other hand, is repeated every time. For each event, NeutrinoGenerator
generates a neutrino and propagates it through the earth to the detector, where it is forced to
interact. CascadeMC simulates the development of electromagnetic and hadronic cascades,
adding light sources for each energy-loss event. MuonMC simulates energy loss by any muons
produced in hadronic cascades. HitMaker queries PhotonicsService for the mean ampli-
tudes tabulated for each energy-loss light source to generate photoelectrons at the photocathode
of each simulated PMT. PMTSimulator simulates the amplification and time delay of the
photoelectrons, yielding a PMT trace. Finally, DOMSimulator simulates the pulse-shaping
and digitization electronics on the DOM motherboard to produce a structure of ADC counts for
each DOM.
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is simulated by the cascade development module, CascadeMC (CMC) [2]. It does this by
spreading point-like Cherenkov light emitters along the direction of the hadronic shower every
few radiation lengths according to the longitudinal profile discussed in Section 2.5.1. Muons
resulting from hadronic decays are also added to the particle tree; their propagation (in par-
ticular, stochastic energy losses and decay) is then simulated by the corresponding MuonMC
[2]. Electromagnetic cascades are simpler except at high energies, where the size of stochastic
losses and relativistic surpression of pair-production cross-sections make it necessary to simulate
cascade development numerically (see [33] for a more detailed discussion).

At this point, the frame contains a tree representing the parent-child relationships of all light-
producing energy-loss events in the detector. The next step is to simulate the propagation of
photons from the sources to the DOMs.

3.3 Light propagation: Photonics

Photons traveling from light sources in the ice to the DOMs are delayed and diffused by scattering
in the ice. Knowledge of the nature of these distortions is critical for both simulation and
reconstruction. Since the ice at the South Pole is not homogenous, there is no simple analytic
expression that can describe the time-delay of photons from an anisotropic source throughout the
detector volume. This is particularly critical for cascades, because any directional information
would be contained in a pronounced emission at the Cherenkov angle.

It is thus necessary to simulate the propagation of photons through the ice numerically. Pho-
tonics [27] is a software package written for this purpose that simulates the propagation of
photons through an inhomogenous medium like the Antarctic ice. In the interest of compu-
tational efficiency, photons are not tracked directly for each simulated physics event; rather,
photons are propagated for various light sources and the results of the simulation are tabulated.
Light distributions for IceCube event simulation are then drawn from these tables. This has
the added advantage that the same tables can be used to construct a reconstruction algorithm
that uses realistic information about scattering and absorption in the ice.

Figure 10 shows the geometry of the Photonics tables. The geometry is cylindrical with
the light source at the center; the fourth dimension is time. The inputs to the simulation
are an angular emission profile such as Figure 7.44 from [37], the absorption and scattering
coefficients of the ice layers, the depth and polar angle of the source, and the angle-dependent
effective photocathode area of the DOMs. Each photon is injected into the tracking volume at
(l = 0,ρ = 0) with an angle and wavelength drawn from the emission profile. It is then tracked
in straight-line segments between scattering events; the length of these segments is determined
by the local scattering coefficient. At each scattering, the photon is assigned a statistical weight
representing the probability that the photon would survive to that point without being absorbed;
this probability is updated according to the local ice properties. Each time the tracked photon
crosses a cell of the table geometry, its weight is added to the bin at the appropriate delay time
td, which is given by

td ≡ t− tdirect = t− nref

c

√
l2 + ρ2 , (5)

the difference between the photon arrival time and the direct propagation time.

The bins of the table store the differential photon flux through the bin volume, binned at each
delay time and normalized to the total weights of all the tracked photons; when the DOM
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ŷ

ẑ

x̂

Zs

Figure 1. The recording cell geometry with variables used for binning of photon
flux data. Photons are emitted from a user-defined light source at Zs and their flux
and time distributions are recorded and averaged in all spatial cells the photons
traverse (one of which is shown as a shaded volume). These cells are defined in
a coordinate system aligned with the source’s principle axis l̂, which is tilted by
π − Θs with respect to the medium symmetry axis ẑ. The angle φ is defined to be
zero where the radial vector is maximally aligned with ẑ. The azimuthal direction
Φs is degenerate since the medium properties are assumed to be symmetric around
the ẑ axis.

sorption. For a photon tracked n steps, each within a locally homogeneous
medium, the weight is given by

w =
n∏

i=0

exp

(
−∆si

λa,i

)
, (6)

where ∆si is the length of step i in a region with absorption length λa,i. The
weight is updated every time the photon is scattered, enters a new medium
region, or is recorded.

When a photon enters a medium region with different scattering and ab-
sorption parameters, these are updated, from (λs, λa) to (λ′

s, λ
′
a), at the re-

gion boundary. At this point, the remaining distance to the next scatter is
s′ = sλ′

s/λs, where s would have been the remaining distance to the next scat-
ter in the former region with scattering length λs. Refraction at the boundary
is supported but reflection is ignored since it is assumed that refractive index
variations are continuous.

During its propagation, the flux contributed by a photon is recorded either in

9

Figure 10: The Photonics coordinate system, taken from [27]. Each table is binned in cylin-
drical coordinates with the source at the center (l = 0, ρ = 0). As each photon is tracked
through the volume, its statistical weight, representing the probability that the photon would
reach that point in the ice without being absorbed, is added to the bin. Each table represents a
particular orientation of the source with respect to the ice layers, that is, a depth zs in the ice
and polar angle θs. Due to the assumed planar symmetry of the ice layers, a single table can be
used for all azimuthal angles φs and (x,y) positions of the source, reducing the dimensionality
of the problem significantly.
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efficiencies are taken into account, this gives the differential photoelectron yield at delay time td
for a DOM at the point (l, ρ) from the light source. The expected number of photoelectrons for
a cascade event of a particular energy can be obtained via

n = µΛγL(E) , (6)

where µ is the value stored in the table bin, Λγ is the mean number of Cherenkov photons
produced in the sensitivity range of the DOMs per unit track length (32440 m−1), and L(E) is
the integrated track length of the shower as a function of energy (4.37 m/GeV for electromagnetic
cascades [37]).

The Photonics tables are used in IceTray through PhotonicsService [1]. This interface
loads the tables into memory and provides the mean photoelectron yield at a given delay time
and DOM position from a light source somewhere in the ice, handling the details of converting
between coordinate systems and calculating the total photon yield for a source type with a given
energy. Mean amplitudes for DOM positions corresponding to points between the centers of table
bins are calculated by linear interpolation between neighboring bins in each dimension. Given
the mean photoelectron yield at the photocathode, the simulation can generate photoelectrons
in the PMTs.

3.4 Hit generation

The HitMaker module [2] simulates photoelectron emission for each energy loss event in the
frame by using PhotonicsService to sample from the photon arrival time distribution for each
DOM. Each electron emission event is characterized by its arrival time, weight (number of emit-
ted electrons), and source5; this information is encapsulated in an I3MCHit. The I3MCHitSeries
produced by the module is effectively a convolution of the Photonics arrival-time distribution
with the transit-time spread and pre/late/afterpulse distribution of the PMT. This serves as the
input to the PMT simulation.

3.5 PMT simulation

The PMT simulation implemented in the PMTSimulator module [2] accounts for the amplifi-
cation characteristics of the PMT. Each I3MCHit is converted to an amplified charge according
to PMT charge response distribution, spread out in time according to the PMT pulse shape, and
converted to a voltage using the nominal gain of the PMT and effective impedance of the coupling
transformer. A saturation curve is applied to the output waveform to account for the measured
non-linearity in response to large instantaneous photocathode currents. The I3MCPMTResponse

5 The majority of the PMT signal consists of “normal” pulses from photoelectrons propagating directly from
the photocathode through the dynode stages. Large pulses are accompanied by a small number nuisance events
from other sources: pre-pulses, late pulses, and afterpulses. Pre-pulses result from a photon striking the first
dynode stage directly, releasing a small number of electrons and resulting in a small pulse ∼ 30 ns before the
main pulse. Late pulses ∼ 60 ns after the main pulse are consistent with electrons backscattering from the first
dynode stage before striking again and being amplified in the usual fashion. Very late pulses (300 ns to 11 µs after
the main pulse) are consistent with ionization of residual gases in the PMT by electrons accelerating between
the dynode stages. The positively charged ions are accelerated back towards the photocathode, where they eject
more electrons that lead to an afterpulse. HitMaker generates these auxiliary hits using parameterizations
derived from laboratory measurements of the PMT pulse time distribution. Details of these measurements are
given in [35].
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produced by this module represents the voltage at the input amplifier connected to the PMT
coupling transformer6.

3.6 DOM simulation

The DOMSimulator module [2] implements the delays and distortions introduced by the input
amplifiers between the PMT coupling transformer and the ATWD and fADC as well as noise
in the digitization electronics. For each I3MCPMTResponse where the voltage crosses the trigger
threshold, DOMSimulator produces a I3DOMLauch containing a timestamp and a series of
ADC counts for each channel of the ATWD as well as the fADC. The series of I3DOMLaunches
represents the same kind of data that can be obtained from the real detector, and is the input
to the first stage of reconstruction.

6The droop in the transformer output voltage in response to extended pulses varies between different types of
DOMs, so it is implemented in DOMSimulator.
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4 Cascade reconstruction

The most basic element of a reconstruction is the event hypothesis, that is, a model of the
physical event underlying the data. The hypothesis determines which parameters should be used
to describe the event; a specific reconstruction is just a way of determining that parameters
of the model that best describe the data. This section will describe the parameters of the
cascade model as well as some elements of low-level processing that are common to all event
reconstructions.

4.1 Event parameters

For cascade-like events, one naturally chooses a cascade hypothesis. A cascade-like event can
be described by the location of the cascade vertex (x, y, and z), the time of the event (t), the
orientation of the cascade (polar angles θ and φ), and the visible energy of the cascade (E). The
meaning of these parameters will be explained here.

4.1.1 Coordinate system

The location and orientation of a cascade event are defined with respect to the IceCube coor-
dinate system, a right-handed coordinate system with its origin close to the geometrical center
of the detector at a depth of 1946 m below the surface. The y axis points “north” along the
Prime Meridian, while the z axis points vertically upward towards the surface. The direction of
a particle in the ice is defined by the vector pointing back towards its source; particles traveling
directly downwards relative to the surface have a zenith angle of 0 while up-going particles have
a zenith angle of π. The azimuthal angle is defined with respect to the x axis as usual. Fig-
ure 11 shows a sketch of the 5 IceCube spatial coordinates. Positions are measured in meters
and angles in radians7.

4.1.2 Timing

Trigger times are defined in nanoseconds since the beginning of the calendar year, universal time
coordinate (UTC)8. The time of the (reconstructed) underlying physics event is defined relative
to the trigger time. Details of clock synchronization with the Global Positioning System (GPS)
are given in [16].

4.1.3 Visible energy

In the model of cascade development given in Section 2.5, the light output of a cascade is a
function of the total length of the charged-particle tracks in the event over which Cherenkov
radiation is emitted. Since no distinction is made between electromagnetic and hadronic cas-
cades, the visible energy is a proxy for the total Cherenkov track length. The visible energy of a
cascade is defined as the energy of an electromagnetic cascade with the same light output; the

7This is different from the Photonics coordinate system, which uses degrees internally.
8The maximum granularity of the master clock is 0.1 ns.
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Figure 11: The IceCube coordinate system. Since the direction vector points back towards
the source of the particle, the zenith angle is inverted relative to zenith angle in conventional
spherical coordinates.

total energy released in a hadronic cascade will be larger than the visible energy [25]. Energies
are measured in gigaelectron volts (GeV)9.

4.2 Low-level reconstruction

The first stage of reconstruction is to convert the raw data, consisting of structures of ATWD
and fADC counts, into physical quantities that can be compared to an event hypothesis. This
proceeds in two stages: DOM calibration and pulse reconstruction.

4.2.1 DOM calibration

The raw event data consist of counts from each ATWD gain channel as well as the fADC. These
must be converted to voltages for physics analysis while correcting for known instantaneous
effects of the electronics. These corrections are implemented in the DOMCalibrator module
[1]. For each ATWD bin, the module takes the equivalent input voltage for the highest-gain
channel and subtracts the pedestal voltage if needed, falling back to lower-gain channels if
the higher-gain channel is saturated. This ensures that the digitized waveform has the highest
possible voltage resolution while staying within the dynamic range of the ADC. The fADC counts
are also converted to equivalent voltages. The waveform bins are shifted earlier in time to account
for the gain-voltage-dependent PMT transit time. Furthermore, the module attempts to correct
the temperature-dependent droop of the PMT output transformer for extended pulses [34]. The
output of the module is a series of calibrated waveforms that reflect the idealized output of
the PMT transformer. Information about the photon arrival time distribution can be extracted
from this waveform.

91 GeV=109 eV= 1.60217646× 10−10 joules.
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4.2.2 Pulse reconstruction

The calibrated waveform itself does not reflect the photon arrival time distribution, since the
shaping amplifiers in front of the digitization electronics introduce distortions to the measured
waveform. In particular, the pulse shapes for the ATWD and fADC are different. For this reason,
it is useful to unfold the true PMT waveform from the digitized data. The PulseExtractor
module [5] implements a Bayesian unfolding algorithm for this purpose.

Since the pulse-shaping characteristics of the amplifiers have been measured, it is in principle
possible to represent the pulse shaping as a matrix operation that transforms the time series of
PMT voltages ~v into a time series of ATWD inputs ~a:

ai =
∑

j

Aijvj . (7)

The ATWD input is a discrete convolution of the PMT waveform with the amplifier pulse shape.
In this framework it is generally not possible to extract the PMT time series

vi =
∑

j

A−1
ij aj , (8)

because the matrix A is not generally invertible10. An approach based on Bayes’ Theorem
(see Section 5.2) developed in [8] avoids this difficulty by instead extracting the most probable
distribution ~v from the time series ~a given knowledge of the pulse-shaping function P (ai|vj).
The inverse conditional distribution is given by

P (vi|aj) =
P (aj |vi)P0(vi)∑
k P (aj |vk)P0(vk)

, (9)

where P0(vi) is the prior distribution or best guess at the true distribution of ~v 11. This can be
used to estimate the PMT voltage in bin i,

ṽi =
∑

j

ajP (vi|aj). (10)

This algorithm can be iterated to obtain better and better approximations to ~v. The prior
distribution for the next iteration is then just the normalized ~̃v:

P0(vi) =
ṽi∑
j ṽj

(11)

Figure 12 illustrates the use of this algorithm to reconstruct PMT pulses from the ATWD
trace12. (a) shows how the ATWD trace relates to the PMT trace, photoelectron arrival times,
and true photon arrival time distribution (mean amplitude). (c) shows how the reconstructed
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Figure 12: An illustration of how PMT pulses are reconstructed from the ATWD trace. The data
are from a toy simulation. In (a), 42 photoelectrons are drawn from the delay-time distribution
(given by the mean amplitude) for an isotropic source 60 m from a DOM. The delay time
distribution is calculated using the empirical model developed in [32]. The PMT trace is obtained
by convoluting the delay time distribution with the PMT pulse shape, described by a normal
distribution; the ATWD trace is obtained by convoluting the PMT trace with the ATWD pulse
shape, described by a log-normal distribution. The same ATWD pulse shape is used as the kernel
for the Bayesian unfolding, shown in (c). The time shift is removed after only a few iterations,
while many more are needed to recover the exact waveform. The reconstructed pulses shown in
(b) are a good approximation to the PMT trace and can be compared to the mean amplitude
predicted for an event hypothesis as part of a reconstruction.
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pulse distribution converges to the PMT trace under repeated applications of Equation (10). (b)
shows the final reconstructed pulses along with the mean amplitude and ATWD trace.

Since the sampling windows of the ATWD and fADC overlap, some finesse is required in com-
bining waveforms from the two devices without double-counting. Here, only the ATWD is
used.

4.3 First-guess algorithms and filtering

The calibrated waveform and reconstructed pulses are the basis for many first-guess algorithms,
fast reconstructions that use the geometry and timing of the event to make rough guesses at the
event parameters. The average position of the hit DOMs weighted by their collected charge, for
example, can be used to estimate the position of the cascade vertex, and the total charge can
be compared to a parameterization derived from simulations to estimate the energy. Since such
comparisons can be made relatively quickly, they are also used to separate neutrino-induced
cascades that warrant more resource-intensive reconstruction from background events.

Good first-guess algorithms and efficient filtering are a prerequisite for a real cascade analysis,
since they can reduce the required computing effort to a manageable level. The results of the
first-guess algorithm are used as the input or seed to more intensive reconstructions. This work
builds on [29] and focuses solely on the problems of more advanced reconstructions, skipping the
problems of seeding and filtering. Further details on these topics are given in [25, Sections 5.1,
7.2, 7.3] and [29, Section 4.3]. Given a good seed, one can proceed to the most advanced
reconstruction technique, based on the method of maximum likelihood.

10Hence the term “smearing.”
11In the case of complete ignorance, the best choice is a uniform prior 1/N , where N is the length of the time

series.
12The convolution kernel used here is a log-normal distribution with parameters that approximate the response

function of the ATWD amplifier. The same kernel was used for the unfolding the data, all of which were produced
with a toy simulation.
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5 Likelihood methods

The reconstruction algorithm studied in this work is based on the method of maximum likeli-
hood. This section will introduce the theoretical framework for this method and formulation
of the likelihood before introducing methods of estimating the inherent uncertainty of such a
reconstruction.

5.1 Statistical inference

The problem of event reconstruction is one of statistical inference. Given a measurement from the
detector and a model of the detector response to different events, one must extract information
about the underlying event. The simplest case to imagine is one in which the detector response
is unambiguous, that is, it is impossible that two different classes of event produce the same
detector response. In this case, the event may be classified with absolute certainty. Difficulties
arise when the detector response is ambiguous, that is, when two different events produce similar
signatures13. In these more realistic cases, one must move from statements of absolute certainty
to probabilistic statements. Instead of implied certainty, each result will be tempered by a
“degree of belief.” What is required, then, is a formal framework for describing this degree of
belief.

5.2 Bayes’ Theorem

Bayes’ Theorem provides a method for computing conditional probabilities. To introduce this
theorem, it is first necessary to introduce the concept of probability. Given a set S with subsets
A,B,. . . , the probability P is defined by the following axioms:

1. P (A) ≥ 0 ∀ A ∈ S
2. P (A ∪B) = P (A) + P (B) if A ∩B = ∅
3. P (S) = 1.

The conditional probability “A, given B” is defined [17, Equation (31.3)] as

P (A|B) =
P (A ∩B)
P (B)

. (12)

Rewriting this and using the fact that the intersection A∩B is the same as B ∩A, one obtains
Bayes’ Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
. (13)

By requiring that all probabilities be properly normalized, one can rewrite this as
13An extreme example of this is an event in IceCube where light is only detected at a single string. If one

considers only the hits, the light distribution has complete azimuthal symmetry and events on opposite sides of
the string are indistinguishable.
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P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

. (14)

To apply this to event reconstruction, one defines a function P (~x|~λ) that describes the probability
of the detector response ~x to an event parameterized by ~λ. One can then apply Bayes’ Theorem
to define a probability for the event hypothesis ~λ:

P (~λ|~x) =
P (~x|~λ)P (~λ)

∑
i P (~x|~λi)P (~λi)

(15)

The term
∑

i P (~x|~λi)P (~λi) enforces the normalization of P (~λ|~x).

5.3 Maximum likelihood estimators

The function P (~λ) gives the independent probability that an event with parameters ~λ would
occur in the experiment. It is also called the “prior distribution,” since it describes the ex-
perimenter’s knowledge of the process under study before the measurement is made. In the
case of complete ignorance of the distribution of the parameters ~λ, one can use a uniform prior
distribution to construct a “Likelihood Function” for the event data given by ~xm

L(~λ) = cP (~x = ~xm|~λ) (16)

where c is a constant that absorbs any factors that depend only on the data [7, Section 7.1]. It is
important to note that the likelihood function cannot be interpreted as an absolute probability,
since it is not necessarily normalized. The usefulness of the likelihood function comes from the
Likelihood Axiom, as formulated by Edwards:

Within the framework of a statistical model, all the information which the data
provide concerning the relative merits of hypotheses is contained in the likelihood
ratio of those hypotheses on the data, and the likelihood ratio is to be interpreted
as the degree to which the data support the one hypothesis against the other [10,
Section 3.3].

For each event, the likelihood function can be treated as a function of the event hypothesis ~λ
only and be maximized analytically or numerically with respect to the hypothesis parameters
to yield the hypothesis of maximum likelihood. This the set of parameters ~λ′ best supported by
the data ~xm and the detector description given by P (~x|~λ).

5.4 A likelihood function for cascades

This work is based on the formulation of a likelihood function for cascade-like events developed
and tested in [29]. It relies on the assumption that since the propagation of each Cherenkov
photon through the ice is independent, the charge registered by a DOM in any given time window
follows a Poisson distribution

P (n|µ) =
µn

n!
e−µ , (17)

28



where n is the number of detected photoelectrons and µ is the mean number of photoelectrons
(mean amplitude) predicted by Photonics in that time window for a point-like electromagnetic
cascade. The probability of obtaining a given event signature given a parameterization of µ can
then be written as

L =
∏

hit DOMs
o

∏

bins
i

µ
no,i

o,i

no,i!
exp (−µo,i)

∏

unhit DOMs
o

exp (−µo) , (18)

where the time bins of DOMs with no charge are grouped together to speed up the calculation.
The mean amplitude is a function of the DOM position (x, y, z)DOM, readout time window tr,
and event hypothesis parameters (x, y, z, t, θ, φ, E) (see Section 4.1). If L is a good description
of the detector response, then the parameters of the event hypothesis that maximize L are the
best approximation to the true event parameters.

5.5 Error estimates from the likelihood function

In general, the parameters of maximum likelihood will not coincide with the true event param-
eters. Just as a given event can result in a number of different detector responses, each with
a certain probability, so a given detector response can arise from a number of different events,
each with a certain probability14. Thus, one expects the location of the likelihood maximum in
the parameter space to fluctuate around the true parameters. What is needed, then, is a way to
estimate the resolution of the reconstruction, or the expected difference between the parameters
of maximum likelihood and the true event parameters.

One of the simpler methods of calculating the uncertainty of a reconstruction is to compare the
results to simulation. To do this, one simulates a large sample of events using parameters from
some physically motivated spectrum. After the reconstruction has been applied to the data
generated by this simulation, one can calculate the “residual” for each event for each parameter
λi:

δλi
= λi,reconstructed − λi,simulated (19)

The error or resolution of the reconstruction for each parameter λi can then be estimated from
the variance of δλi

over all events in the sample. While this method can be used to characterize
the average resolution for the events in the simulation sample, it cannot yield any information
about the inherent resolution of the detector for an individual event.

This information can be extracted from the likelihood function itself. Since the likelihood func-
tion represents a statistical model of the detector response, its shape around the maximum
holds information about the inherent error of the estimate. Given two hypotheses ~λi and ~λj ,
the likelihood ratio is defined as

14There is a subtle difference between the two statements that is also encapsulated in the difference between
equations (15) and (16). While P (~x|~λ′) describes possible fluctuations of the detector response to an event ~λ′,
L(~λ) describes the degree to which different hypotheses ~λ are statistically compatible with the data under the
assumption that all values of ~λ are equally likely a priori. While the measured data are a result of the combined
effects of fluctuations in detector response and the true spectrum of event parameters, the fluctuations described
by the likelihood function with a flat prior are not constrained by the true spectrum.
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∆L(~λi, ~λj) =
L(~λi)

L( ~λj)
=
P (~x = ~xm|~λi)
P (~x = ~xm|~λj)

. (20)

It is particularly useful to fix the denominator at the maximum likelihood L(~λ′). Edwards uses
this ratio to define the support or relative log-likelihood function:

S(~λ) ≡ ln

(
L(~λ)

L(~λ′)

)
= lnL(~λ)− lnL(~λ′) . (21)

The support for the hypothesis of maximum likelihood is 0, while the support for all other
hypotheses is negative. −S(~λ) is a measure of how much better the data support the hypothesis
~λ′ than ~λ [10].

The error of the maximum likelihood estimate can be defined as the volume of parameter space15

Vλ around the maximum λ′ where the support is greater than some fixed number16. Under
the assumption of equal a priori parameter probabilities, the ~λ within this volume are also
statistically compatible with the maximum likelihood estimate. Thus, the true event parameters
should also lie within this volume. An estimate of the size of this volume is thus also an estimate
of the typical residual for that event.

5.6 Modelling the detector response

The principle of maximum likelihood places no restrictions on the form of the likelihood function.
To a first approximation, any function that has a maximum near the true event parameters
provides a useful estimate of the true event parameters. The suitability of a likelihood function
in this sense can be evaluated by the bulk residual method mentioned above. The Poisson-
likelihood for cascades certainly satisfies this requirement, as shown in [29].

For an estimate of the error from the likelihood function itself, however, more is required. An
arbitrary function with a maximum near the true event parameters cannot be expected to reflect
the variance in detector responses that gives rise to the reconstruction error. For the likelihood-
based error estimate to be useful, the likelihood function must be a good statistical model of
the detector response.

One basic requirement for a “good statistical model” is that the conclusions drawn from compar-
isons of hypotheses by their likelihoods in the model not violate common sense. In particular,
the support for the set of true event parameters should not be so low as to reject it completely
in favor of another hypothesis. If the support at the set of true parameters is well below the
cutoff used to calculate the error volume, then it lies outside the error volume and the size of
the error volume is no longer a good indicator of the expected residual.

This can be checked using the detector response as modelled in the IceCube simulation. With
the simulation, one has both the true event parameters and the detector response in hand and
can observe how well the likelihood function models the fluctuations in the detector response.

15In the gaussian limit with uncorrelated parameters, this the usual an n-dimensional ellipse with principal
axes σ1,σ2,. . . ,σn.

16Again in the gaussian limit, the conventional 2σ error volume corresponds to 2 units of support or a log-
likelihood ratio of 2.
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Very low support for the true event parameters is an indication that the model contains approx-
imations that significantly distort the likelihood function17, and that correcting the model can
lead to better parameter estimates (i.e. support for the true parameters) and accurate estimates
of the reconstruction residual.

5.7 Calculating the error volume

There are a number of possible methods for calculating the error volume, most of which amount
to an estimate of the covariance matrix of the likelihood function, defined as

Vij = 〈(λi − 〈λi〉)(λj − 〈λj〉)〉 (22)

If the individual components of the measurement are statistically independent, then the like-
lihood function converges to a gaussian in the large-sample limit18. In this limit, the series
expansion of the logarithm around the maximum,

lnL(~λ) = lnL(~λ′) +
1
2

∑

i,j

∂2 lnL(~λ′)
∂λi∂λj

(λi − λ′i)(λj − λ′j) +O(|~λ− ~λ′|3) , (23)

can be terminated after the second-order term [7, Equation 7.6.3]. Exponentiating this, one
obtains an expression of the form

L(~λ) = k exp
[
−1

2
(~λ− ~λ′)TV −1(~λ− ~λ′)

]
, (24)

which is a multivariate normal distribution with covariance matrix V . The inverse of the covari-
ance matrix can then be approximated by

(
V −1

)
ij

= −∂
2 lnL(~λ′)
∂λi∂λj

. (25)

The elements of the covariance matrix can be calculated either by evaluating the second-order
derivatives of lnL or by fitting an n-dimensional paraboloid centered at ~λ′ to lnL. Both of these
approaches require knowledge of either the analytic form of the likelihood function or the typical
scale of variations in the function, which is what the method is intended to calculate in the first
place. Without knowledge of the appropriate scale, it is necessary to scan the parameter space;
this can become problematic in high dimensions.

The most general method is to evaluate the variance directly using the N -dimensional inte-
gral

Vij ≡
∫ N

(λi − λ̄i)(λj − λ̄j)L(~λ)dN~λ , (26)

17For example, a model that does not account for PMT saturation leads to a likelihood function that over-
penalizes saturated waveforms, since it expects Poisson fluctuations inversely proportional to the mean amplitude.
A detailed discussion of these approximations follows in Section 7.

18This is a consequence of the central limit theorem, see [7, Equation 5.11.3]
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where the mean along each dimension is given by

λ̄i ≡
∫ N

λiL(~λ)dN~λ . (27)

Since the integral runs over all dimensions, this method will always be sensitive to dependencies
between the parameters. This can be an advantage for the reconstruction of local events like cas-
cades, where the position of the vertex can effect the most likely angle of photon emission.

When the analytic form of the likelihood function is not known, this integral must be evalu-
ated by numerical methods. Conventional methods of polynomial approximation can become
problematic in large dimensions. In Monte-Carlo integration, one generates a sample of points
whose distribution is proportional to the likelihood function. The variance of this sample will
converge to the true variance of the likelihood function as the number of samples approaches
infinity. The same sample can be used to approximately evaluate any integral over the likeli-
hood function. This study focuses on use of a Markov chain to efficiently generate such a sample
and methods of using the resulting distribution to find and correct flaws in a likelihood-based
reconstruction.
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6 Markov Chains

This work uses a Markov-Chain Monte Carlo technique to calculate the error volume of a
likelihood-based reconstruction. The following sections will introduce the basic theory of Markov
chains as well as the implementation used in this work.

6.1 Theory

A Markov chain19 is a sequence of random variates {X(t)} = X(0), X(1), X(2), . . . that has the
Markov property, that is, that the influence of X(0), X(1), X(2), . . . on the distribution of X(n+1)

is mediated entirely by the value of X(n). The steps of the chain t can be interpreted as times.
A Markov chain can be specified by stating the initial distribution of X0 (the distribution of
starting points of the chain) and the conditional distributions of X(n+1) given X(n) (the two-
point transition probabilities Tn(x, x′)). The transition probabilities can be used to calculate
the distribution of variates at time t = n+ 1 given the distribution of variates at time n:

pn+1(x) =
∑

x̃

pn(x̃)Tn(x̃, x) . (28)

This procedure can be used recursively to find the distribution of the chain at all later times.
The invariant or equilibrium distribution of a Markov chain is one that persists forever once
reached, that is, becomes independent of time. The distribution π is invariant if for all n,

π(x) =
∑

x̃

π(x̃)Tn(x̃, x) . (29)

It is often useful to construct a Markov chain that generates samples from a given distribution.
This requires that the given distribution be the invariant distribution of the chain. The dis-
tribution and transition probabilities should satisfy the condition of detailed balance, meaning
that any transition from x to x′ should be reversible, that is, have the same probability of the
transition from x′ to x:

π(x)T (x, x′) = π(x′)T (x′, x) . (30)

In addition, the chain should be ergodic. This means that the chain should converge to its
equilibrium distribution as n → ∞, regardless of the starting point. It can be shown that a
fairly general class of Markov chains is ergodic. If the transition probabilities and equilibrium
distribution satisfy the condition

ν = min
x

[
min

x′:π(x′)>0

(
T (x, x′)
π(x′)

)]
> 0 , (31)

then the chain converges to π regardless of the starting point, and the rate of convergence is
bounded by

|π(x)− pn(x)| ≤ (1− ν)n . (32)
19This section follows the definitions of [31, Section 3.3].
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A proof is given in [31]. In effect, the convergence of the chain is bounded by the most inaccessible
region of the parameter space. Accordingly, the bound obtained in this manner is often too weak
to be useful, especially on continuous, infinite spaces. It is thus sometimes necessary to resort
to heuristics to gauge the convergence of the chain.

The end product of the Markov chain should be a sequence of nearly independent samples from
π. The amount of computational time required to produce a set number of independent samples
depends on three factors.

• Transition probability calculation The transition probability T (x, x′) must be calcu-
lated in every iteration. This limits the number of samples that can be produced in a given
time.

• Autocorrelation length Since the sample produced in each step is obviously dependent
on the previous step, it takes some time to produce another sample that is approximately
independent. The intermediate samples must be discarded. The autocorrelation length is
a number of steps between uncorrelated samples.

• Burn-in length Similarly, the samples should not depend on the starting point of the
chain. The burn-in length is the number of the samples from the start of the chain that
must be discarded before the samples are independent of the starting point. This can be
different from the autocorrelation length at other points in the chain.

6.2 Implementation

The preceding discussion was general to time-reversible, ergodic Markov chains. The remain-
ing discussion will focus on the Metropolis Algorithm, a specific implementation of a Markov
sampler.

6.2.1 The Metropolis Algorithm

The Metropolis Algorithm, detailed in [28]20, was the first use of Markov chain techniques for
Monte Carlo integration. The specific application was a calculation of the equation of state of
an interacting gas, which involves an integral over a large phase space. Since large regions of the
phase space made only small contributions to the integral, the authors proposed Algorithm 1
for generating samples from the most significant regions of the phase space. At each step of the
chain, a small change to the state ∆x is drawn from a proposal distribution S(x, x + ∆x) to
generate a proposed transition xn → x′ = xn + ∆x. The probability of the transition xn → x′

is taken as min(1, π(x′)/π(xn)), where π is the distribution being sampled from. Transitions to
states of higher probability are always taken, while transitions to states of lower probability are
taken with a probability given by the odds ratio π(x′)/π(xn).

The Metropolis algorithm is ergodic as long as the proposal distribution S(x, x + ∆x) is sym-
metric with respect to x and x+ ∆x and non-zero over the parameter space [31]. The choice of
proposal distribution is left open and can have a strong effect on the performance of the sam-
pler. A normal distribution is a fairly general choice; it is symmetric and non-zero everywhere.

20Properly, this name refers only to the original version in which π(x′)/π(x) was calculated according to the
distribution of energy states in the canonical ensemble as exp [−(E(x′)− E(x))/kBT ]. This method was later
generalized by Hastings [23] to problems outside of statistical mechanics, that is, general target distributions π.
In this form, it is sometimes known as the Metropolis-Hastings algorithm.
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Algorithm 1 The Metropolis Algorithm
for all n do
x′ ← xn + ∆x // ∆x is drawn from the proposal distribution
p← min(1, π(x′)/π(xn))
z ← random() // z ∈ (0, 1]
if z ≤ p then
xn+1 ← x′

else
xn+1 ← xn

end if
end for

The scale (variance) of the proposal distribution should be chosen to minimize the autocorre-
lation time of the chain. Heuristics from studies such as [22] suggest that for d-dimensional π
which are approximately multivariate normal, a multivariate normal proposal distribution max-
imizes efficiency with a scale factor of 2.38/

√
d, accepting roughly 1 out of every 4 proposed

jumps.

6.2.2 Python implementation

The Metropolis Algorithm itself is not difficult to implement; this work uses a custom imple-
mentation written in the Python programming language, the core of which is not much longer
than the pseudocode in Algorithm 1. The sampler was tested with known distributions in small
numbers of dimensions to gauge its performance and develop effective tests of convergence. Fig-
ure 13 shows one of these tests, using a 3-dimensional gaussian as a target distribution. The
following paragraphs will discuss the relevant features of this implementation.

Likelihood calculation Since this implementation is intended to sample from the likelihood
distribution of a cascade event, the expensive calculation of the probability π is kept inside
the IceTray framework. The interface is provided by a Python function that takes a list of
parameters and returns a log-likelihood, which is then used to calculate an odds ratio for a
proposed jump.

Proposal distribution The proposal distribution is a multivariate normal distribution with a
diagonal covariance matrix. Each jump can optionally be taken in only a subset of the dimensions
to improve the probability of accepting a jump. The proper scaling factors for the elements of
the matrix were estimated by running the sampler with a large number of iterations on test
data using a proposal distribution with uniform variance. The mean variance of the likelihood
function for the data as a function of event charge was parameterized and used as the variance
of the proposal distribution.

Autocorrelation and thinning The samples used to estimate attributes of the target distri-
bution should be uncorrelated. Before it is used, the chain must be thinned to remove correlations
between the samples21. The autocorrelation time is the mean number of steps that it takes for

21An example of large-scale correlation is easy to see in the first 500 samples of Figure 13. The samples along
the “trail” from the starting point to the region of the maximum are obviously not independent.
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the chain to generate another independent sample. The autocorrelation function of a variable x
is defined as [18, Appendix B]

Cxx(t) ≡
〈
x(i)x(i+t)

〉
−
〈
x(i)

〉 〈
x(i+t)

〉
. (33)

Cxx(0) is just the variance of x. The normalized autocorrelation function22

Γxx(t) ≡ Cxx(t)
Cxx(0)

(34)

typically decays as e−t/τexp , where τexp is the exponential autocorrelation time. Another measure
of the autocorrelation is the integrated autocorrelation time,

τint ≡
1
2

+
∞∑

t=1

Γxx(t) . (35)

A sequence of N samples only contains N/2τint effectively independent samples [18]; it must be
thinned by this factor to remove correlations between the samples.

The autocorrelation function can be estimated from a discrete sample as

C̃xx(t) ≡ 1
N

N∑

i=1






x(i) −

1
N

N∑

j=1

x(j)




x(i+t) −

1
N

N∑

j=1

x(j+t)





 . (36)

This summation for all t ∈ [0, N − 1] can become expensive for large N. If x is transformed to
x′ = x− x̄, then this reduces to

C̃x′x′(t) ≡
1
N

N∑

i=1

x′(i)x
′
(i+t) , (37)

which is just the discrete convolution of the time series of x′ with itself. The convolution is
implemented using fast Fourier transforms, reducing theO(N2) computation toO(N lnN). This
is important when using the autocorrelation function to monitor convergence of the chain.

Determining convergence The sampler uses a relatively simple criterion to determine con-
vergence. At certain intervals, the chain is divided into bins of several times the integrated
autocorrelation length of the sampler position23. The variance of the sample position in each
dimension is calculated repeatedly, each time excluding one of these bins from the calculation24.
If the exclusion of any one bin changes the variance of the chain by less than some set amount
(e.g. 5%), then the sample distribution is roughly independent of time and the sampler is ter-
minated. The typical size of the jackknife bins is illustrated by the dashed vertical lines in
Figure 13.

22A good overview of serial correlation is given in [6, Chapter 2].
23The integrated autocorrelation length is generally different for each variable. In this case, the largest inte-

grated autocorrelation length among the dimensions of the parameter space is used.
24This is known as jackknife binning [18, Appendix C].
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Output The Python program runs the Metropolis sampler until the convergence criterion is
satisfied. Once the sampling run is finished, it records the mean, variance, and kurtosis of the
samples along each dimension of the parameter space, as well as the integrated autocorrelation
length in each dimension. It also records the value of the target distribution function at the
starting point of the chain and the maximum value over all points in the chain.
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Figure 13: An illustration of a Markov sampler running in 3 dimensions. The target distribution
is a multivariante normal distribution with correlation between x and z. The proposal distribu-
tion is also multivariante normal, but with independent distributions in x, y, and z and slightly
larger variance. The upper three plots show the sampler position in x, y, and z in each iteration.
The dashed horizontal line gives the mean of the target distribution; the dotted horizontal lines
the ±2σ boundaries. The histograms on the right show the marginal distribution of sampled
points along each dimension. The lower plot shows the negative log-likelihood at each point;
the sampler moves mostly “downhill” from the starting point (far from the maximum) until it
finds a region of high likelihood, then begins to move around the maximum, probing its shape.
The dashed vertical lines are spaced 10 autocorrelation lengths apart; the autocorrelation length
is different in each dimension. Convergence is checked by jackknife binning with bins much
wider than the longest autocorrelation length; if the variance of the samples in the chain does
not change by more than 5% when any of the jackknife bins is omitted, then the chain has
converged to the target distribution.
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7 Application to cascade reconstruction

The Metropolis sampler can be used with the likelihood function given in Equation (18) to build
a reconstruction that gives both a maximum likelihood estimate and an estimate of the error for
cascade-like events in IceCube. This is useful, because the results from the initial study of the
reconstruction’s performance on simulated data [29] showed some features that warranted direct
investigation of the characteristics of the likelihood function. First, the event-by event resolution
was highly variable. Given this fact, it was only possible to quote some “core” resolution for
the reconstruction that may not be meaningful for a significant subset of the events. Second,
there was a correlation between the residuals in different dimensions. This suggested that the
behavior of the likelihood function in a less interesting dimension, for example the depth of the
cascade vertex in the ice, could significantly affect the behavior of the function in a physically
interesting dimension like the angular orientation of the cascade. Both of these features indicate
the need for an event-by-event measure of the resolution that takes into account the behavior
of the function in all dimensions. The Markov-Chain Monte Carlo technique is ideal for this
purpose.

7.1 Simplified reconstruction problem

The likelihood-based reconstruction of cascade-like events is equivalent to the numerical mini-
mization of − lnL in 7 dimensions: the position of the cascade vertex, x, y, z; the time of the
cascade event t, the orientation of the cascade φ and θ; and the cascade’s visible energy E. In
general, − lnL will have more than one local minimum, and the outcome of the minimization
procedure will depend on the starting point in the parameter space, called the “seed.” In real-
word applications, the seeding strategy is a critical part of the reconstruction; if the seed is very
far away from the true event parameters, the minimizer may become stuck in a local minimum,
causing the reconstruction to fail.

These seed strategies can be extended by using an iterative fitting technique. In this method,
the minimizer is started with the seed and allowed to converge to a new set of parameters that
better fit the data. This set of parameters is then varied slightly and used as the seed to the next
iteration of the minimizer. In this way, the minimizer can sometimes be coaxed out of local min-
ima and towards the global minimum of the function. While useful for navigating complicated
likelihood spaces, this technique is computationally expensive, and will like any minimization
strategy succeed only if the minimum of − lnL is near the true event parameters.

This last question is an important one: given a perfect seed, how far will a minimizer wander
from the true event parameters? The performance of the reconstruction when seeded with the
true event parameters is a test of the characteristics of the likelihood function only, and can help
uncover flaws in the formulation and implementation of the function that do not depend on the
seeding or minimization strategy used. This study focuses only on this simplified reconstruction
problem and the application of Markov-Chain Monte Carlo techniques to identify the weak
points of the Photonics-based reconstruction of cascade-like events in IceCube.

7.2 Benchmark data set and implementation

The Markov sampler was tested on a sample of ∼ 16000 νe-induced cascade events simulated in
the 80-string configuration of IceCube. The arrival directions of the primary νe were distributed
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isotropically and their energies distributed according to an E−1 spectrum, i.e. uniformly in the
logarithm of energy25, with energies between 100 GeV and 1 PeV. For simplicity, the sampler
was restricted to move only in 4 dimensions: the cascade vertex position x, y, z, and cascade
event time, t. The cascade orientation and energy were held fixed at their true values.

For each point in the chain, the sampler records the value of the log-likelihood. Even though
the Markov sampler is not technically a maximizer, it is likely to come very close to the nearest
maximum of the likelihood function. The samples in the chain thus contain information about
both the maximum of the likelihood function and its variance. The maxima of the likelihood
function together with the starting point of the chain (the true event parameters) yield the
residual distributions for each parameter.

An error can be estimated from the bulk residual distribution in several ways. The two that will
be used here are the gaussian fit and the truncated variance. In the former, a normal distribution
is fit to a histogram of the residual distribution. This is likely to describe the variance of the
core of residuals concentrated in the peak of the distribution, but will not describe the minority
of events in the tails of the distribution. In the latter method, one first estimates the sample
mean and variance

µ′ =
1
N

N∑

i=1

δzi (38)

σ′ =

√√√√ 1
N

N∑

i=1

δ2zi
− µ′2 , (39)

then removes the residuals that differ from the mean residual by more than 3σ′. The truncated
variance is the variance of the remaining M samples:

σ̃ =

√√√√√ 1
M

∑

|δzi−µ′|<3σ′

δ2zi
−


 1
M

∑

|δzi−µ′|<3σ′

δzi




2

. (40)

The truncation mitigates the influence of large outliers on σ̃ in a way similar to the gaussian
core fit. These variances will be called bulk errors.

If the implementation of the likelihood function used here is a good description of the simulated
measurement process, then the average variance of the likelihood function around its maximum
should be similar to the bulk error calculated from the residual distribution.

First, it is useful to look at a typical residual distribution. Figure 14 shows the residual dis-
tribution in the depth (z) of the cascade vertex with a fit to a normal distribution. The error
reconstruction in z is obviously not well described by a single normal distribution. In addition,
there is a bias towards negative residuals, that is, the reconstructed vertex tends to lie below
the true vertex.

Figure 15 shows the distribution of the estimated variance of the likelihood function in z as
calculated from the variance of the sample points from the Markov chain. The mean variance of

25This energy spectrum is unrealistic, but ensures an equal number of events in each decade of energy.
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Figure 14: Bulk residual distribution of the vertex depth z for ∼ 16000 simulated νe induced
cascades weighted to an E−1 spectrum. The reconstruction was seeded with the parameters of
the simulated cascade event. The logarithmic scale is chosen to emphasize the fraction of events
whose residual is not described by the gaussian fit.

the likelihood function drops off as a function of the total charge (NPE), as one would expect for a
process dominated by the statistics of photoelectron emission at the PMT photocathode26.

The points in Figure 15 show the truncated variance (see Equation (40)) of the residual distri-
bution for each range of NPE27. Unlike the variance of the likelihood function, the variance of
the residual distribution is almost constant, that is, dominated by systematic rather than sta-
tistical errors. In particular, the reconstruction is not significantly better for an event with 1000
photoelectrons than an event with 30. The sampler finds a very narrow likelihood peak very far
from the true event parameters, indicating that the likelihood function is not a good description
of the simulated measurement process for events with more than a few photoelectrons. Similar
effects can be seen in the other dimensions (x, y, and t).

This behavior is reflected in the likelihood ratio between true and reconstructed event param-
eters28, shown in Figure 16. Contrary to the expectation for a suitable likelihood model, the
likelihood ratio scales strongly with the number of photoelectron emissions in the event. For
events with e.g. 3000 photoelectrons, the reconstructed event parameters are on average e1000

more likely than the true parameters. This excessive suppression of the “correct” solution to the
inference problem indicates that the likelihood function does not approximate the simulation
very well, and explains why the variance of the likelihood function around its maximum does
not reliably predict the residual.

These arguments show that the existing implementation of the Photonics-based likelihood
26Since the number of Cherenkov photons emitted is proportional to the cascade energy, an analogy can be

made to sampling calorimeters, whose energy and position resolution scale as 1/
√
E [17].

27A total recorded charge of 1000 PE usually corresponds to a cascade energy of 10–30 TeV, though fluctuations
from 2 TeV to 1 PeV are possible (see Figure 34 ).

28This is minus the support of true parameters −S(~λtrue), or the degree to which the maximum-likelihood
hypothesis is favored over the true parameters (see Section 5.6).
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Figure 15: Resolution in vertex depth z (σz) as a function of total event charge (NPE) for
∼ 16000 simulated νe induced cascades weighted to an E−1 spectrum. The two-dimensional
histogram shows the variance of the likelihood function in z, while the points show the variance
of the residual distribution for each range of NPE. In each case, the error is parameterized as
a charge-dependent statistical error plus a constant systematic term. While the variance of the
likelihood function falls off as a function of NPE, the slices of the bulk residual distribution are
dominated by a systematic error of roughly 9 m.
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Figure 16: Logarithm of the likelihood ratio between true and reconstructed event parameters
(see Section 5.6) as a function of total event charge (NPE). For bright events, the true vertex
becomes extremely unlikely in the model represented by the likelihood function, indicating the
likelihood does not describe these events well. By construction, the shape of the likelihood
around the maximum cannot be used to estimate the residual in such cases.

function was not entirely compatible29 with the standard IceCube cascade simulation. While
there are certainly situations in which anomalies in the statistical model such as discontinuities
and multiple maxima can give rise to misleading estimates as discussed in [10, Chapter 8], these
concerns do not apply to a purely gaussian model. Since the likelihood function should approach
this limiting case for events with many photoelectrons, the reasons for the failure of the likelihood
reconstruction were not immediately apparent.

7.3 Implicit approximations in the likelihood function

The existing formulation of the likelihood function implicitly assumed that the various other
fluctuations and distortions implemented in the simulation are negligible compared to Poisson
fluctuations in the photocathode current. Some of these assumptions are problematic, causing
the likelihood description of the detector response to fail as shown in the previous section. The
most obvious of these assumptions are discussed here.

Light emission profile The Photonics light propagation simulation operates using point-
like light sources that can be combined to approximate extended light sources [27]. The neu-

29A careful reader might object to the strength of this statement and argue that the reconstruction is in fact
compatible with the simulation in the sense that it localizes the vertex depth to within 9 m. This interpretation,
however, does not use the full power of likelihood methods. If all the information provided by the support function
is taken in to account, one would also conclude that the vertex depth for an event with ∼ 10000 photoelectrons
is likely to be localized to within some tens of centimeters, which is patently false. The aim of the remaining
work is to resolve such contradictions.
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trino propagation simulation approximates the longitudinal evolution of an electromagnetic or
hadronic shower in the ice by splitting the cascade event into point-like Cherenkov light sources
distributed along the direction of the shower [33]. When a cascade event is simulated, the total
light output of all the sub-cascades is determined by an energy-dependent parameterization ob-
tained from another simulation, described in [37]. The reconstruction, however, operates on the
hypothesis of a single, point-like Cherenkov light source.

Equivalence of Photonics tables used in simulation and reconstruction The Pho-
tonics tables contain the mean light yield at different displacements from the light source,
binned in cylindrical coordinates: the parallel distance l along the source direction, the perpen-
dicular distance ρ from the source direction, the azimuthal angle φ, and the delay time t. If the
binning is too coarse, the tables may miss important features in the light distribution, but finely
binned tables may become much too large to fit into computer memory. In simulation, one can
work around this by only loading a small subset of the tables needed at the moment, since the
parameters of the light-producing events are known. Reconstruction is more difficult, since the
relevant table region to be queried by the minimizer may not be known beforehand. To work
around this, thinned table sets are used which have fewer depths and zenith angles of the source,
with linear interpolation between them. In addition, the tables used for reconstruction have a
slightly different, though still linear, interpolation scheme between the bins in a single table.
Interpolation artifacts could dominate the reconstruction, especially at high intensities, where
large relative fluctuations around the mean are heavily penalized in the Poisson model.

PMT charge response A photoelectron ejected from the photocathode does not always pro-
duce the same integrated current at the PMT base. The nominal gain of the PMT is determined
from the location of the peak of the charge response distribution for a single photoelectrons (see
Figure 17). If the amplifications for multiple photoelectrons are independent, as the simula-
tion assumes, then the multi-PE charge response can be obtained by repeatedly convoluting
the single PE charge response distribution with itself. The exponential tail to low PE means
that the average charge response is not the same as the nominal gain. The extension of the
Poisson likelihood from natural to real non-negative numbers assumes that the fluctuations in
charge response are negligible compared to the Poisson fluctuations in the photoelectron yield
of the photocathode. Furthermore, it assumes that they can be accounted for entirely by scaling
down the mean PE yield from Photonics (µ in Equation (18)) by the mean of the SPE charge
response function. This is about 0.85 for the “standard” PMT used in simulation [4].

PMT transit time and pulse shape The photoelectrons ejected from the cathode knock
out additional electrons as they strike each dynode, forming a larger and larger pulse of current.
The time it takes the pulse to reach the PMT base scales with the square root of the applied
PMT voltage [35], and thus varies from DOM to DOM. The shape of the pulse in time is
approximately a gaussian with a width on the order of 2 ns. The reconstruction assumes that
this time spread can be accounted for in bulk, that is, that the Photonics mean waveform is
a good predictor of the PMT signal when convolved with a gaussian of the same width as the
PMT pulse.

Spurious PMT pulses In particular, the reconstruction does not account for pre-pulses,
after-pulses, and late pulses (see footnote on page 20). Pre-pulses in particular could be prob-
lematic, since the mean amplitude predicted by Photonics is identically zero at negative delay
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times. The reconstruction assumes that the mean amplitude of the recorded waveform can be
predicted from the Photonics mean amplitude simply by accounting for the geometric delay
and mean PMT transit times.

Waveform reconstruction The IceCube DOM reads out the PMT base current through
a transformer and series of amplifiers. This yields a captured waveform that is not the PMT
signal, but the PMT signal convoluted with the amplifier pulse shape. The PMT signal can be
de-convoluted from the captured waveform with an iterative unfolding algorithm such as the one
implemented in PulseExtractor [5]. The formulation of the likelihood function assumes that
this process is perfect, i.e. that it accurately reconstructs the integrated current at the PMT
base with no significant distortions in time or charge.

Saturation The PMT base current is proportional to the number of photoelectrons ejected
from the photocathode when the latter number is small. The constant of proportionality is the
nominal gain. For large photocathode currents (e.g. from a cascade very close to the DOM),
the base current can be less than proportional to the number of photoelectrons. At a nominal
gain of 107, the PMT response is linear to within 10% for photocathode currents of up to ∼ 31
PE/ns[35]. The formulation of the likelihood function assumes that the PMT nonlinearity is
negligible compared to Poisson fluctuations of the number of photoelectrons ejected from the
cathode. Any DOM with instantaneous photocathode current above the saturation level is likely
to distort the likelihood calculation, since the Photonics mean waveform does not account for
saturation effects.

Zero-charge bins The Poisson likelihood works by comparing the charge in each time bin to
the charge predicted by Photonics. There is some freedom in choosing which bins to compare,
in particular, in how to handle bins with zero charge. To be completely rigorous, one would
compare every time bin of every DOM in the entire array for every event. Most of these,
however, would have zero measured charge and nearly zero predicted charge, resulting in very
expensively calculated multiplicative factor of one. This makes it attractive to drop zero-charge
bins from the likelihood entirely, on the assumption that they will not contribute very much to
the likelihood. This assumption is only valid at the true event parameters. Given the freedom
to vary the event parameters, it is possible to maximize the likelihood by moving around in the
parameter space until the worst-fitting parts of the predicted waveform are “hidden” in time
intervals where the data-hypothesis mismatches do not contribute to the likelihood. Distortions
of this sort could unfairly penalize the true event parameters and cause ∆LLH to become very
large (see Section 5.6 and Figure 16 ).

There are additional assumptions, such as the basic correctness of the Photonics photon propa-
gation code and associated ice model, that cannot be tested in a closed simulation-reconstruction
loop.

When this cascade reconstruction was developed, the added distortions of the full event simu-
lation were accounted for by treating the simulation as a black box and calculating empirical
correction factors to the Photonics prediction [29, Section 5.4]. The total amplitude for an
event, for example, was found on average to be only about 60% of the Photonics prediction.
The empirical correction factors proved quite useful in correcting a systematic underestimation
of the energy. They were not successful in producing a self-consistent inversion of the simulation,
as the discussion in Section 7.2 shows.
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Figure 17: The charge response function P (q|n) of the “standard” PMT used in IceCube simu-
lation [4]. The response for n > 1 is obtained by repeatedly convoluting the single-photoelectron
response function with itself. By 8 PE, it is very nearly gaussian.

The current study focuses on understanding the characteristics of a likelihood function that had
already been shown to work in the sense that it produced an estimate of the event parameters
close to the true event parameters. For this reason, it took a different approach to correction
factors, breaking the simulation down to the simplest possible case and then building back up
to a somewhat realistic simulation by introducing only correction factors whose meaning and
effect could be understood and explained directly.

7.4 Deconstructing reconstruction

The simplest imaginable simulation is precisely the one modeled directly by the likelihood func-
tion: Poisson samples drawn from a distribution of means that is a function of the event param-
eters. This is equivalent to replacing the IceCube4 DOMs with ideal photoelectric detectors
that can count individual photoelectrons with perfect accuracy and simulating only ideal, point-
like Cherenkov emitters. When reduced to this level, the likelihood function should describe the
fluctuations in the simulation.

The neutrino-propagation simulation produces a tree of energy-loss events that includes the final
cascade in the detector. For the simplified simulation, the results of the propagation simulation
were reduced to single νe undergoing charged-current interactions and depositing all their energy
in point-like electromagnetic cascades in the ice30. This guaranteed that the event actually
matches a possible hypothesis used by the reconstruction. Photoelectrons (I3MCHits) were
simulated from these events and used as the data for reconstruction with all correction factors
removed. Even though all non-Poissonian elements had been stripped from the simulation, the
∆LLH distribution was similar to that of Figure 16. This indicated significant discrepancies
between the Photonics tables used for simulation and those used for reconstruction.

30This is equivalent to modifying the physics such that only soft charged-current neutrino-nucleon scattering is
allowed. In this contrived situation the 4-momentum transfer to the nucleon is negligible and there is no hadronic
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When the tables were read out directly, the discrepancies were obvious. Figure 18 shows a
comparison of the simulation and reconstruction table contents for a 100 TeV cascade 80 m from
a DOM. One can gauge the severity of the discrepancies by estimating their contributions to
the likelihood term for a single DOM. In each time bin, one can consider the log-likelihood of
obtaining the value stored in the simulation table (λsim) from a Poisson distribution with a mean
given by the value stored in the reconstruction table (λreco):

− lnL = ln Γ(λsim + 1) + λreco − λsim lnλreco . (41)

This is a measure of the degree to which the likelihood penalizes the true event parameters.
Figure 19 shows the log-likelihood contributions from each time-bin of the predicted Photon-
ics waveform. Since the amplitudes scale linearly with the cascade energy, the proportional
discrepancies contribute more and more to the likelihood ratio (∆LLH) for events with many
photoelectrons, forcing the reconstruction away from the true vertex parameters.

Figure 18: Comparison of Level 1 (simulation) and Level 2 (reconstruction) Photonics predic-
tions for a single DOM at depth z = −310 m. A 100 TeV cascade was placed at the same depth,
80 m away from and pointing towards the DOM, and rotated 180 degrees in azimuth. The two
sets of tables were read out with the same interpolation settings. The upper left plot shows the
Level 1 (simulation) mean amplitudes, while the upper right plot shows the same amplitudes
for the Level 2 (reconstruction) tables. The differences in the interpolation schemes are clearly
visible.

particle shower. Also, high-energy electromagnetic showers have no spatial extent; they are merely brighter.

47



0 50 100 150 200
0

2

4

6

8

10

12

14

16

M
e
a
n
 N

P
E

100 TeV cascade 80 m from DOM

Level 1

Level 2 Gauss/PhotoRec

0 50 100 150 200
Delay time [ns]

1.5

2.0

2.5

3.0

3.5

-L
LH

 o
f 

d
e
v
ia

ti
o
n

Figure 19: A slice of the distribution shown in Figure 18 at an azimuthal angle of 31 degrees.
The two mean waveforms are sampled with the same granularity, but the Level 1 tables have
no interpolation in time. The severity of the discrepancy can be estimated by calculating the
negative logarithm of the probability of obtaining the Level 1 amplitudes as series of Poisson
samples from the means given by the Level 2 amplitudes, as shown in the lower plot. The largest
penalties are associated with the edges of the bins; events simulated at the edge of a bin in the
Level 1 Photonics tables will seldom reconstruct there.
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Figure 20: A schematic representation of how linear interpolation between bins in the Photon-
ics tables overestimates Cherenkov light detected in the ice.

7.5 Interpolation with B-splines

Having different linear interpolation schemes certainly introduces inconsistencies between sim-
ulation and reconstruction. These inconsistencies can only be detected if the reconstruction is
sensitive enough to be affected by them. Beyond this, there are other problems caused by linear
interpolation between Photonics bins that are well-known. In particular, linear interpolation
will always overestimate the total light yield31 as a function of distance from the source. The
flux of Cherenkov photons in ice drops off exponentially as a function of distance from the source
due to scattering and absorption [25, Equation 5.3.1]:

µ ≈ I0
E

d
e−d/λattn . (42)

Figure 20 shows a schematic representation of how linear interpolation overestimates this light
yield.

Large statistical fluctuations in underpopulated regions of the tables are also a concern. These
effects can be mitigated by generating Photonics tables with large numbers of tracked photons
and with more closely-spaced bins, but this increases the size of the tables beyond the RAM
capacity of most computers. Efforts were already underway to skirt the latter issue by instead
fitting the fine-binned, high-statistics table to a multidimensional basis-spline (B-spline) surface
with a coefficient array much smaller than the raw photon table [36]. This method, intended
to produce a light distribution that more closely matches the physical one while smoothing out
statistical fluctuations, also made it possible to use the same light distributions for simulation
and reconstruction, removing a source of inconsistencies.

31“Light yield” and “photoelectrons ejected from the photocathode” can be used interchangeably, since each bin
in the Photonics table stores a flux of photons weighted to the angular acceptance of the DOM and frequency-
dependent quantum efficiency of the photocathode.
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Figure 21: An example of a spline fit. Here, the photon delay time probability density function
(PDF) calculated according to the model of [32] is represented in a 1-dimensional B-spline basis.
The local gaussian like-functions (dashed lines) are the splines, and the points where two splines
join are the knots. Each spline is identically zero outside of its support; for a second-order
spline basis in 1 dimension, 3 splines have support at any given point. The 10 knots are spaced
quadratically along the time axis. To evaluate the represented function at any point in time, one
first evaluates the spline functions that have support at that point, then sums these evaluates
weighted by the spline coefficients to obtain the function value. The resulting “spline fit” curve
(the sum of the dashed curves) is able to follow the PDF much more closely than a piecewise
linear function.
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A rudimentary understanding of the spline technique is helpful for understanding why it is useful
for creating alternative representations of the Photonics tables. B-splines are local functions
that consist of polynomial segments of low degree, usually quadratic or cubic. The points where
splines meet are called knots. Since the splines have only local support, they can be used as a
basis for modeling data with complex patterns [11], such as the differential photon distribution
stored in each Photonics table. The value of the differential distribution at each point in the 4-
dimensional Photonics coordinate space (ρ, l, φ, t) can be represented as a linear combination
of the splines that have support at that point. The coefficients are determined by minimizing
the squared differences between the spline surface and the data with an additional term that
penalizes differences between the coefficients of neighboring splines, which smooths the resulting
surface. This allows the surface to interpolate smoothly through regions of the table with large
statistical fluctuations. Using polynomials of degree greater than one allows the spline surface to
follow the curvature of the light distribution more closely, avoiding interpolation artifacts.

Since the fitting problem is linear in the spline coefficients, it can be represented as a deterministic
matrix calculation. A naïve implementation of this computation for a data grid the size of a
fine-binned Photonics table would require excessive amounts of computer memory; a fast and
compact version of this calculation is detailed in [11]. Once the coefficients have been determined,
they are stored in a spline table along with the information necessary to evaluate the spline basis,
such as the positions of the knots and orders of the splines along each dimension. The value of
the spline surface at any point in the parameter space can then be determined by evaluating
each spline weighted by its coefficient and summing over the splines that have support at that
point. An IceTray service was written to expose these functions to the IceTray framework
through the same interface as PhotonicsService.

7.6 Simplified simulation and reconstruction with spline interpolation

In order to pinpoint the source of the reconstruction errors described in the previous section,
the simulation was modified to use spline representations of the Photonics tables to generate
photoelectrons so that the same light distributions could be used in reconstruction.

7.6.1 Practical use of spline tables

A set of fine-binned, high-statistics tables was produced for the new simulation using the emission
profile of an electromagnetic cascade. Since the Antarctic ice is not an isotropic medium, the
results of the Photonics simulation depend on the depth and zenith angle of the source.
Generating a set of tables for the full detector volume takes an extraordinarily large amount of
CPU time32, so for this proof-of-concept study the ice properties at one depth were taken for the
entire detector. The measured optical properties at this depth33 are close to properties averaged
over the entire detector volume [15], so this “bulk ice” provides a reasonable starting point for
tests of simulation and reconstruction. The binning schemes of the “standard” and “new” tables
are given in Table 1.

32Simulating the propagation of 4× 107 photons through the ice layers for all combinations of 158 depth bins
and 18 zenith angle bins takes on the order of 19000 hours on currently available hardware.

33This depth is between two dust layers in the upper half of the detector, 1720 m below the surface at IceCube
z-coordinate 226 m.
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Standard “AHAv1” New tables
Coord Limits # Bins Limits # Bins Bin spacing
ρ [m] 0 580 30 0 580 200 quadratic
φ [deg] 0 180 9 0 180 36 equal
l [m] -580 580 65 -580 580 100 quadratic
t [ns] 0 7000 50 0 7000 105 quadratic
θ [deg] 0 180 18 0 180 18 equal
z [m] -815.4 764.6 158 226 226 1 equal

Table 1: A comparison of the standard Photonics tables used for cascade simulation and the
new tables generated for this study. The former simulation propagated 4× 107 photons; the one
for this study used 8.9× 108 to reduce statistical fluctuations associated with the finer binning.

Each of the generated tables34 was differentiated along the time axis and its logarithm fit with a
4-dimensional B-spline surface using the algebraic least-squares algorithm described in [11]. The
logarithm of the differential was taken to ensure the monotonicity of the cumulative distribution.
The set of spline surfaces was then merged using a heuristic to interpolate smoothly between
adjacent spline surfaces representing different zenith angles of the source. The total amplitude
tables35 were also fit to 3-dimensional spline surfaces and merged in the same way.

The interface to PhotonicsService allowed these spline tables to be used with the existing
simulation and reconstruction software with minimal changes. One minor change that was
necessary was due to the fact that the spline tables only store the differential distribution. The
standard Photonics tables used for simulation store the cumulative light distribution in delay
time, F (t) ∈ [0, 1]. This distribution can easily be sampled by generating random numbers
q ∈ [0, 1] and inverting for t = F−1(q) by binary search. This is efficient if the expected
photoelectron yield is smaller than the granularity of the simulated electronics. For bright
events, however, it becomes more efficient to operate in “binned mode,” where the differential
distribution is sampled by integrating over a bin by the midpoint method and drawing a random
number from a Poisson distribution with a mean given by the mean amplitude obtained from the
bin integral. Since only the differential distribution was available, the simulation was modified
to use only binned mode to generated hits.

This change created a few pathologies of its own. First, because the fitting algorithm is not
currently able to account for restrictions on the integral of the spline surface along a particular
dimension, the spline tables are not necessarily normalized. This means that the integral of the
timing table is not necessarily that same as the value stored in the amplitude table. This makes
it difficult to reliably predict the total charge in a DOM, since the total charge was simulated by
integrating over the timing table. Secondly, the approximation used to integrate the waveform
depends strongly on the point at which the differential is calculated from the table, which in turn
depends on the time binning used to simulate the electronics. At points close to the source where
unscattered photons create delta-like time distributions, the time-derivative of the differential
distribution can be very large, and moving the center of the first time bin by only a nanosecond
can change the value of the integral by factors of 2 or more. This is less of a problem, since the
approximation of a point-like cascade cannot be expected to hold at distances where there is no
significant scattering. A work-around was added to catch cases where the calculated mean in

34Each table contains bins in ρ, φ, l, and t and represents a single depth and polar orientation of the source.
There were 18 tables in this set, each for a particular orientation of the source.

35The amplitude tables produced by Photonics have the time dimension integrated out, so that they contain
only the total expected light yield at each point.
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one bin was larger than the integral stored in the amplitude table. When such a bin was found,
the amplitude in the bin was set to zero so as not to contribute to the likelihood value.

7.6.2 Baseline reconstruction

With these corrections in place, the spline tables were used to generate hits for point-like cas-
cades; these hits were used as the basis for reconstruction as described in Section 7.4. The
residual as a function of photoelectrons (NPE36) is shown in Figure 22. The bulk residual scales
with NPE across the entire range of brightnesses studied, indicating that the reconstruction
error is dominated by statistics in this case rather than systematics. This is expected, since a
major source of systematic error was removed when a consistent Photonics table interpolation
scheme was introduced.
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Figure 22: Resolution in vertex depth z (σz) as a function of total number of photoelectrons
(NPE) for point-like cascades simulated with perfect electronics in bulk ice. The slices of the
bulk residual distribution follow the variance of the likelihood function much more closely, but
the variance of the likelihood function still underestimates the residual. The bulk residual scales
with NPE across the entire range of NPE, indicating that the reconstruction is now dominated
by statistics rather that systematics.

The ∆LLH distribution in Figure 23 reveals additional systematic errors that were not yet
accounted for in the simulation. In particular, the exponential scaling of ∆LLH with NPE

36Since the hadronic cascades in the sample were replaced with point-like electromagnetic cascades, the rela-
tionship between total charge and cascade energy is different from the standard simulation. This is shown in
Figure 35.
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is indicative of a proportional offset in the expected light yield that becomes more and more
significant at higher intensities, where the expected relative fluctuations are smaller.
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Figure 23: Log-likelihood ratio as function of total number of photoelectrons (NPE) for point-like
cascades simulated with perfect electronics in bulk ice. The ratio is well-behaved for events with
500 PE, but becomes excessively large for events with higher and lower photoelectron counts,
indicating that the likelihood formulation still does not accurately describe the simulation.

7.6.3 Total amplitude correction

The scaling of ∆LLH at high NPE was discovered to be due to an overlooked correction factor
in the hit-generation code. By default, the hit-generation code scales the Photonics mean
amplitude down by 10% to account for the fraction of the photocathode area that is shadowed
by the string cable. Since the reconstruction did not contain this correction factor, the likelihood
was distorted whenever the expected fluctuations became small compared to 10% of the total
amplitude. Adding this correction factor brought the likelihood ratio under control at high NPE
as shown in Figure 24. The remaining cases of large ∆LLH are concentrated at low NPE, which
seems strange at first, since those events should also have the largest allowed fluctuations.

7.6.4 Zero-charge bins

These remaining cases were an artifact of another approximation made in the formulation of
the likelihood. In an effort to improve performance, the likelihood function did not consider
contributions for zero-charge (or un-hit) bins. This selective binning has a significant effect for
sparsely-populated DOMs; a higher total amplitude is a much better fit when the un-hit bins
are not considered at all. In the original formulation of the likelihood, these bins were lumped
together in a term that compared the integrated charge in the DOM with the total expected
charge. This was dropped from the spline formulation, as normalization mismatches between
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Figure 24: Log-likelihood ratio as function of total number of photoelectrons (NPE) for point-
like cascades simulated with perfect electronics in bulk ice, with a correction factor applied to
account for a global offset in the total PE yield. While this was the result of a mistake, it
illustrates the effect of a constant systematic offset on a Poisson likelihood.

the timing and amplitude tables would result in constant proportional offsets for some points
in the tables, leading to effects similar to those shown in the high-NPE portion of Figure 23.
Without this constraint, the correct solution to the inference problem is highly suppressed in
favor of a false solution. For brighter and brighter events, the average number of un-hit bins
per DOM approaches zero, and the approximation is no longer used. To work around this
issue without making the calculation excessively slow, un-hit bins were grouped together and
considered as a single, wider bin. While this still treats hit and un-hit bins differently37, it is
sufficient to constrain the total predicted amplitude to reasonable values. When the un-hit bins
are considered in the likelihood calculation, the true event parameters are finally statistically
compatible with the reconstructed values. This is true across the entire range of energies in the
sample as Figure 25 shows.

7.7 Reconstruction with electronics simulation

7.7.1 Correcting for the PMT charge response

Once the likelihood had been made to behave well with hits only, it was possible to add the PMT
and readout electronics back in to the simulation. Instead of hits, the simulation then produced
structures of ADC counts which had to be converted to voltages using each DOM’s calibration
constants. This series of voltages is a convolution of the waveform on the secondary winding
of the PMT base transformer with the amplifier pulse shapes. The PMT waveform can be
deconvoluted from the measured waveform using the Bayesian unfolding algorithm implemented

37In particular, the midpoint integral approximation can be problematic for long intervals of un-hit bins.
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Figure 25: Log-likelihood ratio as function of total number of photoelectrons (NPE) for point-
like cascades simulated with perfect electronics in bulk ice, with terms included in the likelihood
for un-hit bins. The likelihood ratio is now independent of NPE, as expected.
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Figure 26: Resolution in vertex depth z (σz) as a function of total number of photoelectrons
(NPE) for point-like cascades simulated with perfect electronics in bulk ice. The variance of the
likelihood function is now a good estimate of the residual.
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in PulseExtractor [5] to produce reconstructed pulses, each of which represent the best guess
at the integrated photocathode current in a particular time window.

Unlike hits, pulses no longer come in integer units, as they are obtained from the amplified
anode current, and thus also include fluctuations due to the ∼ 30% charge resolution of the
PMT. The additional fluctuations can be accounted for exactly by summing the charge response
contributions P (q|n) (see Figure 17) from each possible number of photoelectrons:

P (q|λ) =
∞∑

n=0

e−λλn

n!
P (q|n) (43)

The infinite sum here could become quite expensive, especially since the PMT charge response
function for > 1 PE is itself obtained by numerical convolution. In practice, however, it was
sufficient to replace the factorial in the Poisson probability with a gamma function to smoothly
interpolate between integer units of charge:

P (q|λ) ≈ P̃ (q|q1λ) =
e−q1λ(q1λ)q

Γ(q + 1)
(44)

where q1 is the mean of the single-photoelectron charge response function for a particular DOM
(0.850446 for the standard PMT used in simulation) and λ is the Photonics prediction scaled
by the cable shadow correction factor of 0.9. Figure 27 shows a comparison of the approximate
probability distribution of Equation (44) with the more realistic PMT base current distribution
of Equation (43). There is a fairly large effect when the expected photocathode current is
small; the analytic approximation overestimates the probability of obtaining fractional charges.
At higher mean amplitudes, the analytic approximation is slightly too sharply peaked, since it
doesn’t account for contributions from the tails of the charge response function. Despite this,
the approximation provides a reasonable estimate of the characteristic scale of fluctuations in
the PMT base current, making it possible to use the full likelihood function to estimate the
statistical error of a reconstruction.

With the electronics included in the simulation, the reconstruction also has to account for PMT
saturation. When a small number of photoelectrons are ejected from the PMT cathode, the
mean base current is proportional to the photocathode current. The constant of proportionality
is the nominal gain, typically on the order of 107. For large photocathode currents, however,
the response can be less than linear. The saturation behavior of the PMT can be measured and
parameterized as a function of the instantaneous PMT illumination (see e.g. Figure 10 of [35]),
but is slightly different for each PMT. A typical IceCube PMT will show a 10% non-linearity at a
photocathode current of 31 PE/ns [35]. The current simulation does not account for differences in
the saturation behavior of the PMTs in different DOMs, and thus implements a single saturation
curve. There is almost an order of magnitude between the current at which saturation becomes
significant and complete saturation, that is, a sizable region in which the saturation function
is invertible. In principle, it is possible to correct the charge of the reconstructed pulses using
the inverse of the saturation function to recover some of the dynamic range of the PMT. Since
individual saturation curves were not available, however, it was more expedient to simply exclude
the saturated DOMs from the likelihood calculation.

In the original implementation of the reconstruction, a DOM was classified as saturated or linear
based on its total charge. In reality, however, the saturation behavior of long and short pulses
is nearly identical [35, Figure 10], so saturation is just a function of instantaneous photocathode
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Figure 27: An approximation to the distribution of charge responses given the photoelectron
yield at the photocathode. The stepped line shows the Poisson probability of ejecting n pho-
toelectrons from the photocathode. The solid line shows the numerical convolution of the pho-
tocathode current distribution with the charge response function (see Figure 17) as given in
Equation (43), and the dashed line shows the analytic approximation using the extension of
the Poisson probability distribution to real numbers q given in Equation (44). The mean of
the continuous-Poisson distribution was multiplied by q1 (∼ 0.85) to account for the reduced
efficiency of the PMT.

current38, and the total charge collected by a DOM is a poor indicator of the presence of saturated
pulses. The way to find saturated DOMs, then, is to look for pulses representing a photocathode
current in the saturation region. The appropriate cutoff can be estimated by plotting the
saturation curve against the variance of a Poisson distribution as shown in Figure 28. The
saturation level for this simulation was chosen as 50 PE/ns, since for larger currents the Poisson
fluctuations are small compared to saturation effects. DOMs with pulses representing average
currents of more than 50 PE/ns were excluded from the likelihood calculation entirely rather
than just excising the saturated pulses to avoid distortions due to gaps in the waveform39.

7.7.2 Reconstruction in restricted dimensions

With these corrections in place, it was possible to reconstruct point-like electromagnetic cas-
cades with fixed energy and direction using pulses obtained from the output of the electronics
simulation. Figure 29 shows that the ∆LLH distribution is still independent of the total event
charge, indicating that the electronics simulation does not introduce significant systematic errors
in this configuration. The variance of the likelihood function is a good indicator of the residual
as shown in Figure 30.

7.7.3 Reconstruction in all dimensions

Up to this point, all reconstructions had been done with the cascade orientation and energy fixed
at the true values. Once the reconstruction had been made to work in this slice of the likelihood
space, it was possible to allow the remaining parameters to vary freely as well. Allowing the

38This behavior is also the one modelled in the simulation.
39The effect of gaps in the waveform should be similar to the distortions caused when un-hit bins were excluded

from the likelihood calculation, shown in the low-brightness side of Figure 24.
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Figure 28: A comparison of deviations from the expected mean PMT base current due to
Poisson fluctuations in the photocathode current and non-linearity of the PMT response, using
the saturation curve defined in [4]. The Poisson fluctuations are taken as 1/

√
N fluctuations

in the integrated current over a time window of 3.3 ns, approximately the sampling time of
the ATWD. For the standard PMT used in IceCube simulation, saturation effects are larger
than the expected fluctuations in photocathode current at photocathode currents larger than 50
PE/ns.
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Figure 29: Log-likelihood ratio as function of total event charge (NPE) for point-like cascades
simulated with realistic electronics in bulk ice. The likelihood ratio is now independent of NPE.
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Figure 30: Resolution in vertex depth z (σz) as a function of total event charge (NPE) for
point-like cascades simulated with realistic electronics in bulk ice.
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cascade energy to vary freely in particular introduces an important additional degree of freedom
to the problem. Whereas with fixed energy the likelihood function attempts to fit the observed
light distribution to the one parameterized by the Photonics tables, allowing the energy to
vary allows the overall normalization to vary as well. This makes it possible to obtain a better
solution by moving the vertex far away from the detector and scaling the energy up to match
the observed light yield. This problem is exacerbated by the omission of un-hit DOMs from the
likelihood, since the absence of charge in some DOMs places a strong constraint on the overall
light yield.
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Figure 31: Log-likelihood ratio as function of total event charge (NPE) for point-like cascades
simulated with realistic electronics in bulk ice when all 7 event parameters were allowed to vary
freely.

When un-hit DOMs are included in the likelihood calculation40, the solution is much more
tightly constrained for low-brightness events, as shown in Figure 33. Plots of the resolution in
zenith angle and cascade energy in this scenario are given in Appendix B.

40It is important to continue to exclude broken DOMs from the calculation, as these would distort the likelihood
function.
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Figure 32: Resolution in vertex depth z (σz) as a function of total event charge (NPE) for
point-like cascades simulated with realistic electronics in bulk ice when all 7 event parameters
were allowed to vary freely.
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Figure 33: Resolution in vertex depth z (σz) as a function of total event charge (NPE) for
point-like cascades simulated with realistic electronics in bulk ice, with un-hit DOMs included
in the likelihood calculation.
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8 Conclusion

This work has demonstrated how Markov-Chain Monte Carlo techniques can be used to estimate
the inherent resolution of a likelihood-based reconstruction. Furthermore, it has shown that a
better statistical model can lead to both smaller residuals and more accurate estimates of those
residuals. In particular, the systematic component of the resolution improved significantly, as
shown in Tables 2 and 3.

Scenario x z time zenith energy

Standard simulation
a 1.50×102 8.62×101 2.08×103

b 1.26×101 8.55 4.57×101

Minimal simulation
with splines

a 4.33×101 3.09×101 1.80×102

b 0.73 1.31×10−8 1.89

+ 10% amplitude
correction

a 6.13×101 4.10×101 1.48×102

b 5.41×10−10 1.87×10−9 5.35×10−8

+ no-hit probability
a 3.30×101 2.92×101 8.12×101

b 4.37×10−2 5.07×10−9 1.30×10−8

+ electronics
a 2.31×101 5.39×101 9.27×101

b 0.26 3.91×10−2 1.82×10−8

+ all dimensions
a 1.20×103 4.24×103 9.40×102 5.49 1.32×102

b 1.07 0.30 1.51×10−7 1.26×10−2 8.43×10−3

+ un-hit DOMs
a 8.27×101 1.52×102 2.46×103 4.37 3.60
b 0.51 0.12 1.45 6.05×10−3 6.14×10−3

Table 2: Scaling behavior of the residual distribution with total event charge (NPE). The pa-
rameter a gives the coefficient of the statistical component of the resolution, which dominates
at low intensities, while b gives the systematic error floor, which dominates at high intensities.
These are the same parameters shown for example in the fit in Figure 15.

It is important to note that the simplified simulation used in this demonstration does not reflect
all the effects known or thought to influence real IceCube data. Section 7.3 gave a list of
implicit approximations in the statistical model represented by the likelihood function. The
simplified simulation used in this demonstration removed some components of the simulation
chain in order to make these approximations exact. Some of these component were reintroduced
with along with proper correction factors in the likelihood function.

The following effects were responsible for significant distortions to the likelihood function.

Interpolation artifacts in Photonics tables By far the largest improvement comes from
the use of identical light yield distributions in simulation and reconstruction. The fact that they
are consistent with each other does not imply that they are consistent with reality. Comparisons
with direct photon tracking and flasher data should be done.

PMT transit time and pulse shape The inherent timing resolution of the PMT smears
out the photoelectron arrival times, and this must be properly accounted for by convoluting
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Scenario x z time zenith energy

Standard simulation
a 4.53×101 4.61×101 2.13×102

b 8.64×10−9 8.69×10−2 0.40

Minimal simulation
with splines

a 2.23×101 3.95×101 8.12×101

b 3.41×10−9 2.03×10−8 8.69×10−8

+ 10% amplitude
correction

a 1.46×101 3.82×101 1.08×102

b 4.86×10−9 1.71×10−8 1.81×10−9

+ no-hit probability
a 4.90×101 4.57×101 9.33×101

b 2.40×10−8 6.96×10−10 1.10×10−8

+ electronics
a 5.96×101 8.81×101 9.49×101

b 0.12 1.17×10−2 7.38×10−8

+ all dimensions
a 2.18×103 1.46×103 1.77×106 1.13×101 5.97×102

b 0.61 0.19 1.88 4.25×10−3 9.06×10−3

+ un-hit DOMs
a 1.93×102 1.16×102 1.53×103 7.62 1.18
b 0.26 6.70×10−2 0.78 5.14×10−3 2.64×10−3

Table 3: Scaling behavior of the likelihood distribution with total event charge (NPE). The
parameter a gives the coefficient of the statistical component of the resolution, which dominates
at low intensities, while b gives the systematic error floor, which dominates at high intensities.

the expected waveform with the expected distribution of leading-edge times of the pulses re-
constructed from digitized data. In this simplified simulation, the distribution of reconstructed
arrival times was adequately described by a normal distribution with σ = 2.18 ns, the same
width as the simulated PMT pulse.

Saturation Non-linear PMT response to large photocathode currents can distort the recon-
struction of bright events. Simply excluding the affected DOMs from the reconstruction gets rid
of the distortion, but also loses some of the most useful information, since the DOMs closest to
the event are first ones to saturate. It would be better to either invert the saturation curve or
account for the distortion in the likelihood function, but this would also require that the charge
response of each DOM be simulated individually in order to be useful.

Zero-charge bins Un-hit bins in the waveform turned out to be an important constraint on
the event parameters; excluding the terms arising from zero-charge bins from the likelihood
function unfairly penalized the true event parameters in favor of alternative solutions. Grouping
contiguous zero-charge bins together seems to provide an adequate compromise between accuracy
and performance.

Other effects didn’t seem to distort the reconstruction in any significant way.

PMT charge response The charge resolution of the PMT can be adequately accounted for
by extending the Poisson distribution to non-negative real numbers and scaling down the mean,
as shown in Figure 27.
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Waveform reconstruction The Bayesian unfolding algorithm implemented in PulseEx-
tractor accurately recovers the arrival photon arrival time distribution to within the width
of the simulated PMT pulse and preserves the total charge of the waveform by construction.
Given an adequate representation of the amplifier pulse shape, the pulse reconstruction does not
distort the reconstruction significantly.

There remain a few effects that were not adequately investigated in this work.

Light emission profile Real electromagnetic and hadronic particle showers are not point-like.
In the production simulation, the longitudinal extent of cascades is approximated by distributing
sub-cascades along the direction of the track according to an energy deposition distribution. The
simplified simulation used in this work replaced the spatially-extended cascade with a point-like
cascade of the same energy. If accounted for properly in the reconstruction, the longitudinal
extent of the cascade would add a geometrical constraint to the reconstruction, which should
improve the directional resolution at energies.

Spurious PMT pulses Since spurious PMT pulses are much rarer than “normal” pulses,
they tend to significantly distort the expected waveform only when the expected waveform has
a sharp, high-amplitude peak. Since waveforms in this category are also likely to be saturated,
the tests in this work were unlikely to be sensitive to the effects of spurious pulses.

Once these effects have been accounted for the in the formulation of the likelihood function, the
techniques presented in this work could be extended to a full detector simulation with a layered
ice model, and from there to experimental data.
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A Total event charge as a function of energy
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Figure 34: Total event charge as a function of cascade energy for the full simulation, which in-
cluded a realistic simulation of hadronic cascades and an inhomogenous ice model. The selection
includes only fully-contained events with no hits on the outer strings of the detector or the first
or last DOM on a string.

102 103 104 105 106

Cascade energy [GeV]

101

102

103

104

105

N
P
E

Total event charge

1

10

100

../Documents/IceCube/data/fake_mc/1568_markov/all_nohit/all_nohit_lcDOMfix.hd5

Figure 35: Total event charge as a function of cascade energy for the simplified simulation using
point-like electromagnetic cascades. The events were subject to the same geometric cut as in
Figure 34.
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B Further resolution plots
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Figure 36: Resolution in zenith angle θ (σzenith, in radians) as a function of total event charge
(NPE) for point-like cascades simulated with realistic electronics in bulk ice, with un-hit DOMs
included in the likelihood calculation.
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Figure 37: Resolution in the logarithm of the cascade energy E (σlog10 energy, in log E
GeV ) as a

function of total event charge (NPE) for point-like cascades simulated with realistic electronics
in bulk ice, with un-hit DOMs included in the likelihood calculation.
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Zusammenfassung

In dieser Diplomarbeit handelt es sich um die Verbesserung der Rekonstruktion von elektromagnetischen
Kaskaden im Neutrinoobservatorium IceCube mittels Markov-Ketten.

Bei Ereignissen dieser Klasse werden Schauer von hochenergetisch geladenen Teilchen erzeugt, die we-
gen ihrer relativistischen Geschwindigkeit Cherenkov-Licht im antarktischen Gletschereis ausstrahlen.
Die Cherenkov-Photonen werden von einem Raster Photovervielfacherrohren (PMTs) im Eis in eine
Reihe von Spannungspulsen umgewandelt die vor Ort digitalisiert werden. Aus diesen Daten werden die
Ankunftszeiten der Photonen rekonstruiert, welche die Basis für die Rekonstruktion des Ereignisses im
Eis bilden.

Mit Hilfe einer Beschreibung der Streuung und Absorption der Photonen im Eis, sowie der Reaktion der
PMTs und der Ausleseelektronik auf einfallende Photonen kann ein statistisches Modell des Detektors
definiert werden. Dieses statistische Modell beschreibt die Wahrscheinlichkeit, mit der eine bestimmte
Hypothese (festgelegt durch die Position und die Ursprungszeit des Schauers sowie dessen Richtung und
Energie) zu verschiedenen Datensätzen (Scharen von rekonstruierten Photonenankunftszeiten) führt.
Statt als Funktion der Datenparameter mit fixierter Hypothese kann dies auch als Funktion der Hy-
pothesenparameter mit fixierten Daten betrachtet werden; so betrachtet wird sie “Likelihood-Funktion”
genannt. Die “Likelihood” einer Hypothese ist der Wert der Likelihood-Funktion angewandt auf die jew-
eilige Hypothese. Im Rahmen des statistischen Modells ergibt das Verhältnis zweier Likelihood-Werte
ein Maß dafür, wie stark eine Hypothese von den Daten unterstüzt wird im Verhältnis zur zweiten Hy-
pothese. Die von den Daten am besten unterstützte Hypothese kann durch numerisches Maximieren der
Likelihood-Funktion ermittelt werden. Darüber hinaus enthält die Form des Maximums der Likelihood-
Funktion Informationen über die minimale Auflösung der Rekonstruktion.

In einer früheren Diplomarbeit [29] wurde eine Likelihood-Rekonstruktion für kaskadenartige Ereignisse
in IceCube entwickelt. Meine Arbeit beschäftigt sich damit, das Verhalten der Vertex-, Richtungs-, und
Energieauflösung dieser Rekonstruktion mittels Markov-Ketten zu untersuchen.

Eine Markov-Kette ist eine Reihe von gegenseitig abhängigen Stichproben (“Schritte”) aus einem Pa-
rameterraum in dem der Einfluss der vorausgehenden Schritte auf die Verteilung der Stichproben im
nächsten Schritt allein durch den letzten Schritt vermittelt werden. Es lassen sich Markov-Ketten er-
stellen in dem sich die Verteilung der Stichproben nach hinreichend vieler Schritte einer willkürlichen
Zielverteilung nähert. In dieser Diplomarbeit wird eine Markov-Kette verwendet, um anhand eines
Datensatzes eine Schar Stichproben aus dem 7-dimensionalen Parameterraum der Kaskadenhypothesen
zu erzeugen, deren Verteilung sich der Likelihood-Funktion nähert. Im gauß’schen Grenzwert ergibt die
Varianz dieser Verteilung in verschiedenen Dimensionen die minimale Auflösung der Rekonstruktion in
der jeweiligen Dimension.

Diese Methode wurde anhand simulierter Daten getestet und die ermittelte Auflösung mit der Verteilung
der Rekonstruktionsresidua verglichen. Nach ersten Versuchen konnten die beiden Auflösungen sich um
mehr als eine Größenordnung unterscheiden. Dies wies darauf hin, dass das statische Modell der vorhan-
denen Likelihoodfunktion die Simulation nicht ausreichend beschrieben hat. Im Rest der Arbeit wurde
die Simulation bis auf das Nötigste vereinfacht bis die Rekonstruktion selbstkonsistent wurde. Danach
wurde sie wieder teilweise aufgebaut und gleichzeitig passende Korrekturen zur Likelihood-Funktion
eingeführt. Außerdem wurde eine neue Parametrisierung der Cherenkovlicht-Verteilung angewendet,
um aus linearer Interpolation stammende Fehler zu vermeiden. Mit diesen Verbesserungen konnten die
Rekonstruktionsresidua verkleinert werden und auch zuverlässig anhand der Markov-Kette voraus gesagt
werden.
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