[ceboot Users Guide

Arthur Jones
Lawrence Berkeley National Labs

May 14, 2003

The work described here was created with the help of many people — I'd like
to point out just a few ...

Thanks to Azriel Goldschmidt, who patiently puts up with the buggy soft-
ware and has offered many helpful suggestions and comments.

Thanks to Simon Patton, who put together the build environment which
helps keep the project on track and usable by others.

Thanks to Thorsten Stezelberger, without whom I would have been com-
pletely incapable of testing any of the software described below.

Thanks to Chuck McParland, who pretty much completely defined what the
software should do — definitely the hardest part of getting the software to work.

Special thanks to Gerald Przybylski for sharing his workspace the last few
months and putting up with — even answering — so many of my naive hardware
questions.

Contents

1 Introduction 5
2 Booting the Hardware 5
2.1 Hardware Initialization 5
3 Iceboot Command Line Interface 6
3.1 Overviewo 6
3.1.1 Flash Filesystem 6
3.1.2 Forth 7

3.2 Lwlhcel e 7
20 8
3.4 8
S 7 Z 8
3.6 . e e e 9
BT S e e e e e 9
38 9
39 :rmamewordS; 9
3.10 < L e e e 10
311 = . e e 10
312 > e e e e 10
3.13 DO words LOOP 10
3.14 @Q wQ,c@Q e 11
A5 \\ o 11
3.16 allocateo 11
3.17 analogMuxInput o oo 11
A8 and L e e e 12
3.19 base L e e e e 12
3.20 domid Lo 12
3.21 constant L. e 12
3.22 create e e e e e e e 12
3.23 crlf . . e e 12
3.24 disableCurrents 13
3.25 disableHV 13
3.26 drop 13
327 dup ... 13
3.28 enableHV oo 13
320 exec 13
3.30 false 14
331 findo 14
332 fpga 14
333 free. e e e 14
334 gunzip oL 15
330 1 . e e 15
3.36 if cmdsendif 15

337 Init . . . e e e 15
3.38 interpret 16
3.39 locko 16
340 1s . . . Lo 16
3.41 Ishift 16
342 not 16
343 od ..o e e 16
3.44 prtCookedCurrents 17
3.45 prtPLL o 17
3.46 prtRawCurrents. 17
347 prtTemp 17
348 rawCurrentso e e e e 17
3.49 readADC 17
3.50 readDAC 18
351 readTemp 19
3.52 reboot L L e e e 19
353 rm ... 19
3.54 rshift L e 19
3.55 s“ words” 19
356 SWaD e e e e e e e 19
3.57 true 20
398 type . . .o e 20
3.59 unlocko 20
3.60 usleepo 20
3.61 writeActiveBaseDAC 20
3.62 writeDAC 20
3.63 writePassiveBaseDAC 21
3.64 XOr 21
3.65 ymodemlk 21
Coding and Building the software 22
4.1 Overview e e e e 22
4.2 halo 22
4.3 dom-loader 22
4.4 icebooto 22
4.5 stf .o e e 22

1 Introduction

This document describes the DOM mainboard bootloader software environment
for Iceboot users and programmers. While this document does not go into the
details of the software design, it does cover the software at a high level, and
should be a good place to get started working with Iceboot.

Iceboot — like most bootloaders — is a program for bringing up hardware
from power off into a known and consistent state. The program must be able
to execute programs (usually operating systems) and, at least at a simple level,
must be able to read from filesystems.

As we worked with the DOM hardware we found that we would like a few
additional features from our bootloader:

e Complete diagnostics, things don’t always work perfectly the first time.
It’s nice to be able to see at a glance exactly where things are failing.

e Configurability, we want to be able to quickly choose configurable hard-
ware parameters (CPU clock speed, SDRAM clock speed, etc. ..).

e Expressiblity, we want to be able to do a lot without having to resort to
the time-consuming cycle of C program development.

We chose forth for our boot environment as it is small, interpreted and yet
capable enough for the task at hand. Of course, we weren’t the first to choose
forth for out boot environment, see e.g. www.openfirmware.org

2 Booting the Hardware

After power on reset, the Altera Excalibur ARM processor begins the boot
process. If the Boot from Flash pin is active, the Excalibur starts execution from
the start of the EBIQ address space — hardwired to be at address 0x40000000.
If the Boot from Flash pin is inactive, the CPU will take boot code and an fpga
design file from a local programmable ROM device. This document describes
the Boot from Flash mode, the boot from serial mode (ConfigBoot) will be
described elsewhere. The CPU must initialize many pieces of hardware, so that
the software environment can be setup. All of the hardware described below is
configurable, a description of the configuration file used is found in section 4.3
on page 22. The following sections will step through the boot process.

2.1 Hardware Initialization

First in line to be programmed are the Excalibur PLLs. There are two of them:
PLL1 and PLL2, PLL1 drives the AHB1 after a divide by two (AHB1 is one
half the frequency of PLL1) and PLL2 drives the AHB2 clock after a divide by
two. The AHB1 clock is the main CPU clock and the AHB2 clock is used for
the SDRAM clock.

After the PLLs are setup, the iocontrol registers are configured, this lets us
configure slew rates and other parameters for output pins on the Excalibur.

Next in line is initializing the UART. Here we setup the Excalibur chip
to do serial communications. The chip is reset and the baud rate and other
programmable options are setup.

After the UART is setup, the EBI bus parameters are setup. Generic options
which affect all the EBI chip select devices are setup here, like clock rate, and
also chip select specific options are setup here as well.

The SDRAM controller is configured next. The parameters for the SDRAM
chip on the board are programmed into the controller and the controller is
initialized.

Many of the devices that were configured can be accessed through memory
locations on the Excalibur chip. These physical memory locations are setup
next.

At this point in the bootup process, we have all the one-time hardware
initializations done. We now want to load our boot code from flash to the
SDRAM that has just been configured. After copying the boot code to the
start of SDRAM, it is verified against the flash memory. If the verify fails, the
booter will print out the expected value (flash value), the actual value read
from SDRAM and the address of the error. These messages will continue in this
format until all of the loaded image in SDRAM is checked.

The final step in the low-level boot code is to jump to the code that contains
the boot prompt, Iceboot.

3 Iceboot Command Line Interface

3.1 Overview

Once the hardware is initialized, we want to run the command line boot en-
vironment, this will allow us to read and write memory locations, store and
load images from the flash chips, execute programs stored in memory and other
low-level functions. The booter provides a prompt which allows the user to type
in commands one line at a time. If the user has access to a vt100 terminal, the
Up-arrow and Down-Arrow keys will cycle through the last few commands run,
the left and right arrows allows the user to position the cursor and the backspace
key allows the user to destructively delete the previous character on a line. On
most any terminal the Control-F and Control-B key sequences allow the user to
go forward and backward one word. Iceboot implements an extremely limited
subset of the Forth programming language.

3.1.1 Flash Filesystem

The DOM board has a very simple flash filesystem for persistant data storage.
There is only one directory, and each file takes up contiguous blocks on the flash.
The Is command lists the contents of the flash filesystem, the find command
searches the directory, the create command creates a new file on the filesystem,

the lock command locks a file on the filesystem and the unlock command unlocks
a file on the filesystem. Files are locked by default and create is the only
command which automatically unlocks files before creating them. The first two
files on the flash filesystem are reserved, they can be overwritten using the create
command but they may not be removed.

3.1.2 Forth

Forth is a stack oriented language, most commands work on data on the stack
and return their results to the stack. This makes entering commands a bit funny
at times, but it makes the parser very easy to write, and therefore very small,
fast and reliable. Here are a few references to forth material on the web:

e General forth info at http://www.forth.org/
e gforth at http://www.jwdt.com/~paysan/html/gforth.html

e Book at http://www.forth.com/Content/Handbook/Handbook.html

All commands are read one line at a time and so many commands must be
on one line to be syntactically correct. The commands are described using the
following syntax:

Description
argl arg2 sample ret! ret2

Sample Command
The command word is sample, argl and arg2 must be put on the stack before
sample is called and retl and ret2 are returned on the stack. so, e.g.:

Examples

> 1 2 sample .s
<2> 3 4

argl is 1 arg2 is 2 the command is sample and it returns retl which is 3 and
ret2 which is 4 (the .s command proings the contents of the stack).

The rest of this section contains descriptions of the real forth words that are
implemented by iceboot:

3.2 1w,
Description
value address !, w!, c!

Put value into address, 32bit, 16bit or 8bit move.

Examples

> $1 $50000009 c!

Enable to high voltage base by writing 1 hex (8 bits) into address $50000009.
> &10 base !

Set number base back to decimal.

3.3 *

Description

ab* result

a*b

Examples

> 24 % .
8

Multiple 2 and 4 to get 8.

3.4 +
Description
a b+ result
a+b

Examples

> 24 + .
6

Add 2 and 4 to get 6.

3.5 -

Description

ab - result

a-b

Examples

> 42 - .
2

Subtract 2 from 4 to get 2.

3.6

Description

Print top of stack

Examples

> 1.
1

Print a 1, the contents of the top of the stack

3.7 s
Description
8

Print entire stack

Examples

>123 .s
<3>1 23

Print 1, 2, 3 the contents of the entire stack

3.8 /
Description
ab / result
a/b

Examples

>62/.
3

Divide 6 by 2 to get 3

3.9 : name words ;
Description
: name words ;

Function definition. The function is stored with the name name and words will
be executed in place of the name

Examples

> : hi s" hi there" type crlf type ;
> hi
hi there

Print "hi there" and carraige return line feed to stdout

3.10 <
Description
ab < result

a<b

3.11 =
Description

ab = result

a=>o
3.12 >
Description

ab > result

a>b

3.13 ?DO words LOOP

Description

end start DO words LOOP

Execute code from end (exclusive) to start (inclusive). Words are executed end
- start times and the variable ¢ is set to the current loop count.

Examples

> 5 0 7D0O i LOOP .s
<6> 01234

Put the numbers 0-4 on the stack.

10

3.14 @, wa, c@
Description

address @, wQ, cQ value

Get a 32bit word, 16bit word or 8 bit word from address

3.15 \\

Description

\\

Comment character, all characters to end of line are ignored by interpreter

3.16 allocate
Description
nbytes allocate address

Allocate nbytes on the heap address is put on the stack.

Examples

> 4 allocate constant p
>1p!

Allocate 4 bytes on the heap, set the address to the constant p and put a 1 in
that address

3.17 analogMuxInput
Description

channel analogMuxInput

Select analog mux input channel.

Channel Signal

0 Toyocom

40MHz square wave

PMT LED current

Flasher board LED current
Upper Local Coincidence
Lower Local Coincidence
Communications ADC

7 Front End Pulser

DU W N

The input mux channels are described in more detail at
http://rust.1lbl.gov/ gtp/DOM/API/DOM_CPLD_API_v1.0.html

11

3.18 and
Description

a b and result
a and b

3.19 base
Description

base address
Address of number base (10=decimal, 16=hex, ...)

3.20 domid
Description

domid address length
get address and length of boardID string

Examples

> crlf domid type type
7383382234da2

Print the dom id string

3.21 constant
Description

a constant name

Set name to constant value a

3.22 create
Description

dataAddress dataLength nameAddress nameLength create

Create a file on the flash filesystem with name at address nameAddress of
length nameLength using data at dataAddress with length datalLength.

3.23 crlf
Description

crlf stringAddress stringLength

Push the carraige return line feed character address and length to the stack

12

3.24 disableCurrents
Description
disableCurrents result

address of flag to set to disable printing of currents on the top of the screen

3.25 disableHV
Description

disableHV

Disable PMT high-voltage base

3.26 drop
Description
drop

Drop the top stack element

3.27 dup
Description
a dup a a

Duplicate the top stack element

3.28 enableHV
Description

enableHV

Enable PMT high-voltage base

3.29 exec
Description
execAddress execLength exec

Execute the program at execAddress with length execLength

Examples
> s" stf" find if exec endif

If the file named stf is found on the flash filesystem, exec it (run it).

13

3.30 false
Description
false false

return false (0)

3.31 find

Description

nameAddress nameLength find fileAddress fileLength status

find the file with name at nameAddress of length nameLength and return it’s
address and length to the stack if status=1, if status=0 then do nothing.
Examples

> s" stf" find if exec endif

Execute the file stf on the flash filesystem

Examples
> s" startup.fs" find if interpret endif

Interpret the contents of the file startup.fs on the flash filesystem

3.32 fpga

Description

sbiAddress sbiLength fpga status

Program the fpga with the sbi file at sbiAddress with length sbiLength, return
status = 0 if all is ok, otherwise return error code.

Examples

> s" stf.sbi" find if fpga endif

Program the fpga with the sbi file named stf.sbi in the flash filesystem

3.33 free

Description
address free

Free allocated data at address.

14

3.34 gunzip
Description
dataAddress dataLength gunzip destAddress destLength

Unzip a gzip file at dataAddress of length dataLength and put the resulting
data in destAddress with length destLength. if destLength=0 and
destAddress=0 there was an error.

3.35 i
Description
i value of counter

returns value of index variable in a 7DO loop.

Examples

> 4 0 7D0O i LOOP .s
<4>0123

Put the numbers 0-3 on the stack.

3.36 if cmds endif
Description
cond if cmds endif

execute commands if cond is non-zero

Examples

> 3 readADC 1000 > if s" high current on +5V" type crlf type
endif

Read the +5V current and print a warning if it is too high.

3.37 init
Description
init

initialize flash filesystem, all data on flash will be erased

15

3.38 interpret
Description
srcAddress srcLength interpret

Interpret data at address srcAddress with length srcLength

Examples

> s" hi there type crlf type" interpret
hi there

Interpret the string given.

3.39 lock
Description
nameAddress nameLength lock

lock flash file with name at nameAddress with length nameLength

3.40 1s

Description

Is

print listing of flash filesystem directory

3.41 l1shift

Description
value shift 1shift result
result = value shifted left shift

3.42 not
Description

a not result

result = la
3.43 od
Description

count address od

print count hex words at address

16

3.44 prtCookedCurrents
Description
prtCookedCurrents

show cooked currents (efficiency corrected)

3.45 prtPLL

Description

n prtPLL

print pll information for pll n (1 or 2)

3.46 prtRawCurrents
Description
prtRawCurrents

print raw currents (not efficiency corrected)

3.47 prtTemp
Description
code prtTemp

decode temperature and print it

3.48 rawCurrents
Description
rawCurrents address

return address of a flag to determine whether or not to print raw or cooked
currents to the top of the screen.

3.49 readADC
Description

channel read ADC wvalue
read ADC at channel.

17

Channel Description

0 -5V monitor
Pressure
5V Power Supply Voltage
5Vanalog Current Monitor
3.3V input Current Monitor
2.5V input Current Monitor
1.8 V input Current Monitor
-5V Current Monitor
DISC-OneSPE
1.8V monitor
10 2.5V monitor
11 3.3V monitor

00~ O Ot Wi =

Nej

The ADC channels are described in more detail at
http://rust.1bl.gov/ gtp/DOM/API/DOM_CPLD_API_v1.0.html

3.50 readDAC

Description
channel readDAC value
read DAC at channel.

Channel Description

ATWDO Trigger Bias Current
ATWDO Ramp Top Voltage

ATWDO Ramp Rate Control Current
ATWD Analog Reference Voltage
ATWD1 Trigger Bias Current
ATWD1 Ramp Top Voltage

ATWD1 Ramp Rate Control Current
PMT Front End Pedestal

Multiple SPE Discriminator Threshold
Single SPE Discriminator Threshold
10 On-Board LED Brightness Control

11 Fast ADC Reference (Pedestal Shift)
12 Internal Pulser Amplitude

13 Front End Amp Lower Clamp Voltage
14 Spare 10 bit DAD Output 0

15 Spare 10 bit DAD Output 1

0O Ut WO

Ne)

The DAC channels are described in more detail at
http://rust.1bl.gov/ gtp/DOM/API/DOM_CPLD_API_v1.0.html

18

3.51 readTemp
Description
readTemp code

return coded temperature value

3.52 reboot

Description

reboot

reboot the DOM

3.53 rm
Description
nameAddress nameLength rm

remove the file with name at nameAddress and length of nameLength

Examples
> s" unused.data" find if rm endif

Remove a file called unused.data on the flash filesystem

3.54 rshift

Description

value shift rshift result

result = value right shifted shift

3.55 s* words”
Description
s words” wordsAddress wordsLength

return string at wordsAddress with length wordsLength

3.56 swap
Description
swap

swap the two top words of the stack

19

3.57 true
Description
true result

return a true result (-1)

3.58 type

Description

stringAddress stringLength type

print string at stringAddress with length stringLength

3.59 unlock
Description
nameAddress nameLength unlock

unlock flash data with file name at nameAddress with length nameLength

3.60 wusleep
Description
us usleep

sleep for us microseconds

3.61 writeActiveBaseDAC
Description
channel value writeActiveBaseDAC

write value to PMT active base DAC

3.62 writeDAC

Description
channel value writeDAC

write value to DAC channel.

20

Channel Description

0 ATWDO Trigger Bias Current
ATWDO Ramp Top Voltage
ATWDO Ramp Rate Control Current
ATWD Analog Reference Voltage
ATWD1 Trigger Bias Current
ATWD1 Ramp Top Voltage
ATWD1 Ramp Rate Control Current
PMT Front End Pedestal
Multiple SPE Discriminator Threshold
Single SPE Discriminator Threshold
10 On-Board LED Brightness Control
11 Fast ADC Reference (Pedestal Shift)
12 Internal Pulser Amplitude
13 Front End Amp Lower Clamp Voltage
14 Spare 10 bit DAD Output 0
15 Spare 10 bit DAD Output 1

00~ O Ot s Wi =

Nej

The DAC channels are described in more detail at
http://rust.1bl.gov/ gtp/DOM/API/DOM_CPLD_API_v1.0.html
Examples

> 1 100 writeDAC

Set DAC channel 1 to 100 counts

3.63 writePassiveBaseDAC
Description
channel value writePassiveBaseDAC

write value to PMT passive base DAC

3.64 xor
Description
a b xor result

result = a xor b

3.65 ymodemlk
Description
ymodemlk dataAddress dataLength

Download a file over the terminal return the address and length of the data
returned.

21

4 Coding and Building the software

4.1 Overview

Iceboot is a combination of a few different projects that are checked into the
icecube CVS repository. These project are all written in C. The BFD build
system (documented elsewhere) is used to build each of these projects. The
following sections describe the different projects.

4.2 hal

The hal project defines and implements the hardware access layer. It is used
to abstract hardware access to facilitate simulation without real hardware. Hal
is documented at http://deimos.1bl.gov/~arthur/dom-mb

4.3 dom-loader

The dom-loader project contains the hardware configuration file that is used
to configure the hardware on bootup. This allows us to use epxal and epxa4
chips and deal with different setting of the dom-mainboard and the epxa eval
boards . The config file is parsed to generate the low-level assembler code that
configures the hardware.

This project also builds the boot image and contains the low-level code
necessary to get read/write access to stdin and stdout over the serial port, or,
eventually, the communications channel.

4.4 iceboot

The Iceboot project contains the C source for the forth interpreter.

4.5 stf

Once hardware is working, a pass/fail high-level test is often required. The stf
project provides the infrastructure for creating, running, reporting and
archiving this test information.

22

Index

ADC
channel descriptions, 17

Boot from Flash, 5

Commands
* 8
+, 8
-, 8
59

5,9

/+9

: name words ;, 9

=, 10

?DO words LOOP, 10

<, 10

>, 10

allocate, 11

analogMuxInput, 11

and, 12

base, 12

constant, 12

create, 12

crlf, 12

disableCurrents, 13

disableHV, 13

domid, 12

drop, 13

dup, 13

enableHV, 13

exec, 13

false, 14

find, 14

fpga, 14

free, 14

gunzip, 15

i, 15

if cmds endif, 15

init, 15

interpret, 16

lock, 16

Is, 16

Ishift, 16

23

not, 16

od, 16
prtCookedCurrents, 17
prtPLL, 17
prtRawCurrents, 17
prtTemp, 17
rawCurrents, 17
readADC, 17
readDAC, 18
readTemp, 19

reboot, 19

rm, 19

rshift, 19

s words”, 19

swap, 19

true, 20

type, 20

unlock, 20

usleep, 20
writeActiveBaseDAC, 20
writeDAC, 20
writePassiveBaseDAC, 21
xor, 21

ymodem1k, 21

DAC
channel descriptions, 18, 20
dom-loader, 22

EBI, 6

Excalibur
AHBIL, 5
AHB2, 5
PLL1, 5
PLL2, 5

hal, 22

SDRAM
booting from, 6
controller, 6
stf, 22

Toyocom, 11

UART, 6

24

