
Components of IceCube DAQ in use at Pole, Jan-Feb. 2005
Edited by J. Jacobsen, jacobsen@npxdesigns.com

V1.6
02/03/05

Section One: Status/Overview

Section Two: Program Summary Documentation
Still needed: Dan, Pat: monolith

Mark Krasberg: testdaq launch scripts

Programs:
 PROGRAM NAME: ldall
 AUTHOR(S): Arthur Jones (ALJones@lbl.gov)
WHAT MACHINES(S) IT RUNS ON: any domhub
 WHAT IT DOES: upload DOM-MB release file (release.hex)
HOW TO INSTALL NEW VERSIONS: install dor-driver
 ADDITIONAL DOCUMENTATION: N/A
 HOW TO START IT: ldall release.hex
WHAT ELSE HAS TO BE RUNNING: dor-driver
 PROCESS NAMES
(what you'd see w/ "ps ax"): ldall, dd, domterm
 INPUT DESCRIPTION: DOM-MB release file “release.hex”

Project Name Runs on Release/tag Stable/released Contact Remarks
DOM-MB DOMs 308 yes Jones default configuration
DOM-MB DOMs pole-fb-01 yes Jones/Jacobsen flasher run configuration
dor-driver V02-05-04 yes Jacobsen
domhub-common V02-04-00 yes Hays
domhub-app sps-ixhub-cont0x V02-04-01 yes Hays
testdaq-io V03-08-02 yes Braun
testdaq-lightsource SPS-REL1 yes Braun
testdaq-control sps-stringproc-cont0x SPS-REL1 yes Braun
testdaq-collector sps-stringproc-cont0x SPS-REL1 yes Braun
testdaq-launch sps-stringproc-cont0x forthcoming no Krasberg Mark's startup scripts
tiny-daq sps-stringproc-cont0x pole-daq-100 yes Jones
icebucket V01-07-00 yes Patton
splicer V02-02-01 yes Patton
iceboss-services V01-01-01 yes Patton
triggerUtil forthcoming no Wharton
icetopTrig forthcoming no Toale, Divia Placeholder, not yet used
iniceTrig V03-03-00 no Toale
daq-common V03-01-00 yes McParland, Patton
monolith sps-stringproc-cont0x V00-01-00 no Wharton, Toale
daq-dispatch sps-stringproc-cont0x V00-01-00 no Patton
PFSYSTEM sps-fpmaster, V00-01-00 no Blaufuss

sps-fpclient0x
(data movement)
spade sps-sattx V00-00-04 yes Mackenzie
tapeserver V00-00-04 yes Mackenzie

 OUTPUT DESCRIPTION: uploads “release.hex” onto DOM flash
 COMMON PITFALLS: very stable

 PROGRAM NAME: moat
 AUTHOR(S): John Jacobsen, Arthur Jones
WHAT MACHINES(S) IT RUNS ON: any domhub
 WHAT IT DOES: exhaustive test of comms/tcalib
HOW TO INSTALL NEW VERSIONS: install dor-driver
 ADDITIONAL DOCUMENTATION:
http://docushare.icecube.wisc.edu/docushare/dsweb/View/Collection-511
 HOW TO START IT: moat -d 10 -c 600 -t 3600 -r 25500 -g
 (14 hour test)
WHAT ELSE HAS TO BE RUNNING: dor-driver
 PROCESS NAMES
(what you'd see w/ "ps ax"): moat, stagedtests.pl, readwrite, tcaltest,
 run-mjb.sh, ...
 INPUT DESCRIPTION: none
 OUTPUT DESCRIPTION: timestamped directory, symlinked as
 "latest_moat", containing lots of
 diagnostics, located wherever you started
 moat from.
 COMMON PITFALLS: hardware errors

 PROGRAM NAME: dor-driver
 AUTHOR(S): John Jacobsen <jacobsen@npxdesigns.com>
WHAT MACHINES(S) IT RUNS ON: any domhub
 WHAT IT DOES: implements DOR communications interface
HOW TO INSTALL NEW VERSIONS: wget <release tarball>
 tar xvzf <release tarball>
 cd <release-dir>/driver
 make
 su
 make install; make installfw;
 /etc/init.d/dhrc restart
 ADDITIONAL DOCUMENTATION:
http://docushare.icecube.wisc.edu/docushare/dsweb/View/Collection-511
 HOW TO START IT: starts on boot
WHAT ELSE HAS TO BE RUNNING: nothing
 PROCESS NAMES
(what you'd see w/ "ps ax"): none; "lsmod | grep dh" shows it's there
 INPUT DESCRIPTION: domhubapp, test scripts
 OUTPUT DESCRIPTION: " "
 COMMON PITFALLS:

 PROGRAM NAME: DOMHub App (TestDAQ version)
 AUTHOR(S): David Hays <dehays@lbl.gov>
WHAT MACHINES(S) IT RUNS ON: any domhub
 WHAT IT DOES: Responds to RMI method calls from testdaq-control
 to manage cable power, discover communicating DOMs
 and configure DOMs. It creates data servers
 for hit data, monitor data and time calibration data
 to be consumed by the testdaq-collector client.

 These functions are performed by interacting with the
 DOR driver proc and dev file interface.
HOW TO INSTALL NEW VERSIONS: domhub-app.jar file must be placed in the
 ~testdaq/work/lib directory

 CONFIGURATION FILE: /usr/local/etc/dh.properties
 DEPENDENCIES: domhub-common.jar

 Environment tool dependencies (These are assumed to
 be available from the domhub system setup):
 /usr/local/bin/domserv
 commons-logging.jar, log4j.jar
 ADDITIONAL DOCUMENTATION: DOM Hub Application Developers Guide:
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-7746/DHAppDevGuide.doc
 HOW TO START IT: Normally started using Mark Krasberg's 'ready' script.
 (~testdaq/bin/ready)
 Actual command line with the necessary jars on
 CLASSPATH: java icecube.daq.domhub.DOMHub
WHAT ELSE HAS TO BE RUNNING: rmiregistry (If it is not already started, use the
 command 'rmiregistry &'. Also see COMMON PITFALL
 regarding CLASSPATH necessary when starting rmiregistry.)
 PROCESS NAMES
(what you'd see w/ "ps ax"): rmiregistry
 java icecube.daq.domhub.DOMHub /usr/local/etc/dh.properties
 /usr/local/bin/domserv -dh
 COMMON PITFALLS: RMI Exceptions :--
 - Check that domhub-app.jar and domhub-common.jar were
 on CLASSPATH when rmiregistry was started.
 - Check that the rmiHost value if the fully qualified
 name of the host on which DOMHub App is running.

 Further troubleshooting, send the domhubapp.log
 file (or preferably, the log section for the period
 for which a problem was encountered) to dehays@lbl.gov

 PROGRAM NAME: testdaq-control
 AUTHOR(S): Jim Braun
 WHAT MACHINE(S) IT RUNS ON: sps-stringproc01
 WHAT IT DOES: Manages data transfer between testdaq-collector and
 domhubs; supplies configuration information to DOMs through
 configuration input file
HOW TO INSTALL NEW VERSIONS: testdaq-control.jar and testdaq-control-test.jar files
 must be placed in the ~testdaq/work/lib/ directory
 ADDITIONAL DOCUMENTATION:
http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-8910/tdaquserguide.ps
 HOW TO START IT: java icecube.testdaq.control.RevTestDAQControlCommandLine
 {config file} {output dir} {data description}
 {-d domhub1 hostname} {-d domhub2 hostname}
WHAT ELSE HAS TO BE RUNNING: domhub-app must be running on all specified domhubs
 PROCESS NAMES: java
 INPUT DESCRIPTION: config file: Test description file suppling test
 configuration information and specific configuration
 information for each DOM
 output dir: Directory to which data will be written
 data description: Short description of data that will be
 taken
 OUTPUT DESCRIPTION: N/A
 COMMON PITFALLS: rmiregistry must be running on sps-stringproc01

 PROGRAM NAME: testdaq-collector
 AUTHOR(S): Jim Braun
 WHAT MACHINE(S) IT RUNS ON: sps-stringproc01
 WHAT IT DOES: Applies time calibration to DOM data stream and writes
 DOM data to file through configuration
 commands from testdaq-control
HOW TO INSTALL NEW VERSIONS: testdaq-collector.jar file must be placed in the
 ~testdaq/work/lib/ directory
 ADDITIONAL DOCUMENTATION:

http://docushare.icecube.wisc.edu/docushare/dsweb/Get/Document-8910/tdaquserguide.ps
 HOW TO START IT: N/A
WHAT ELSE HAS TO BE RUNNING: N/A
 PROCESS NAMES: java
 INPUT DESCRIPTION: N/A
 OUTPUT DESCRIPTION: Raw testdaq-format DOM data file
 COMMON PITFALLS: Rmiregistry must be running on sps-stringproc01

 PROGRAM NAME: domcap-setup
 AUTHOR(S): Arthur Jones <aljones@lbl.gov>
WHAT MACHINES(S) IT RUNS ON: any unix box, most likely sps-stringprocXX
 WHAT IT DOES: creates named pipes (fifos) for engdemux
HOW TO INSTALL NEW VERSIONS: make install from tiny-daq
 ADDITIONAL DOCUMENTATION: not yet
 HOW TO START IT: domcap-setup
WHAT ELSE HAS TO BE RUNNING: nothing
 PROCESS NAMES: domcap-setup, mkfifo
(what you'd see w/ "ps ax"):
 INPUT DESCRIPTION: none
 OUTPUT DESCRIPTION: side effect: /tmp/domcap/domXXX fifos created...
 COMMON PITFALLS: /tmp/domcap not owned by user.

 PROGRAM NAME: engdemux
 AUTHOR(S): Arthur Jones <aljones@lbl.gov>
WHAT MACHINES(S) IT RUNS ON: any unix box, most likely sps-stringprocXX
 WHAT IT DOES: demuxes the stream of hits from testdaq
HOW TO INSTALL NEW VERSIONS: make install from tiny-daq
 ADDITIONAL DOCUMENTATION: not yet
 HOW TO START IT: engdemux file.hits (file.hits can be a pipe)
WHAT ELSE HAS TO BE RUNNING: nothing
 PROCESS NAMES: engdemux
(what you'd see w/ "ps ax"):
 INPUT DESCRIPTION: testdaq hits file
 OUTPUT DESCRIPTION: set of fifos in /
 COMMON PITFALLS: /tmp/domcap/domXXX not created yet with
 domcap-setup script.

 PROGRAM NAME: engsort
 AUTHOR(S): Arthur Jones <aljones@lbl.gov>
WHAT MACHINES(S) IT RUNS ON: any unix box, most likely sps-stringprocXX
 WHAT IT DOES: sorts demuxed data from testdaq
HOW TO INSTALL NEW VERSIONS: make install from tiny-daq
 ADDITIONAL DOCUMENTATION: not yet
 HOW TO START IT: engsort
WHAT ELSE HAS TO BE RUNNING: engdemux
 PROCESS NAMES: engsort, engdemux
(what you'd see w/ "ps ax"):
 INPUT DESCRIPTION: demuxed data pipes filled by engdemux
 OUTPUT DESCRIPTION: sorted testdaq hits file
 COMMON PITFALLS: /tmp/domcap/domXXX not created yet with
 domcap-setup script.

 PROGRAM NAME: multtrig
 AUTHOR(S): Arthur Jones <aljones@lbl.gov>
WHAT MACHINES(S) IT RUNS ON: any unix box, most likely sps-stringprocXX
 WHAT IT DOES: simple multiplicity trigger
HOW TO INSTALL NEW VERSIONS: make install in tiny-daq
 ADDITIONAL DOCUMENTATION: not yet
 HOW TO START IT: multtrig file.hits file.idx
WHAT ELSE HAS TO BE RUNNING: engsort

 PROCESS NAMES: engsort, multtrig
(what you'd see w/ "ps ax"):
 INPUT DESCRIPTION: sorted testdaq hits data (wrapped eng format)
 OUTPUT DESCRIPTION: wrapped eng format and ascii index file
 COMMON PITFALLS: times are in ns, not us.

 PROGRAM NAME: PFSYSTEM (Consists of two basic pieces, a server
 process which connects to DaqDispatch for input
 (Master) and a client software which runs an
 instance of IceTray (from offline software suite)
 AUTHOR(S): Erik Blaufuss <blaufuss@icecube.umd.edu>
 Ping Huang <huang@icecube.umd.edu>
WHAT MACHINES(S) IT RUNS ON: Server process runs on sps-fpmaster. Client processes
 run on sps-fpslave01,02
 WHAT IT DOES: Processing and Filtering (PnF). The PnF system is designed
 to be the place where online
 reconstructions are performed and filter takes place.
 Currently, with the single string, and the lack of
 Pole-qualified reconstruction software, the PnF system
 is running, and simply passing all data through
 (filtering with all data set to KEEP). Currently, it's
 output is just a wrapper/header ontop of EventBuilder
 output format from Monolith.
HOW TO INSTALL NEW VERSIONS: New versions are built on sps-access within
 the SPOLE-SURFACE meta-project. System admins have
 install scripts to propogate installed versions
 to appropriate locations.
 ADDITIONAL DOCUMENTATION: Forthcoming.
 HOW TO START IT: pfclient-main processes are started automatically
 at boot time, and if they exit/disconnect from the
 server, they restart and attempt to reconnect
 automatically. No user intervention should be required
 to start/stop them.

 Master (server process) is configured and controlled via
 the JMX console on sps-fpmaster (setup via ssh
 tunnelling).

 In JMX Agent View on sps-fpmaster, the icecube.pnf
 subsection has three entries:
 configure- for configuring pnf (Default values at startup
 should be correct for operation on sps-*)
 control - for stopping/starting process
 monitor - checking data throughput, status, etc.

 Additional information on current status of Master server
 process can be found in its run log:
 sps-fpmaster:/usr/local/icecube/pfcommon/logs/* (look
 for latest)

WHAT ELSE HAS TO BE RUNNING: Master requires DAQ-Dispath to be running to serve
 as input. If not running, it will keep trying to connect
 for some period of time before giving up.

 PROCESS NAMES
(what you'd see w/ "ps ax"): on sps-fpmaster: /usr/local/icecube/pfcommon/bin/Master
 on sps-fpslave0?: ./bin/pfclient-main

 INPUT DESCRIPTION: Socket connection to DAQ-Dispatch. Build events from DAQ
 Event Builder (or monolith) served up in chunks over socket.

 OUTPUT DESCRIPTION: Files (eventually to be transfered over satellite/tape
 connection). A small header with filtering/reconstruction
 information on top event builder data format.

 COMMON PITFALLS: Currently, biggest problem is instability of DAQ-Dispatch.
 If it crashes while the connection is open, then Master
 process could temporarily hang.

 PROGRAM NAME: Daq-Dispatch
 AUTHOR(S): Simon Patton <sjpatton@lbl.gov>
 WHAT MACHINES(S) IT RUNS ON: sps-evbuilder
 WHAT IT DOES: Reads events from files (or evbuilder when it is present)
 and makes them available, via a network socket, to PnF.
 HOW TO INSTALL NEW VERSIONS: "stop" the iceboss0 system service on the node, install
 the new dd-control.sar, then "start" the iceboss0 system
 service.
 ADDITIONAL DOCUMENTATION: In progress
 HOW TO START IT: Access up the "control" MBean (see below) and invoke
 the "startup" operation.
 WHAT ELSE HAS TO BE RUNNING: Nothing.
 PROCESS NAMES
 (what you'd see w/ "ps ax"): java -server -Djava.security.manager=default [...]
 However the above only checks that JBoss is running,
 the following three MBeans should be available on the
 jmx-console when daq-dispatch is running. (All are
 currently in the "icecube.dispatch" domain)
acme-aspect=configuration,component=daqdispatch,daqdispatch=FakeClient
acme-aspect=control,component=daqdispatch,daqdispatch=Delivery
acme-aspect=monitor,component=daqdispatch,daqdispatch=Delivery

 INPUT DESCRIPTION: Input is done via the "configuration" MBean, and
 can only be done when daq-dispatch is not in the running
 state. (The running state is available in the "control"
 MBean.

 In the "configuration" MBean the only attribute which is
 important is the "source" attribute. This contains an XML
 element that describes the configuration of the data source
 and should look like the following.

<source>
<watch iterator="icecube.control.dispatch.testdaq.TestDAQFileIterator">

<param type="java.lang.String">
/data/exp/IceCube/2005/TestDAQ/00/00/SPS-DAQ-01_run0000000_PedestalPattern-ATWD0-
TurnOffPowerManagement/SPS-DAQ-01_run000000_PedestalPattern-
ATWD0TurnOffPowerManagement.events
 </param>
 <param type="java.lang.String">
 events
 </param>
 <param type="java.lang.String">
 events.ready
 </param>
 </watch>
</source>

 Items to note are: - The first parameter should be the last
 file PnF successfully processed. (This will eventually
 be automated).

 - In deployment the file name will have a different name
 for the 'steering file', check with Mark K. on what this
 should be.
 - The second and third parameters are the file extension and
 semaphore files respectively. The ones shown here were used
 during development, but deployment may have different
 values.
 OUTPUT DESCRIPTION: All output is sent to the JBoss log file.
 COMMON PITFALLS: The current implementation does not delete data
 files once PnF has completely finished with them.
 Therefore the data disk filling up can be an issue.

 The "watching" mechanism expects the data directory
 tree to be complete, with no extraneous or empty
 directories.
 If either of these conditions occur then data forwarding
 may stall. Cleaning up the directory tree and restarting
 the service (remembering to reset the last run processed
 by PnF) should fix this.

