PMT High Voltage Power Supply Status

Nobuyoshi Kitamura

University of Wisconsin-Madison

OCTOBER 2003

Overview

The Three Prototypes

"Old Iseg"—Aug. 2002 prototypes

"New Iseg"—Split ground implemented.

"EMCO"—Passive base approach consisting of three components: Passive base, HV generator, & digital interface.

Photos

"New Iseg"

EMCO Passive Base

EMCO HV Generator

MONS, BELGIUM

OCTOBER 2003

NOBUYOSHI KITAMURA

UW-MADISON / SSEC

Every effort was made to make the DOMMB interface uniform among the three prototypes.

Chronology-2003

Feb.	20	EMCO reps visit UW-Madison			
Mar.	11	Iseg head visits DESY / Zeuthen			
Apr.	28	EMCO generators (20) and bases (20) arrive			
May	9 29	Operate EMCO generator with DOMMB New Iseg bases arrive (8)			
June	24	New Iseg bases arrive (22)			
July	23-24	LBNL Workshop	→"Old Iseg will do!"		
Aug.	12 14 22 26	IceCube report on proto evaluation by NK Comments on proto sent to Iseg Request for technical information from Iseg The "crack incident"			
Sep.	8 19	NK report Trip to EMCO	→ "Refocus on EMCO"		
Oct.	1	PO for samples (4) sent to EMCO			

The Three Prototypes (summary)

Old Iseg or New Iseg?
New Iseg with isolated grounds performs *badly* New Iseg with directly connected grounds performs *badly* New Iseg with 1MΩ jumper performs very similarly to Old Iseg
Old Iseg is cheaper than New Iseg
Old Iseg consumes less power then New Iseg

Iseq or EMCO?

Both have similar noise levels Vdy1 is fixed in Iseg approach Iseg is cheaper than EMCO

→lseg

Trouble with the "New Iseg"

MONS, BELGIUM

New Iseg--Isolated Ground

Output voltage is *very* unstable with no ground-connecting jumper

Connecting Grounds with a Zero Ω Jumper

Previously reported at LBNL Workship (July 23-24, 2003)

Comparison using DOMMB ATWD

http://www.ssec.wisc.edu/~kitamura/HVstatus081203/PMTBaseComparisonWithATWD1.pdf

Noise Comparison

All the bases have similar random noise levels observed at the secondary side of the signal coupling transformer.

		ISEG OLD	ISEG NEW	EMCO
NOISE AT OUTPUT*	mVpp	1.22 ± 0.13	1.26 ± 0.13	1.12 ± 0.21
	μVrms	214 ± 18	208 ± 18	215 ± 31

*At 50 Ω oscilloscope input using a 50 Ω cable. 100 nsec window (400 pts.) The scope background is 1mVpp, 190 μ Vrms over 100 nsec.

Previously reported at LBNL Workship (July 23-24, 2003)

Overall Comparison

		ISEG OLD	ISEG NEW	EMCO
NOISE AT OUTPUT*	mVpp	1.22 ± 0.13	1.26 ± 0.13	1.12 ± 0.21
	μVrms	214 ± 18	208 ± 18	215 ± 31
1 ST DYNODE VOLTAGE		FIXED (600V)		SCALE WITH OUTPUT
POWER AT MAX OUTPUT (mW)		130	280	250
COST (US\$)		~150	~260	~600

*At 50 Ω oscilloscope input using a 50 Ω cable. 100 nsec window (400 pts.) The scope background is 1mVpp, 190 μ Vrms over 100 nsec.

Previously reported at LBNL Workship (July 23-24, 2003)

- Select and pursue "Old Iseg"-style design
- Need further tests
- Must improve communication with vendor
- Must examine design details
- Conduct Failure Modes and Effects Analysis (FMEA)

Layout Examination

http://www.ssec.wisc.edu/~kitamura/HVstatus090803/Iseg_photos2.pdf

Failure of an Old Iseg Board

MONS, BELGIUM

OCTOBER 2003

NOBUYOSHI KITAMURA

UW-MADISON / SSEC

Recommended Action

... drop lseg as our primary candidate of the PMT HV Base board supplier and bring the alternative vendor to our focus.

--NK's report dated September 8, 2003

http://www.ssec.wisc.edu/~kitamura/reports/HVstrategy.pdf

- Located in Sutter Creek, California, USA
- ✤ In HV business for 30+ years

✤ Has delivered twenty (20) each of HV Generator and PMT Base Board

The prototypes performed as specified in all tested parameters

Trip report by NK: <u>http://www.ssec.wisc.edu/~kitamura/reports/EMCO_trip_rpt.pdf</u> Trip report by George Anderson: <u>http://www.ssec.wisc.edu/~kitamura/reports/Emco%20Meeting%20Report%209.19.03.pdf</u>

Bidding process is necessary

In process: Define / refine specifications

MONS, BELGIUM

OCTOBER 2003

NOBUYOSHI KITAMURA

UW-MADISON / SSEC

Requirements & Specifications

- PMT Modular HV Power Supply ERD
- HV Control Board Specification Control Drawing
- PMT HV Base Board Specification Control Drawing
- HV Generator Source-Controlled Drawing

*George Anderson has been maintaining these documents.

OCTOBER 2003

Improved Specifications

□<u>PMT Base Board</u>

- New pulse-coupling transformer design
- Through-hole components
- Additional RC filter at HV entry
- Improved output cable attachment

□<u>HV Generator</u>

- "HV_DISABLE" pin is added
- Modified MON and PROG analog range
- Higher-voltage-rated output cable
- Eliminate GAIN_ADJ trim-pot

□<u>HV Control Board</u>

 Higher reliability due to fewer components (delete three ICs)

http://www.ssec.wisc.edu/~kitamura/HVReview_091603.htm

PMT Base Board

HJ_IN(-)

Toroidal Transformer

Old Transformer RG178 coaxial cable →Rated at 1000Vrms

New Transformer 22 AWG silicone-insulated bifilar →Rated at 10kV

Toroidal Transformer Response

The bifilar transformer performs better!

http://www.ssec.wisc.edu/~kitamura/toroid.htm

OCTOBER 2003

Output Cable Attachment

Proposed

lseg

MONS, BELGIUM

OCTOBER 2003

NOBUYOSHI KITAMURA

UW-MADISON / SSEC

HV Generator

Spec changes:

- Change PROG range from 0..4095V to 0..2047V
- ✤ Change MON range from 0..4095V to 0..2047V
- Add "HV_DISABLE" pin (No reliability penalty. Optional usage)
- Eliminate GAIN_ADJ trim-pot (No need for absolute accuracy)
- Use higher-voltage-rated output cable

➔ Overall simplicity and increased reliability

HV Control Board

Spec changes:

- ♦ Change PROG range from 0..4095V to 0..2047V
 - → Eliminates x 2 OP-AMP
 - → Eliminates –5V power switch

♦ Change MON range from 0..4095V to 0..2047V ♦ Eliminate 0..4096V REF

➔ Overall simplicity and increased reliability

Tasks Ahead

- ***** Test Rev 3 Main Boards with the EMCO passive base / HV generator.
- Test new EMCO samples (4) with Rev 3 Main Boards
- Have EMCO deliver 60 each of the PMT Base Board and the HV Control Board (including the HV Generator)
- Complete specification control drawing for the bid package
- Create verification plan

Just as System concluded after the recent PDR, mature in design but weak in verification.