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Abstract

The IceCube Neutrino Observatory is a Cherenkov detector deep in the Antarctic
ice. Due to limited computational resources and the high data rate, only simplified
reconstructions restricted to a small subset of data can be run on-site at the South
Pole. However, in order to perform online analyses and to issue real-time alerts, fast
and powerful reconstructions are desired.

Recent advances, especially in image recognition, have shown the capabilities of
deep learning. Deep neural networks can be extremely powerful and their usage is
computationally inexpensive once the networks are trained. These characteristics
make a deep learning-based reconstruction an excellent candidate for the application
on-site at the South Pole. In contrast to image recognition tasks, the reconstruction
in IceCube poses additional challenges as the data is four-dimensional, highly variable
in length, and distributed on an imperfect triangular grid.

In this thesis, a deep learning-based reconstruction method is presented which can
significantly increase the reconstruction accuracy while reducing the runtime in
comparison to standard reconstruction methods in IceCube.
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1 Introduction

In 2013 the first evidence for a diffuse astrophysical neutrino flux was reported by
IceCube [3]. With more years of data taking, the detection of an astrophysical
neutrino flux was confirmed [4, 37]. These analyses use a veto region inside the
IceCube detector to select high-energy starting events (HESE). A complimentary
detection channel selecting charged-current muon-neutrino events further confirmed
the measured astrophysical neutrino flux [2, 7, 25]. Even though IceCube has been
able to detect a diffuse astrophysical neutrino flux in different detection channels, it
has not been able to find any neutrino sources to date.

The limited pointing accuracy as well as the low number of detectable events are key
challenges to detecting neutrino sources. Many efforts have been put forth to further
increase the detector’s sensitivity as well as to improve the reconstruction of neutrino
events. To further increase the discovery potential, a realtime alert system was
implemented on-site at the South Pole [1, 9] to enable a multi-messenger approach.
Through the realtime alert system, alerts will be sent out to the community when
interesting neutrino events are detected within IceCube. The goal being that
simultaneous multi-messenger data will be collected through follow up observations.
With the help of a multi-messenger approach the mystery of the origin of astrophysical
neutrinos might be solved. Although the realtime alert system has been up and
running since 2012, no detection could yet be made [1].

For the realtime-alert system, events must be filtered and reconstructed on-site
at the South Pole. However, this is very difficult as resources are very limited.
Therefore, only simple and fast event reconstructions can be run at the South Pole.
Even though more sophisticated and powerful reconstruction methods exist, these
can take minutes to hours to reconstruct a single event, rendering them intractable
for the use at the South Pole. Another difficulty is that the runtime of these
reconstruction methods is highly dependent on the event. High-energy events will
deposit more light in the detector, which in turn will increase the runtime of the
event reconstructions. This, however, is problematic since the high-energy events
are, in most cases, the events of interest. Furthermore, the bandwidth is limited
to send data north for further processing. The high data rate as well as the strict
hardware and bandwidth limitations are key challenges to the success of the real-time
follow-up framework. To further complicate matters, the data present is in a very
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1 Introduction

raw and low-level format. Typically, a reconstruction starts at the point where only
the calibrated pulses per digital optical module (DOM) are given.

These limitations call for a powerful and fast reconstruction method which can
handle raw data and has a runtime that is ideally independent of the event type.

Typically, machine learning methods are a good choice for demands like these.
While methods such as a Random Forest[16] or a boosted decision tree (BDT) [22]
have shown great results, they can not easily deal with raw data. Artificial neural
networks, on the other hand, are able to handle raw data. Recent advances in image
recognition [27] have shown the capabilities of deep convolutional networks. These
networks belong to the class of representation-learning methods [41]. They are
capable of processing raw data and of creating an abstract level of representation.
Once the networks are trained, their usage is computationally inexpensive. The
network performs a set amount of mathematical operations on the input data
resulting in a very stable runtime that is essentially independent of the input. These
characteristics make deep learning methods an excellent candidate for powerful and
fast on-site reconstructions.

In this thesis, a first study on the feasibility of reconstruction methods based on
deep convolutional networks is presented. The developed reconstruction methods
are intended to be used on-site at the South Pole to improve the online filters as well
as the realtime-alert system. Through further improvements in the realtime-alert
system and follow-up observation framework, neutrino sources might finally be
detected.

2



2 The IceCube Detector

IceCube is a neutrino detector located at the South Pole instrumenting a cubic
kilometer of glacial ice. The detector as seen in figure 2.1, consists of 5160 digital
optical modules (DOMs) installed on 86 vertical strings at depths between 1450 m
and 2450 m. These strings are deployed on an approximately triangular grid with

Figure 2.1: The IceCube detector consists of three detector parts: the main
IceCube array, IceTop, and DeepCore. Data recorded by the digital optical
modules (DOMs) is collected in the IceCube Laboratory. Online filtering and
processing is applied limiting the data rate to about 100 GB per day [8, p. 61]. [32]

a string-to-string spacing of about 125 m. In order to detect neutrinos, IceCube
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2 The IceCube Detector

measures the Cherenkov photons produced by charged secondary particles resulting
from neutrino interactions.

The primary goal of the IceCube detector is the detection of astrophysical neutrinos,
which was achieved in 2013[3], as well as the identification and characterization of
their sources. Although many efforts have been put forth to detect the sources of
astrophysical neutrinos, to date, their origin remains a mystery. Ongoing work is put
into the improvement of reconstruction methods to further increase the sensitivity
of the detector. In addition, a multi-messenger approach is implemented to further
increase the discovery potential through time-dependent analyses [1, 9]. Other
objectives of the IceCube detector include indirect dark matter searches, searches
for exotic particles as well as the study of neutrino oscillation physics. A detailed
description of the IceCube detector can be found in [8].

The two primary detection channels consist of so called track-like events, induced
by charged-current muon neutrino interactions of the type

𝜈u� + 𝑁 → 𝜇 + 𝑋, (2.1)

as well as cascade-like events which result from charged current 𝜈u� and 𝜈u� interactions
in addition to neutral current interactions of all neutrino types [9, p. 6]. The pointing
accuracy for track-like events is less than 1° and about 10 – 15° for cascades [9, p.6].
The focus in this thesis is on the reconstruction of track-like events.

2.1 Online Processing and Filtering

In order to enable real-time alerts and follow-up programs, an online processing
and filtering (PnF) system is implemented at the South Pole. Triggered events
undergo a base processing in which the raw DOM waveforms are calibrated and
deconvolved to extract pulses consisting of the light arrival time and amplitude [5,
pp.7-10]. After the base processing, further filters are applied.

Figure 2.2: An example processing chain for the gamma-ray follow-up (GFU)
filter is shown. The Muon Online L2 Filter is the basis for many different follow-up
programs.
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2.2 Reconstruction Methods

One of these filters is the Muon Filter [1, pp.6-7] which is the basis for many standard
IceCube muon-neutrino analyses. The Muon Filter aims to select well reconstructed
muons originating from any direction.

To further reduce the muon background, the Muon Online L2 Filter [1, pp.7-10]
is introduced. It consists of additional advanced reconstructions as well as further
event-selection cuts. The Muon Online L2 Filter is the basis of many follow-up
programs such as the optical and X-ray follow-up (OFU) and gamma-ray follow-up
(GFU) program [9, pp.13-18]. The GFU program searches for neutrino bursts on
time scales of up to three weeks. In fig. 2.2, the basic processing chain for the GFU
filter is depicted. The main focus in this thesis is on the Muon Online L2 Filter.

The trigger rate in IceCube is about 2.7 kHz resulting in data of approximately
1 TB/day [8, p.50]. After the Muon Filter is applied, the rate is reduced to about
45 Hz[1, p.7]. A further reduction in the event rate down to 2 Hz[1, p.9] in the
up-going region is obtained through the Muon Online L2 Filter. The high data rate
poses a key challenge for the PnF system as limited hardware capacities are available
at the South Pole. Strict runtime requirements have to be fulfilled by reconstructions
in order to prevent pileup. As a result, only basic and fast reconstruction methods
can be run at the South Pole. A more in-depth description of the online processing
and filtering system is given in [1, 8, 9]

2.2 Reconstruction Methods

Many different reconstruction methods exist within IceCube. In this thesis, the focus
is on the relevant standard directional reconstruction (SplineMPE) as well as the
standard energy reconstructions (Truncated Energy and MuEx). More sophisticated
track reconstruction methods such as millipede[59] exist, but they are not further
discussed, as they do not meet the hardware requirements imposed by the online
processing and filtering system. Single events reconstructed by millipede can require
hours of runtime.

2.2.1 Energy Reconstruction - Truncated Energy & MuEx

For through-going muons, the best achievable resolution on the reconstruction of
the muon or neutrino energy is given by the muon energy at its entry into the
detector. The standard energy reconstruction methods Truncated Energy[5, 11] and
MuEx[5] exploit the linearity between the muon energy loss d𝐸/ d𝑥 and its energy.
This linearity, however, is only given for muon energies above approximately 1 TeV
where the energy dependent stochastic energy losses begin to dominate over the
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2 The IceCube Detector

more or less constant ionization losses [36]. At lower energies, variables such as the
measured track length in the detector provide better energy proxies. A summary of
the energy reconstruction methods in IceCube is given in [5].

2.2.2 Directional Reconstruction - SplineMPE

Simple directional reconstructions such as Linefit or SPE fit are available at the Muon
Filter level. These track reconstructions in addition to the MPE fit are described
in [13]. The most advanced track reconstruction available online is SplineMPE. It is
performed as part of the Muon Online L2 Filter.

SplineMPE maximizes a multi-photo-electron (MPE) likelihood [13, 55] given by

ℒMPE ( ⃗𝑥| ⃗𝜃) =
1st hits

∏
u�

𝑛u� ⋅ 𝑝(𝑡res,u�| ⃗𝜃) ⋅ (1 − 𝑃(𝑡res,u�| ⃗𝜃))
u�u�−1

(2.2)

𝑃(𝑡res,u�| ⃗𝜃) =
u�res

∫
−∞

𝑝(𝑡| ⃗𝜃) d𝑡 (2.3)

where the probability density for an expected light arrival time 𝑝(𝑡res,u�| ⃗𝜃) for a given
track hypothesis ⃗𝜃 is obtained from spline tables instead of the parameterized Pandel
function [48] as it is done in the MPE fit. A minimum ionizing muon with an infinite
track length is used as the track hypothesis ⃗𝜃. The likelihood is built using the first
pulse measured at a given DOM 𝑖 as well as the total number of pulses 𝑛u� for the
given DOM. Typically, the first light measured at a DOM (disregarding noise and
prepulses) provides the most information as it is the least scattered light. More
details on the SplineMPE reconstruction can be found in [55].

2.2.3 Uncertainty Estimation - Cramer Rao

In addition to the best fit of the track reconstruction, an estimate on the uncertainty
is needed for point source searches and follow-up programs. Currently, the Cramér
Rao and Paraboloid method are implemented in the online filters. However, the
Paraboloid method[47] can only be run for a subset of low energy events due to
its long run time. The Cramér Rao method is an analytical method that uses the
Fisher information matrix and the Cramér Rao inequality [51]. The runtime of the
Cramér Rao method is very fast and is subsequently run on all events. Both of the
above mentioned track uncertainty estimators are heavily biased at higher muon
energies, so that a bias correction needs to be performed. More information on the
track uncertainty estimators in IceCube is given in [45, pp.36-47].
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3 Artificial Neural Networks and Deep Learning

Artificial neural networks are not a new concept. During the 1970s and 1980s, the
possibility of training simple multilayer neural networks with stochastic gradient
descent and backpropagation was discovered independently by different groups [21,
39, 49, 60]. By the late 1990s, neural networks were mostly forsaken by the
community which believed that their training was infeasible. Interest was revived
in the early 2000s. Major breakthroughs in speech recognition [17, 46] as well as
image recognition [27] have shown the capabilities of deep neural networks. This was
made possible through the advent of fast GPUs[50], increasing datasets, as well as
improvements in network architectures and training. A new regularization technique
called dropout[56], ReLU[24] activiation functions, and data augmentation played a
key role in the success story of deep neural networks.[41]

In comparison to shallow learners such as a Random Forest[16] or a boosted decision
tree (BDT) [22], deep learning architectures do not rely on feature engineering.
Deep learning architectures such as deep neural networks belong to the class of
representation-learning methods. They are capable of processing raw data and of
creating abstract levels of representation. Deep learning does not only consist of
deep neural networks, but often these terms are used interchangeably. An overview
of deep learning is given in [41].

3.1 Neural Network Architectures

Many of the neural network components and architectures mimic the human brain
and visual system. In the following, important components and architectures are
introduced.

Artificial Neuron (Perceptron)

A neural network is built out of small components called artificial neurons or
perceptrons. These neurons are connected to other neurons as illustrated in fig. 3.1.
In a basic feed forward network, information flows in one direction. An artificial
neuron retrieves information over the inputs 𝑎u�. These can either be the outputs
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3 Artificial Neural Networks and Deep Learning

Figure 3.1: An artificial neuron (perceptron) is the basic building block of neural
network architectures.

𝑜u� of previous neurons, or the data which is fed into the network. A weighted sum
is performed over the input and a bias term is added. Afterwards a non-linear
activation function 𝜎(𝑥) is applied. The 𝑛 weights 𝑤u� and the bias 𝑏 are free
parameters which are tuned to the data during training.

Typically, rectified linear units (ReLU):

𝜎ReLU(𝑥) = {
0, for 𝑥 < 0
𝑥, for 𝑥 ≥ 0

(3.1)

are used as activation functions. Previously, sigmoid functions were commonly
applied. However, the use of ReLUs significantly facilitates and speeds up training
of the neural network.[24]

Fully Connected Layers

When combining artificial neurons to build a neural network, the neurons are usually
assorted into layers. On the left of fig. 3.1, a fully connected network with 4 layers
is shown. The first layer is the input layer, while the last layer defines the output
of the network. The intermediate layers are referred to as hidden layers. In a fully
connected layer every neuron is connected to every neuron of the previous layer.

Every neuron in a fully connected layer has 𝑛 + 1 free parameters, where 𝑛 defines
the number of neurons in the previous layer. For a given layer of 𝑘 neurons, this
results in (𝑛 + 1) ⋅ 𝑘 free parameters. Therefore, fully connected layers do not scale
very well due to the prohibitively high number of free parameters in big networks.
Often convolutional layers are a better option.
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3.1 Neural Network Architectures

Convolutional Layers

Convolutional layers exploit translational invariance and locality to greatly reduce
the number of free parameters. Instead of a neuron being connected to every neuron
in the previous layer, it is only connected to nearby neurons as illustrated in fig. 3.2.
Finding features (edges, shapes, color gradients) in the bottom right corner of

Figure 3.2: The computation of a 2-dimensional convolutional layer is shown. A
kernel (set of shared weights) is shifted across the input layer (blue) to obtain
the output (green). In order to obtain the output for the shaded neuron in the
output layer, the shaded part of the input layer is weighted by the 3 × 3 kernel
and summed up. Afterwards a bias is added and an activation function is applied.
The green output layer is also referred to as a feature map.

an image is not dependent on the pixels in the top left corner. Therefore, these
connections can be omitted. Additionally, the weights are shared between neurons.
In doing so, translational invariance is exploited: a useful feature in one part of the
image should also be useful in another part of the image.[43]

Figure 3.3: Feature maps of different layers of a face recognition model are shown.
The feature maps on the left correspond to an earlier layer in the network, while
the feature maps on the right originate from a deeper layer. Deep neural networks
are able of extracting hierarchical representations from raw data.[44]

The shared weights are also referred to as convolution kernels or filters. In fig. 3.2

9



3 Artificial Neural Networks and Deep Learning

the convolution is illustrated by a single kernel which is shifted across the input layer
(blue) to obtain the output (green). However, a convolutional layer is not limited
to a single kernel. Every kernel of a convolutional layer creates an output layer
(feature map). In fig. 3.3 feature maps for 3 different layers of a face recognition
model are shown. Similarly, a convolutional layer can have more than one input
layer. Within this thesis these are referred to as the channel input. As an example,
a colored image of 𝑛 × 𝑘 pixels can be decoded into 3 images for the each of the
RGB values. The result is a 𝑛 × 𝑘 × 3 tensor of pixels, where the last dimension is
the channel input dimension.

Residual Nets

In residual nets the layers are reformulated to learn residual functions. Instead of
the output 𝑓(𝑥) of a standard layer, a residual layer outputs

𝑓res(𝑥) = 𝑥 + 𝑓(𝑥) (3.2)

where 𝑥 is the input into the layer. Residual nets ease the training of deep networks.
A detailed description is given in [26].

Nonlinear Function

A neural network can be composed of any combination or modification of the previ-
ously described components (additional components are possible). In general, the
network architecture defines a non-linear mapping of the input 𝐼 to the output 𝑂:

𝑓𝜃 ∶𝐼 → 𝑂 (3.3)

𝐼 ∶ Model input
𝑂 ∶ Model output
𝜃 ∶ Free parameters

The components of the network architecture define the free parameters 𝜃. During
training these parameters are optimized in a way that 𝑓u�(𝑥) maps the data.

10



3.2 Training of Neural Network Architectures

3.2 Training of Neural Network Architectures

Supervised training of neural network architectures requires labeled training data.
A loss function is defined which is minimized during training. See ch. 6 for details
on the loss function used in this thesis. Once the loss function is defined, batches
of 𝑛 examples are drawn from the training data. The data is fed into the network
to obtain the output 𝑓u�(𝑥). Afterwards the loss function 𝐿 (𝑓u�(𝑥), 𝑦true) can be
evaluated where 𝑦true is the truth as defined by the label. This first step is illustrated
on the left of fig. 3.4. Initially, the output of the network 𝑓u�(𝑥) will be random, due
to the random initialization of the free parameters 𝜃 of the model.

Figure 3.4: The data is fed into the network on the left to obtain the loss value
(red dot). Backpropagation is then used to calculate the gradients for each of the
free parameters. These are then adjusted via gradient descent. As a result, the
loss value reduces.

In the second step, the free parameters of the model are adjusted to minimize the
loss function. This is performed with stochastic gradient descent. The gradients of
the loss function in regard to the free parameters ∂u�

∂u� are calculated for the given
batch of data via backpropagation, which in principle is simply the application of
the chain rule. These steps are repeated many times, until the loss converges in a
minimum.[40, 41]

3.3 Batch Normalization

During training the distribution of the input into a given layer changes, which
complicates the training procedure. This is also referred to as internal covariate
shift. In practice it is helpful if the input of a layer is normalized with a zero mean
and unit variance. Batch normalization normalizes the layer inputs in order to
combat internal covariate shift.[33]
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3 Artificial Neural Networks and Deep Learning

3.4 Dropout

Dropout is a regularization technique which randomly drops units in a given layer
during training. In doing so, units are prevented from excessively co-adapting.
Details are given in [56].

3.5 Frameworks and Datasets

Many different deep learning frameworks exist. Some examples are:

• TensorFlow1

• Theano2

• Keras3

• Caffe4

• Torch5

• MXNet6

• Microsoft Cognitive Toolkit7

An overview of the different frameworks is shown in [57]. Within this thesis
TensorFlow 1.2[10] is used in combination with python 2.7. In order to evaluate the
performance of deep learning architectures, benchmark datasets exist. Common
image datasets are listed in tab. 3.1.

Dataset Description Image Size Dataset Size Per Class
MNIST [42] Handwritten digits 28 × 28 60,000 6000
CIFAR 10 [38] Color images in 10 classes 32 × 32 60,000 6000
CIFAR 100 [38] Color images in 100 classes 32 × 32 60,000 600
Imagenet [19]
(ILSVRC15 [54]) Color images in 1000 classes Typically cropped:

256 × 256 1, 281, 167 732-1300

Table 3.1: Common benchmark datasets for image recognition tasks are shown.

1https://www.tensorflow.org/
2http://deeplearning.net/software/theano/
3https://keras.io/
4http://caffe.berkeleyvision.org/
5http://torch.ch/
6http://mxnet.incubator.apache.org/
7https://www.microsoft.com/en-us/cognitive-toolkit/
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4 Data, Label Generation, Formatting, and
Preprocessing

4.1 Monte Carlo Dataset

An IceCube muon-neutrino simulation dataset (11069) is used with a simulated
neutrino spectrum of 𝐸−1 and an energy range from 100 GeV to 10 PeV. For the
results shown in this thesis, the neutrino spectrum is reweighed to an unbroken
power-law flux with 𝐸−2.19 according to [25]. Only track-like events are used, where
the muon resulting from the charged-current neutrino interaction comes within 60 m
of the convex hull around the detector. Approximately 72, 000 events are used for
the validation set, while the training dataset consists of approximately 2 million
events. An additional 480, 000 events are held out during training and validation.
These events are used as a test set to obtain the results shown within this thesis.

4.2 Label Generation

The deep convolutional neural network as presented in this thesis is a supervised
machine learning approach, hence, labels for the training data must first be defined.
A total of 22 labels are chosen. Some example labels are quantities such as the
neutrino and muon energy, the direction of the particle, as well as the point of entry
into the detector. The software used to extract the necessary labels from the Monte
Carlo data is implemented within the Icetray1 framework [20]. A complete list of all
extracted labels as well as a brief description can be found in table A.1.

4.3 Data Input Format

Convolutional neural networks were first developed for the domain of image recogni-
tion[43]. Feeding image data into a neural network is straight forward, as it only has
two dimensions with an optional channel input for the different color channels. The

1http://software.icecube.wisc.edu/documentation/
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4 Data, Label Generation, Formatting, and Preprocessing

pixels of an image are arranged on an orthogonal grid and for typical image datasets
(ch. 3.5) the pictures are all of the same size or can easily be cropped to the same
size. In contrast, IceCube data is four dimensional, arranged on an approximately
triangular grid and highly variable in size. These and other complications need to
be addressed, before the data can be fed into a neural network. In the following,
the IceCube data is described, core issues are explained, and possible solutions are
presented.

4.3.1 IceCube Data

As mentioned in ch. 2, the IceCube detector consists of 5160 DOMs installed on
86 vertical strings. The geometry of the IceCube detector is illustrated in fig. 4.1,
where an on-top view is shown. At trigger level, the data consists of recorded

Figure 4.1: An on-top view of the IceCube detector is shown. The in green
depicted 78 strings are on an approximately trinangular grid, while the DeepCore
strings painted in red are installed in a denser configuration.

waveforms (see section 2.1). The recorded waveforms have a bin width of about
3.3 ns (ATWD waveform[8]). Each DOM can measure an arbitrary number of
waveforms with variable starting times in a single event. While a typical event
has a read out window of approximately 15 000 ns, this can vary depending on the
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4.3 Data Input Format

trigger [8, pp.56-59]. Single pulses can be extracted out of these waveforms. In the
end, the data can be reduced to a pulse series of arbitrary length for each DOM,
where each pulse has a time and charge associated to it. The input length is highly
variable and different for each DOM. The 86 strings of the detector are divided
into two detector parts. While the main IceCube array, consisting of the first 78
strings, is arranged on an approximately triangular grid, the 8 DeepCore strings
do not follow this symmetry. They are installed in a denser configuration with
variable distances to neighboring strings. The strings of the main IceCube array
have an inter-string spacing of about 125 m. However, there are deviations as shown
in fig. 4.1.

4.3.2 Core Issues

The architecture of a convolutional neural network must be predefined and is then
kept fixed. In doing so, the input into the network has to be of the same format
and dimensionality for every event. IceCube data, however, is highly variable in
length as mentioned above. Therefore, the variable format of the data needs to be
unified.

A naive approach might be to divide the event read out window into time bins and
to pad with zeros, where no waveforms or pulses are measured. The issue with this
approach lies in the high dimensionality of the problem. If a binning of 5 ns in time
were to be used, this would result in approximately 8000 time bins for each of the
5160 DOMs in order to cover the whole event. This can be reduced to about 1200
time bins per DOM, if a time window of approximately 6000 ns is used, which is
sufficient to cover the full time needed for a muon of 1 GeV to transverse the longest
possible stretch within the detector. This still results in a minimal input size of
5160 × 1200 = 6192000 nodes. In comparison, typical image datasets (ch. 3.5) for
image recognition tasks consist of input dimensions of 28 × 28 = 784 (MNIST [42]),
32 × 32 = 1024 (CIFAR 10/100 [38]), or are typically cropped to 256 × 256 = 65536
(Imagenet [19]). In addition, the data becomes extremely sparse which can cause
problems for the deep learning approach. A fine uniform binning in time over the
relevant part of the event is therefore not feasible. Increasing the width of the time
bins introduces other issues as the directional reconstruction heavily depends on
exact timing information.

Another issue compared to image data, is that IceCube data is four dimensional. In
particular for the directional reconstruction, the time dimension is of the utmost
importance. Reducing the dimensionality of the problem results in a loss of spatial
and temporal relations that have to be compensated for in a different way.
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4 Data, Label Generation, Formatting, and Preprocessing

Moreover, the IceCube detector is separated into two detector parts which do not
share the same geometry or symmetries. The main IceCube array is arranged in an
approximately triangular grid. However, pixels in an image are typically arranged
on an orthogonal grid. Data storage, matrix and tensor operations are performed
on orthogonal grids. Therefore, the IceCube data must first be transformed to an
orthogonal grid.

IceCube data is very high-dimensional and variable. Handling of the data is rather
complex compared to image data. As a first step, a viable solution to these issues
needs to be found.

4.3.3 Possible Solutions

When regarding possible solutions to the above explained issues, it is important
to first decide on a dimensionality of the data representation. Some options are
presented in the following sections.

Spatial and Temporal Dimensions embedded in Architecture [4D]

In order to maintain both the spatial and temporal dimensions in the network
architecture, a full four dimensional input is necessary. The charge of the measured
pulses, or directly, the charge of the waveforms can be binned in time. For the
binning in the spatial coordinates, one option is to divide the IceCube detector into
bins along an orthogonal coordinate system, combining multiple DOMs in a single
bin. Alternatively, an interpolation could be performed to sample the detector on
an orthogonal grid. With these approaches, the triangular grid of the IceCube array
is automatically dealt with.

However, the interpolation or up-sampling in the spatial dimensions will smear out
the data. To avoid this, the DOMs themselves can be used as a bin. For this DOM-
binning, the triangular grid of the DOMs needs to be transformed to an orthogonal
grid. This can be achieved by the transformation described in fig. 4.2. The DeepCore
part of the detector is handled separately, reducing the 𝑥 and 𝑦-coordinates to a
single dimension.

As a result, two input tensors of the shape [10 × 10 × 60 × 𝑛] and [8 × 60 × 𝑛] are
obtained for the main and DeepCore array, respectively, where 𝑛 denotes the number
of time bins. As mentioned above, the number of time bins has to be reduced in
order to make this approach feasible. For this, the width of the time bins could be
increased at the cost of timing resolution in order to cover the same time window
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Figure 4.2: The main IceCube array and DeepCore strings are handled separately.
Hexagonally shaped data on the left (green dots) can be transformed into an
orthogonal grid on the right by padding with zeros (white dots) and aligning the
rows. Every DOM defines a bin in the spatial coordinates (DOM-binning).

with less bins. With a four dimensional convolution over this input, translational
invariance in space and time as well as locality can be exploited.

A different approach is to choose individual time windows for every DOM. In doing
so, the time windows could be chosen smaller to only cover the relevant time of the
measured waveforms of each DOM. This reduces the necessary number of bins while
maintaining timing accuracy. However, the time bins between DOMs will no longer
be aligned, making a 4D convolution problematic. Nevertheless, a 1D convolution
could be performed over the time dimension for every DOM to extract useful values
summarizing the distribution of the pulses/waveform. The extracted values could
then be used as channel input into a 3D convolution over the spatial dimensions as
described below.

Spatial Dimensions embedded in Architecture [3D + Channel]

In order to reduce the dimensionality, a four dimensional input format can be adopted
where the last dimension is used as a channel input into a 3D convolution. The
first three dimensions of the input tensor correspond to the three spatial dimensions
of the DOMs, while the fourth dimension is used to summarize the pulse series
of arbitrary length into a fixed amount of values. These values could for instance
include the time of the first pulse, the total charge measured, or the spread of pulses
in time.

As also for the fully 4D case previously described, the binning in the spatial
dimensions can be performed through interpolation or up-sampling on an orthogonal
grid as well as on a DOM-level as described in fig. 4.2. For a DOM-binning the
resulting input tensors for the main IceCube array and the DeepCore part have the
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shape [10 × 10 × 60 × 𝑐] and [8 × 60 × 𝑐], respectively, where 𝑐 is the number of
channel values. Spatial relations such as locality and translational invariance in space
are therefore exploited by the network architecture through the 3D convolutional
layers.

Temporal Dimension embedded in Architecture [1D + Channel]

The measured pulses themselves can be used as input. For instance, one can use
the 𝑛 highest charged pulses and sort these in time. If an event has less than 𝑛
measured pulses, a padding with zeros can be performed to maintain a fixed input
dimension. In doing so, the two detector parts can be handled uniformly. The input
tensor is of the dimensions: [𝑛, 𝑝], where 𝑛 is the number of pulses and 𝑝 is the
number of parameters describing the pulse. These 𝑝 parameters can for instance
include:

• pulse coordinates x, y and z

• pulse charge

• pulse time

• charge of pulses in neighboring DOMs within a certain time window

Spatial information is not directly embedded in the network architecture for this
approach, but included in the channel input. A 1D convolution can be employed to
make use of temporal relations. In addition, timing information is included in the
channel parameters as the pulses are not evenly distributed in time. Instead of a
1D convolution a locally connected architecture can be used to exploit locality, but
reduce constraints for translational invariance.

An approach like this reduces sparsity in the input data as well as redundant
operations and costly high-dimensional convolutions due to the smaller and lower
dimensional input shape. The result is a faster, but possibly less accurate network.
Spatial information has to be passed within the channel dimension and the network
has to learn how the given spatial information can be used. The inclusion of
prior knowledge of spatial relations is limited to passing more and pre-calculated
information within the channel dimension. It cannot be directly embedded in the
network architecture with this approach.

The gain from having spacial or temporal dimensions incorporated into the network
architecture lies in the fact that a priori knowledge about spatial and temporal
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relations can be exploited by the use of convolutional or locally connected layers.
Therefore, these relations are somewhat hard coded into the network and do not
have to be learned. Hence, the number of free parameters can be reduced. If the
dimensionality of the input into the network is reduced, the loss of spatial and
temporal relations have to be compensated for within the channel input. This can
for instance be done by adding information about the neighboring pulses in the 1D
convolution case, or in the case of the 3D convolution by adding a summary of the
timing information of the pulse series.

The proposed solutions are just some examples of how the data could be transformed
to feed into the convolutional network, but it is by no means exhaustive. Particularly
in regard to the pulse series of arbitrary length, one might chose to use recurrent
neural networks such as long short-term memory networks (LSTM)[23, 28], which
can naturally handle input series of arbitrary length. There are many possible
choices which remain to be investigated. The main focus in this thesis is on the
3D + channel approach which incorporates the spatial dimensions into the network
architecture and convolution layers while reducing the time dimension to a number
of values summarizing the distribution of the measured pulses.

4.4 Preprocessing

Deep neural networks can in theory process data of any range and scaling. However,
the activation function’s nonlinearity is centered around zero. Moreover, error
contours are elliptical if input features have very different scaling. This causes
practical problems in regard to gradient descent as demonstrated in fig. 4.3. In

Figure 4.3: The contours of an elliptical and circular error surface are shown.
For a given point on the circular surface, the gradient vector points towards the
minimum. This is not necessarily the case for elliptical contours.
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addition, if input data is not normalized, small imbalances in the early layers
of the network can cascade throughout neural networks causing gradients during
backpropagation to explode. This effect is even stronger for deep neural networks.[35,
40]

It is therefore useful to normalize the input data and labels. Within this thesis, the
data and labels are normalized to zero mean and unit variance by the following
transformation:

𝑋′ = 𝑋 − 𝑋
𝜎u� + 𝜖

, (4.1)

where 𝑋 is the mean of 𝑋, 𝜎u� is the standard deviation of 𝑋, and 𝜖 = 10−8 is a
small constant to prevent division by zero. For constant attributes, 𝜎u� is set to 1
in equation (4.1).

In addition, steps are undertaken to maintain a standardized input in every layer
throughout the network. This can be accomplished by the use of batch normalization,
residual additions and unit variance maintaining layers as described in ch. 3.3, 5.3, 5.4,
respectively.

Input features and labels which span over many powers of magnitude are first
transformed via

𝑋′ = log10 (𝐶 + 𝑋) , (4.2)

before they are normalized by equation (4.1). For variables with many values close
to 0, the constant 𝐶 is given by 10−4, otherwise 𝐶 = 1.0.

The values 𝑋, 𝜎u� and 𝑌 , 𝜎u� in equation (4.1) for the transformation of the input
data 𝑋 and the labels 𝑌 are calculated on the training data. For the input data
𝑋, the channel values are treated equally across different DOMs. However, entries
in the input data tensor that do not correspond to a real DOM are filled with
zeros and handled separately. These entries are constantly 0 and remain 0 after the
transformation in equation (4.1).
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For the realization of the deep learning based reconstruction as presented in this
thesis, additional software is implemented. In the following, some of the implemented
software is described.

5.1 Data Input Framework

In order to efficiently train the neural network, loading, preprocessing and feeding
of the data into the network have to be highly optimized. The simulation dataset
(about 1 TB of disk space) is first preprocessed within the IceTray framework [20].
During this preprocessing step, the labels and input variables are calculated for every
event. Afterwards these files are written to disk in hdf5 files in a highly compressed
format, discarding all information that is not needed for training. As a result, the
necessary disk space is reduced by approximately 96 %. During training, reading
and decompression of the hdf5 files is handled in parallel on multiple CPUs. Each
hdf5 file contains about 350 events. Once read and decompressed, the input tensor
𝑋 as well as the labels 𝑌 of these approximately 350 events are combined from the
multiple processes and put in a single shared queue. An additional process dequeues
the elements and produces batches of a given size, which are then fed into the neural
network.

Due to the high dimensionality of the input and the restrictions given by the
computing architecture, only a limited amount of files can be loaded into RAM at
once. In order to reduce the amount of times files need to be read and decompressed,
a given number of 𝑛 files are loaded into memory at once. Of these approximately
𝑛 ⋅ 350 events, batches are randomly drawn until a specified amount of 𝑘 epochs are
completed. Afterwards, the next 𝑛 files are loaded into memory.

5.2 Hexagonal Convolution Kernels

The convolutions within the TensorFlow framework are performed on orthogonal
grids. Transforming the hexagonally shaped IceCube data into an orthogonal grid
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as illustrated in fig. 4.2 results in convolution kernels shaped as parallelograms in
the detector. To instead obtain convolutional kernels which are shaped according
to the IceCube geometry, the convolution kernels within TensorFlow are adjusted
by setting the corner elements to zero as illustrated by the red points on the right
of fig. 5.1. As a result, hexagonally shaped convolution kernels in the detector are

Figure 5.1: Hexagonally shaped convolutional kernels on the left (green dots) can
be transformed into an orthogonal grid on the right by padding with zeros (red
dots) and then shifting the rows, so that they align.

obtained. The obtained kernels are defined by a tuple of size and orientation as
illustrated in fig. 5.2.

Figure 5.2: A hexagonally shaped kernel is defined by a tuple of size u� and
orientation u�: (u�, u�). The size defines the number of edge-points of an aligned
hexagon (orientation u� = 0).
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5.3 Residual Additions

5.3 Residual Additions

As described in ch. 3.1, residual nets [26] can greatly facilitate the training of deep
neural networks. The concept is adopted here with slight modifications applied.

Layers without residual additions return the output of the activation function 𝑋output.
In residual layers as defined in this thesis, this output is modified to 𝑋′

output according
to

𝑋′
output = 𝑋input + 𝑠 ⋅ 𝑋output (5.1)

where 𝑠 is a scale factor defining the contribution of the residual and of the given
layer. If 𝑠 = 0, the output of the layer is equal to the input: 𝑋′

output = 𝑋input. The
scale factor 𝑠 is initialized to very small random values. As a result, the given
layer will initially solely pass the input along. During training, the scale factor 𝑠 is
optimized and the contribution of the residual increases.

In convolutional layers, the number of input channels and output channels are often
different, hence, the dimensions of 𝑋input and 𝑋output do not match. In this case,
only the channels which align are treated as residuals according to eq. (5.1).

5.4 Unit Variance Maintaining Layers

As already mentioned in ch. 4.4, there are great benefits to keeping the input
and output normalized within the neural network. This is also the goal of batch
normalization [33], which explicitly normalizes the input into a specific layer. Another
possibility for maintaining a normalized throughput, is to make sure that layers
maintain unit variance of the input. With the assumption of a zero centered input
with unit variance, the layers of the neural network can be modified by a term
controlling the variance of the output.

The addition of independent random variables with variances 𝑠2
u� , increases the

variance to

𝑠2
ges = √∑

u�
𝑠2

u� . (5.2)

To compensate for this, the result of the convolution in a convolutional layer is
divided by the square root of the number of input channels:

√
num input channels.

In a fully connected layer, the result of the matrix multiplication of the input 𝑋 and
the weights 𝑊 is divided by the square root of the number of inputs:

√
num inputs.
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In addition to the modifications described above, weights, biases and scale factors
are initialized in a way that the layers of the neural network initially perform an
identity operation. This initialization scheme in combination with the unit variance
maintaining layers as well as the normalization of input and labels as described in
ch. 4.4 greatly speeds up and facilitates the training procedure. As a result, the
initialized but untrained neural network can immediately reproduce a reconstruction
accuracy obtained by guessing the label given its distribution.

24



6 Training of Neural Networks

The dataset is divided into three parts as mentioned in ch. 4.1. Training is performed
on the training set while the validation set is used to validate the results and to
check for overfitting. The test set is not touched until everything is fully optimized
and completely trained. It is used to create the result plots shown in this thesis.

The residuals between predicted and true label for a mini batch of 𝐵 events is given
by

𝛥𝑌 = |𝑌true − 𝑌pred|, (6.1)

where 𝛥𝑌 is a 𝐵 × 𝐿-matrix with 𝐿 as the number of labels. The residuals are
weighted by an importance vector ⃗𝐶 via

(𝛥𝑌u�)
u�,u�

= ⃗𝐶u� ⋅ (𝛥𝑌 )u�,u� . (6.2)

The mean squared error (MSE) and the weighted mean squared error for a label 𝑙 is
defined by

( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSE)
u�

= 1
𝐵

u�
∑
u�=0

(𝛥𝑌 )2
u�,u� (6.3)

and

( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSEu�)
u�

= 1
𝐵

u�
∑
u�=0

(𝛥𝑌u�)2
u�,u�

(6.2)
= ⃗𝐶2

u� ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSE)
u�
, (6.4)

respectively.

All labels are trained at once in a single neural network with one optimizer. The
importance vector ⃗𝐶 can be used to distribute importances to single labels. This
is useful, because some labels are easier to reconstruct as others. In addition, the
importance vector can be updated every 𝑁 optimization steps, to ensure that each
label contributes to the loss function according to the importance assigned to it.
This compensates for the fact that different labels are trained at different speeds.
The importance vector is updated via:

( ⃗𝐶′)
u�

= ( ⃗𝐶0)
u�

⋅ max
⎛⎜⎜⎜
⎝

1

√⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⟨MSE⟩u�

, 1
⎞⎟⎟⎟
⎠

, (6.5)
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where ⃗𝐶0 is the unmodified, original importance vector and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⟨MSE⟩ is given by

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⟨MSE⟩ = 1
𝑁

u�
∑
u�=0

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSEu� (6.6)

with the mean squared error ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSEu� for the 𝑛-th mini batch.

Optionally, the events can additionally be weighted by the physical weight of the
simulation. This changes the weighted residuals from equation (6.2) to

(𝛥𝑌u�)
u�,u�

= 𝑊⃗u� ⋅ ⃗𝐶u� ⋅ (𝛥𝑌 )u�,u� , (6.7)

where 𝑊⃗ are the physical weights for the 𝐵 events in a mini batch. The weighted
mean squared error from equation (6.4) is then used to construct the loss function

loss =
u�

∑
u�=0

( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSEu�)
u�
. (6.8)

In order to monitor the learning process independently of the chosen importance
vector ⃗𝐶 and weighting scheme 𝑊⃗ , a benchmark value is defined as the sum of the
root mean squared errors (RMSE) over all labels:

Benchmark =
u�

∑
u�=0

√( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗MSE)
u�

(6.9)

Figure 6.1: Overfitting of the training data can be monitored by evaluating the
loss curves for the training and validation set. On the left, a typical loss curve is
shown in the case of no overfitting, whereas the case for overfitting is shown on
the right.

The loss function (6.8) is minimized with the ADAM-optimizer [34] within the
TensorFlow framework [10]. The general learning scheme is to start training with
a high dropout rate, forcing the network to learn robust features. Over time the
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dropout and learning rate are reduced. While reducing the dropout rate, the training
process is carefully monitored for signs of overfitting. When the network starts to
overfit the training data, a gap will develop between the training and valdiation loss
curves as shown in fig. 6.1. In this case the training is stopped early.

The mean squared error heavily punishes outliers. In general, this is useful as
the network is forced concentrate on learning to better reconstruct the badly mis-
reconstructed events. However, the difficulty of the reconstruction greatly varies
between events. While the reconstruction of some events might be straight forward,
others can be ambiguous. At a certain point, the network can not possibly learn to
better reconstruct the outliers. Yet, due to a loss function such as the mean squared
error, it is still forced to focus on these events. Consequently, the reconstruction
of events, which the network could in principle reconstruct more accurately, is not
further optimized. A more outlier-robust loss functions such as the absolute error,
huber loss [29], or tukey loss [15] function can be utilized to counteract this effect.
These loss functions are illustrated in fig. 6.2.

Figure 6.2: A diagram of different loss functions is displayed. The residuals are
plotted on the u�-axis and the corresponding loss on the u�-axis.
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In the following sections, the different network architectures used within this thesis,
including their training procedures are explained.

7.1 All-rounder Model

As stated in ch. 4.3.3, the main focus in this thesis is on a four dimensional [3D
+ channel] input format with three spatial coordinates and one dimension for
parameters summarizing the pulse series. The architecture of the all-rounder model
described here uses this data representation with a DOM-binning as illustrated in
fig. 4.2. The pulse series of a DOM are summarized in the following nine values:

• Sum of pulse charges1

• Sum of pulse charges within 500 ns of first pulse1

• Sum of pulse charges within 100 ns of first pulse1

• Time of first pulse

• Time at which 20 % of charge is deposited in DOM

• Time at which 50 % of charge is deposited in DOM

• Time of last pulse

• Charge weighted mean time of pulses

• Charge weighted standard deviation of pulse times

As a result of the DOM-binning and the above mentioned 9 input values, the input
tensor is of the form [10 × 10 × 60 × 9] and [8 × 60 × 9] for the main IceCube array
and DeepCore, respectively. The network architecture is summarized in fig. 7.1. A
detailed description can be found in the appendix A.1.1.

The architecture of the described neural network model is used to reconstruct the
labels in table A.1. It is designed to be an all-rounder model capable of reconstructing

1 Transformation (4.2) with u� = 1 is performed before normalization
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7.1 All-rounder Model

Figure 7.1: The architecture of the all-rounder model is illustrated. The main
IceCube array and DeepCore input are treated seperately with independent convo-
lutional layers. The result is flattened, combined and used as an input into the
fully connected layers.
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energy related variables as well as directional information. The neural network is
trained in five steps as depicted in tab. A.5. Training takes about 1 to 2 days on a
Tesla P40 and the resulting loss curves are plotted in fig. 7.2.

Figure 7.2: The training and validation loss curves are shown. A total of 87500
optimization steps are performed. This corresponds to about 11 data epochs.

7.1.1 Fine-Tuned Models

The all-rounder model is trained on events passing the Muon Online L2 Filter. To
further improve the reconstruction accuracy of the neural network for different filters,
the all-rounder model can be fine-tuned to the specific use case. In the following,
some examples are given. The first three training steps as described in tab. A.5 are
kept, while the last two training steps are replaced as noted below.

Tuned to GFU Filter

The GFU filter is an online filter designed for online analyses as described in ch. 2.1.
It is applied after the Muon Online L2 Filter. To further improve the resolution of
the deep learning approach on the GFU filter, the all-rounder model can be fine
tuned by exchanging the last two training steps in tab. A.5 with the steps listed in
tab. A.6.

Tuned to Final Level

Events in the point source final data level are a subset of the events passing the
Online Muon L2 filter. These events are directly used in point source analyses.
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7.2 Track Uncertainty Model

Similarly to the GFU filter, the all-rounder model can be fine tuned to the point
source final level by exchanging the last two training steps in tab. A.5 with the steps
listed in tab. A.7.

Tuned with Tukey Loss

The all-rounder model is trained with a mean squared error loss function. To
decrease the sensitivity to outliers, a more robust loss function such as the tukey
loss [15] can be used in training. The first three training steps in tab. A.5 are kept,
while the last two steps are replaced with the steps listed in tab. A.8.

7.2 Track Uncertainty Model

In order to estimate the uncertainty on the standard track reconstruction, SplineMPE
(ch. 2.2.2), the all-rounder model as described in ch. 7.1 is slightly modified. The
network architecture of the track uncertainty model is the same as the all-rounder
model. However, in addition to the previously mentioned 9 input values of the
all-rounder model, 4 additional input values are calculated by using the SplineMPE
reconstruction as the event hypothesis:

• Expected charge2

• Distance of DOM to origin of Cherenkov light

• Residual time between actual pulse time and earliest possible time for Cherenkov
light to reach the DOM

• Log-Likelihood given the event hypothesis

The labels which are reconstructed by the track uncertainty model are listed in
tab. A.1. Details on the training of the neural network are given in appendix A.5
and the loss curves are plotted in fig. 7.3.

2Transformation (4.2) with u� = 1.1 is performed before normalization
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Figure 7.3: The loss curves of the validation and training dataset for the track
uncertainty model are shown.

7.3 Fast Model

The fast model is a trimmed version of the all-rounder model. As a result, the
runtime of the prediction is greatly reduced as stated in ch. 12.1. The number of
filters, neurons per layer, and number of layers are reduced in comparison to the
all-rounder model as shown in appendix A.6. In addition, the reconstructed labels
are reduced to the muon energy at detector entry and its direction vector as noted
in tab. A.1. The loss curves are plotted in fig. 7.4.

Figure 7.4: The training and validation loss curves are shown for the training
of the fast model. A total of 185500 optimization steps are performed which
corresponds to approximately 47 data epochs.
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8 Reconstruction Performance Measures

There are many different measures to quantify the performance of a reconstruction
method. While some measures are affected by bias or rely on a one-to-one relation
between proxy variable and true label, others do not. It is therefore important to
understand the limitations of the different performance measures.

8.1 Overall Performance Measures

The overall performance of an estimator can best be visualized in a scatter plot
between the true label 𝑦true and the proxy variable 𝑦pred (correlation plot) as seen in
the top left panel of fig. 8.1. For a good resolution, the distribution in label values

𝑃(𝑦true| ̂𝑦pred) (8.1)

for a given proxy value ̂𝑦pred as well as the distribution of proxy values

𝑃(𝑦pred| ̂𝑦true) (8.2)

for a given label value ̂𝑦true have to be narrow. This does not require a one-to-one
relation between true label and proxy variable.

Under the requirement of a one-to-one relation between proxy variable and true
label, the mean absolute error (MAE) and the root mean squared error (RMSE) are
viable options to quantify the performance. While the RMSE is more sensitive to
outliers, both the MAE and RMSE punish bias. Another measure that can be used
is the width of the distribution of the residuals between 𝑦true and 𝑦pred expressed
in the standard deviation. The standard deviation of the residuals is insensitive to
a constant bias as shown in fig. 8.2b. This holds true for the pearson correlation
coefficient as well. In addition, the pearson correlation coefficient is insensitive to
the scaling between true label and proxy variable. It punishes deviations from a
linear relation. To further loosen the requirement of a linear relation, the spearman
correlation coefficient can be used. The spearman correlation demands a monotonic
relation between true label and proxy variable to certify good resolution. However,
this is not necessary for a good resolution.
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8 Reconstruction Performance Measures

Figure 8.1: A correlation plot between true label u�true and proxy variable u�pred
is shown in the top left panel. For a given proxy value ̂u�pred = 3, the distribution
u�(u�true| ̂u�pred = 3) can be obtained as illustrated in the top right panel. Similarly,
the distribution u�(u�pred| ̂u�true = 5) can be obtained (bottom left). The resolu-
tion u�res of the proxy variable for a given true energy ̂u�true = 5 is obtained by the
width of the distribution ∫ u�(u�true|u�′

pred)u�(u�′
pred| ̂u�true = 5) du�′

pred as shown in
the bottom right plot. (Adopted from [5, p.18])

The example shown in fig. 8.2f illustrates how all of the above measures show a poor
resolution of the proxy variable, even though the label can be well reconstructed
(a simple calibration can be performed to obtain a one-to-one relation). In order
to obtain a more general statement of the performance of an estimator, another
measure incorporating the width of the distributions in equations (8.1) and (8.2)
is defined. The definition of the performance measure is given in the following
chapter 8.2. An overview of the different performance measures and their limitations
are illustrated in fig. 8.2.
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8.1 Overall Performance Measures

(a) One-to-One Relation (b) Constant Bias (c) Different Scaling

(d) Exponential (e) Monotonic Relation (f) Non Monotonic

(g) Complex Relation (h) Ambigious Relation (i) Gaussian Noise (u� = 1.3)

Figure 8.2: The results of various performance measures are illustrated for dif-
ferent relations between the true label and proxy variable. The sensitivity towards
bias, scaling, or monotony greatly depends on the given performance measure.
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8 Reconstruction Performance Measures

8.2 Energy dependent Resolution

The performance of the energy and directional reconstruction in IceCube is energy
dependent. In general, the resolution is better for higher energetic events. It is
therefore useful to calculate the resolution for a given energy.

A general way of obtaining an energy dependent resolution is to take all events
within ̂𝑦true ± 𝛥𝑦 for a given true energy ̂𝑦true. One of the previous mentioned
performance measures such as the standard deviation of the residuals or the RMSE
can then be used to obtain a resolution for the given energy ̂𝑦true. For the directional
reconstruction, the median angle between reconstructed and true track is typically
used.

As previously shown, events can be reconstructed with a high resolution, while some
performance measures indicate otherwise. This could for instance be due to bias in
the reconstruction. However, this can be corrected for through calibration. A more
general performance measure is desired. One option is to include the width of the
distributions in equations (8.1) and (8.2) as proposed in [5, p.18].

The resolution of a proxy variable 𝑦pred for a given energy ̂𝑦true can be obtained
from the width of the distribution

∫
u�′

pred

𝑃(𝑦true|𝑦′
pred)𝑃 (𝑦′

pred| ̂𝑦true) d𝑦′
pred (8.3)

as illustrated in fig. 8.1 [5, p.18].

In order to evaluate equation (8.3), the integral and the distributions in equa-
tions (8.1) and (8.2) are discretized. 𝑃(𝑦′

pred| ̂𝑦true) is a scalar value, while 𝑃(𝑦true|𝑦′
pred)

is a vector. The result of equation (8.3) is therefore a distribution in 𝑦true as shown
in the bottom right panel in fig. 8.1. The width of this distribution is the resolution
of the proxy variable for a given energy ̂𝑦true. This has to be done for all energy
bins ̂𝑦true ± 𝛥𝑦.

The resolution for each energy bin ̂𝑦true ± 𝛥𝑦 can then be used to obtain an overall
measure of the resolution by calculating an average weighted by the number of
events in each energy bin.
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9 Energy Reconstruction

The energy reconstruction does not rely as heavily on timing information as the
directional reconstruction. The chosen data representation with a 3D convolution
and timing information summarized in the channel input is therefore a reasonable
option. A total of 5 energy labels are reconstructed:

• Neutrino energy

• Energy deposited in detector

• Muon energy

• Muon energy at the point of entry into the detector

• Muon energy at the closest approach point

of which the muon energy at the point of entry into the detector is the most widely
used in analyses. Unless stated otherwise, the all-rounder model as explained in
ch. 7.1 is used to obtain the results shown in this chapter.

9.1 Muon Energy at Detector Entry

The muon energy at the point of entry in the detector is the most widely used
energy proxy for the muon-neutrino energy. Analyses will therefore directly benefit
from an improvement in the energy resolution.

The current standard energy reconstruction methods which are performed for the
online L2 Muon Filter are Truncated Energy and MuEx. These are described in
ch. 2.2.1. In the following, the results of the deep learning approach are evaluated
and compared to the current standard.

The performance of an estimator can be measured in many different ways (see
ch. 8). For a high resolution, a low standard deviation of the residuals and a high
correlation between reconstruction and Monte-Carlo-Truth is expected, as well as a
low mean absolute error (MAE). These values in addition to the overall resolution
as defined in ch. 8.2 are calculated and included in the following correlation plots
shown in fig. 9.2.
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9 Energy Reconstruction

Figure 9.1: The resolution of the proxy variable is shown for a spectral index of
u� = −1.00 and u� = −2.19, respectively.

In fig. 9.1, the energy dependent resolution is shown for two different spectral
indices 𝛾 of an unbroken power-law flux 𝐸u�. The resolution curve is calculated as
described in ch. 8.2. The deep learning approach can greatly improve the resolution
over all performance measures. The results are summarized in table 9.1.

DOMs BINs MuEx
Performance Measure all > 1 TeV all > 1 TeV all > 1 TeV
Std. dev. 32.4 % 25.8 % 33.6 % 28.0 % 33.9 % 11.2 %
MAE 36.8 % 23.5 % 35.8 % 22.6 % 39.3 % 40.2 %
Resolution 27.1 % 32.0 % 31.6 % 36.9 % 24.6 % 29.0 %
Pearson corr. 8.2 % 5.6 % 8.9 % 6.1 % 7.1 % 3.4 %
Spearman corr. 6.1 % 4.8 % 7.2 % 6.0 % 4.8 % 3.8 %

Table 9.1: The overall improvement is shown of the deep learning approach
compared to the standard energy reconstructions for various performance measures.
Charged-current events passing the Online Muon L2 filter are used to calculate
the performance.

In comparison to the results presented in [31], the energy resolution is further
improved by a few percent. This is accomplished through the combination of
changes in the network architecture, of changes in the variables used as input, and
through the utilization of residual additions (ch. 5.3) as well as variance maintaining
layers (ch. 5.4).
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9.1 Muon Energy at Detector Entry

Figure 9.2: The correlation plots for different energy estimators are shown for
charged current muon-neutrino events passing the Online Muon L2 filter. A
spectral index of u� = −2.19 is used. Only events above 1 TeV indicated by the
red dashed line are used to calculate the correlation and resolution. The deep
learning approach is able to greatly improve the resolution across all performance
measures.
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9 Energy Reconstruction

9.1.1 Whole Energy Range

The standard energy reconstruction methods shown in the correlation plots in fig. 9.2
exploit the proportionality between the muon energy and its energy loss d𝐸/ d𝑥 as
described in ch. 2.2.1. This proportionality, however, is only valid for muon energies
above approximately 1 TeV. Therefore, the correlation and resolution is calculated
for events with muon energies above this threshold to obtain a fair comparison.

For lower energies, the energy loss flattens out and is more or less constant. In
this case, the track length of the muon is a good indicator for its energy. This,
however, only works well when most of the track is contained in the detector. Energy
estimators for the low energy region exist within IceCube [6, 12], but are not included
in the simulation dataset used for the study presented within this thesis. Additional
low energy simulation datasets need to be added for a comparison. In any case, even
if perfect energy estimators for different muon energy ranges exist, it is difficult to
know when to use which estimator, since the true muon energy is not known. The
deep learning approach does not have this limitation. It is capable of reconstructing
the muon energy over the whole energy range of the simulation dataset.

Figure 9.3: The resolution curves of the deep learning approach as well as of the
true remaining muon track length after its entry into the detector and the average
energy loss are shown on the left. A correlation plot between the muon energy
and its average energy loss is depicted on the right. Above 1 TeV the energy
loss du�/ du� becomes a better proxy for the muon energy in comparison to its
track length. In this transition region, a bump in the resolution curve of the deep
learning approach can be identified.

The transition region in which the energy loss becomes a better proxy for the muon
energy compared to the track length is shown in fig. 9.3. At around 103.3GeV ≈
2 TeV a bump is visible in the resolution curve of the deep learning approach. In
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9.1 Muon Energy at Detector Entry

principle, both of the resolution curves for the muon track length and its energy
loss should be lower than the curve of the deep learning approach, since they are
calculated with the Monte Carlo truth. However, the energy loss plotted is only an
average energy loss:

< d𝐸/ d𝑥 >=
𝐸entry − 𝐸center

𝛥𝑥
, (9.1)

where 𝛥𝑥 is the distance between the point of entry into the detector and the
closest approach point of the muon to the center of the detector. In addition, the
muon energy loss is a stochastic process. A simple average as applied in eq. (9.1) is
therefore not necessarily the best choice. Truncated Energy, for instance, calculates
a truncated mean over the energy losses in each bin. Nevertheless, it suffices to
illustrate the transition region. A similar bump is seen in [30], where an energy
reconstruction method based on a 𝑘-nn regression is investigated.

9.1.2 When Standard Reconstructions Fail

The standard reconstruction methods do not always succeed in reconstructing an
event. This can for instance happen when the minimizer fails to find a minimum
or when certain criteria are not fulfilled. For Truncated Energy, for example, a
minimum number of bins is required. As a result, analyses which rely on these
energy reconstructions will have to discard these events. With the help of the deep
learning approach, these events do not have to be discarded.

The deep learning approach can reconstruct all events. Events previously discarded
are typically events which are hard to reconstruct to begin with. However, with
the uncertainty estimation as described in ch. 11 the neural network can pick well
reconstructed events. In fig. 9.4 the correlation plot for all events where any one of
the standard reconstructions failed is shown on the left. On the right, the subset
selected by the neural network is shown. The subset chosen are the 20 % of events
with the lowest predicted uncertainty. The threshold can be raised or lowered
depending on the desired resolution.
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9 Energy Reconstruction

Figure 9.4: The deep learning approach is able to reconstruct all events. On the
left, the correlation plot is shown for all charged current muon-neutrino events
passing the Online Muon L2 filter where any one of the three standard energy
reconstructions failed to produce an energy reconstruction. A spectral index of
u� = −2.19 is used. A subset of 20 % of events is chosen for the correlation plot
on the right. The events are chosen by the neural network by taking the events
with the lowest predicted uncertainty (see ch. 11).

9.1.3 GFU Level

The GFU filter is an online filter applied after the Muon Online L2 Filter as
described in ch. 2.1. It is used for online analyses and therefore relies on accurate
reconstructions. In the following, the results of the deep learning approach are
compared to the standard energy reconstructions performed for the GFU filter.

The deep learning approach is designed to work well for events and computational
restrictions of the Online Muon L2 filter. However, it can improve the energy
resolution of the GFU filter as well as seen in fig. 9.5 and fig. 9.6. The deep learning
approach is able to improve the overall resolution by about 15 % to 20 %. If desired,
the neural network can be fine tuned to the GFU filter through additional training.
This is shown in appendix A.2.
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9.1 Muon Energy at Detector Entry

Figure 9.5: The correlation plots of the standard energy reconstructions as well
as the deep learning approach are shown for events passing the GFU filter for a
spectral index of u� = −2.19. Only charged-current muon-neutrino events with
muon entry energies above 1 TeV indicated by the red dashed line are used to
calculate the correlation and resolution. The deep learning approach is able to
outperform the standard energy reconstructions.
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9 Energy Reconstruction

Figure 9.6: The resolution of the proxy variable is shown for a spectral index of
u� = −1.00 and u� = −2.19, respectively, for events passing the GFU filter.

9.1.4 Final Data Level

The deep learning approach as presented in this thesis is designed to work on-site
at the South Pole. Hence, the complexity of the network architecture is kept low
to maintain a fast runtime. However, the deep learning approach is still able to
improve the energy reconstruction for the final data level of point source analyses
datasets. For the final data level, the standard energy reconstructions are rerun with
improved track reconstructions and settings optimized for reconstruction accuracy
instead of speed. The output of these reconstructions is then directly used in the
analyses.

As shown in the correlation plots in fig. 9.7, the deep learning approach outperforms
the current standard reconstructions even for the final data level. The resolution is
better over all energy ranges as seen in fig. 9.8. Physics analyses which rely on the
energy estimation of muons can therefore directly benefit from this improvement.

Moreover, the model can be fine tuned to the final data level through additional
training to further increase the performance by about 5 %. The training steps and
results are shown in appendix A.3.

The performance of the deep learning approach in comparison to the standard
reconstruction methods for the various filters is summarized in table 9.2. An
improvement is possible through the deep learning approach in all filters, while
the biggest relative improvement is obtained in the Muon Online L2 Filter for
which the model is designed. As shown in appendix A.4 and fig. 12.2, even further
improvements can be obtained through the use of robust loss functions such as the
tukey loss [15](ch. 6).
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9.1 Muon Energy at Detector Entry

Figure 9.7: Depicted are the correlation plots of the current standard energy
reconstructions for the point source final data level. A spectral index of u� = −2.19
is used and only charged-current events with muon energies above 1 TeV indicated
by the red dashed line are used to calculate the correlation and resolution. Even
though the deep learning approach is designed to comply the limitations given
on-site at the South Pole, it is still able to improve the resolution for the final data
level.
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9 Energy Reconstruction

Figure 9.8: The resolution of the proxy variable is shown for a spectral index of
u� = −1.00 and u� = −2.19, respectively, for events of the final point source data
level.

Filter DOMs BINs MuEx
Online L2 > 1 TeV 32.0 % 36.9 % 29.0 %
Online L2 27.1 % 31.6 % 24.6 %
GFU > 1 TeV 14.6 % 19.9 % 14.8 %
GFU 19.0 % 21.6 % 18.0 %
PS final > 1 TeV 17.3 % 21.0 % 16.1 %
PS final 19.9 % 21.5 % 18.0 %

Table 9.2: The overall improvement in resolution for different event filters is
shown. With the help of the deep learning approach, the resolution can be greatly
improved.
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9.2 Other Energy Labels

9.2 Other Energy Labels

In addition to the muon energy at its point of entry into the detector, other energy
related labels are reconstructed. This includes the muon energy at the point of
closest approach to the center of the detector as shown in fig. 9.9.

Figure 9.9: The correlation between reconstructed and true muon energy at
the closest approach to the center of the detector is shown. The deep learning
approach is able to improve the resolution in comparison to the standard energy
reconstruction methods. A spectral index of u� = −2.19 is used. Only events above
1 TeV indicated by the red dashed line are used to calculate the correlation and
resolution.

The correlation plots for the energy deposited in the detector by the neutrino as
well as the muon energy can be seen in fig. 9.10.

The reconstruction of neutrino energy is an inherently difficult task. For through-
going muons, only the energy of the muon at its point of entry into the detector can
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9 Energy Reconstruction

Figure 9.10: On the left, the correlation plot is shown for the energy deposited
in the detector by the neutrino. The correlation plot for the muon energy is shown
on the right. Events passing the Online Muon L2 filter with a spectral index of
u� = −2.19 are used.

Figure 9.11: The correlation between true neutrino energy and the result of the
deep learning approach is illustrated on the left for events passing the Online Muon
L2 filter. A spectral index of u� = −2.19 is used. Reconstructing the neutrino
energy is an inherently difficult task as shown in the resolution plot on the right.
For through going tracks, the best achievable energy resolution while disregarding
earth attenuation and zenith dependent effects is given by the true muon energy
at the point of entry (MC Muon Energy at Entry).
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be measured. In theory, the true muon energy would provide an even better proxy
for the neutrino energy, however, it is not possible to determine how much energy
the muon has lost before its entry into the detector.

The resolution on the reconstruction of the neutrino energy is therefore limited by
the muon energy at its point of entry. This can be seen on the right of fig. 9.11.
The resolution of the deep learning approach is very close to the limit given by the
true Monte Carlo energy of the muon at its point of entry. For starting tracks, the
resolution can be reduced by including the energy of the initial cascade. In addition,
taking the zenith dependence of the neutrino spectrum as well as earth attenuation
effects into account can further improve the resolution. At lower energies, the
deep learning approach seems to have a better resolution than the theoretical limit.
Starting events might contribute to this, but the dominating effect is most likely
the boundary of the Monte Carlo dataset. The simulation dataset stops at 102GeV,
introducing an artificial cutoff.

9.3 Conclusion and Outlook

The energy reconstruction by the deep learning-based approach significantly sur-
passes the resolution of the current standard methods in all filters and data levels.
The relative improvement varies from ≈ 15 − 35% depending on the event selection
and data level. Even though the deep learning approach is intended for the on-site
reconstruction, it outperforms even the energy reconstructions applied offline for
the final data level. The developed reconstruction method is currently the best
available method in IceCube for the reconstruction of the muon and neutrino energy
of charged-current muon-neutrinos.

In addition, the deep learning-based method is able to reconstruct the energy of all
events and over the whole energy range covered by the training data. The standard
energy reconstructions are only valid in a certain energy regime.

As shown for the energy resolution of the neutrino energy in fig. 9.11, the deep
learning-based method provides a resolution which is close to the theoretical lower
limit. Taking all effects into account, an exact theoretical limit can be obtained. In
future work, this limit can be used to evaluate possible further improvements of the
deep learning-based reconstruction.
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10 Directional Reconstruction

Directional reconstruction is performed with the all-rounder model described in
ch. 7.1. Focus is laid on the directional reconstruction of the muon, which is the best
possible proxy for the neutrino direction. Three possible approaches to reconstruct
the muon direction are described in the following.

Direct Reconstruction of Azimuth and Zenith

A naive approach to reconstruct the azimuth and zenith angle is to directly use these
as labels. This, however, is problematic in practice. The azimuth angle is poorly
defined for very high or very low zenith angles. In addition, the 2𝜋-periodicity needs
to be accounted for. A proper definition of the gradient is therefore difficult, which
is needed for gradient descent during training.

Reconstruction of the Direction Vector

Instead of directly reconstructing the zenith and azimuth angle, the three coordinates
of the direction vector are reconstructed. This resolves the previously mentioned
difficulties. In principle, the norm of the direction vector could be constrained to 1
during training. However, this is not performed in the results shown here.

Reconstruction over Entry and Exit Point

A third example of how the direction can be reconstructed is by using the entry
and exit point of the muon into and out of the detector. Once these points are
reconstructed, the direction vector ⃗𝑑 is calculated as

⃗𝑑 =
⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗𝐸𝑋
|⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗𝐸𝑋|

, (10.1)

where 𝐸 defines the point of entry and 𝑋 the exit point of the muon. In the case of
a starting muon, the entry point 𝐸 is defined as the vertex. Similarly, for a stopping
muon, the exit point 𝑋 is defined as the stopping point.
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10.1 Results

All three of the above mentioned methods are used to reconstruct the direction of
the muon. The results of these methods are compared to the standard directional
reconstruction SplineMPE (ch. 2.2.2). In fig. 10.1 the results are shown for the
azimuth angle. The correlation plots for the zenith angle are plotted in fig. 10.2.

Figure 10.1: The correlation plots of the various reconstruction methods for
the muon azimuth angle are shown for charged current muon-neutrino events
passing the Online Muon L2 filter. A spectral index of u� = −2.19 is used. For
the calculation of the residual values and MAE, the 2u�-periodicity is taken into
account. Artifacts of the hexagonal shape of the IceCube detector can be found in
the SplineMPE azimuth correlation plot.

The deep learning approach is able to improve the average angular resolution.
However, when only looking at the median angular resolution, the standard likelihood
method SplineMPE outperforms the deep learning approach. With the deep learning
approach, events which are badly mis-reconstructed by the standard reconstruction
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10 Directional Reconstruction

Figure 10.2: Shown are the correlation plots for the muon zenith angle for the
different reconstruction methods. Charged current muon-neutrino events passing
the Online Muon L2 filter are used with a spectral index of u� = −2.19.
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10.1 Results

can be greatly reduced at the cost of loosing resolution for the well reconstructed
events. This might be an effect due to the chosen loss function (MSE) which heavily
punishes outliers as described in ch. 6. An attempt to reduce the weight of outliers by
utilizing a more robust loss function such as the tukey loss[15] yields an improvement
as shown in fig.10.4 in comparison to fig. 10.3. Fine-tuning with the tukey loss
improves the median angular resolution by about 1°. The energy resolution also
improves by about 5 % in comparison to the results shown in ch. 9. In fig. 12.2,
the resolution of different deep learning models is compared for the muon energy
at entry and the directional reconstruction. The results of the tukey fine-tuned
all-rounder model are summarized in appendix A.4.

The SplineMPE reconstruction is a likelihood based reconstruction as mentioned in
ch. 2.2.2. An infinite track of a minimum ionizing muon is assumed for the track
hypothesis. In the cases where this is a valid assumption, the likelihood minimization
will result in the best possible reconstruction, assuming the global minimum is found.
However, the likelihood will provide a poor reconstruction for events where this is
not the case. This effect is exceptionally well visible in the azimuth correlation plot
on the top left of fig. 10.1. While most events are well reconstructed and distributed
along the diagonal of the correlation plot, others are badly mis-reconstructed and
evenly distributed in azimuth angles. For these mis-reconstructed events, a random
number generator would provide a similar reconstruction accuracy.

In addition, the likelihood exhibits difficulties to describe high energy events as seen
in fig. 10.3 for the SplineMPE reconstruction. The brighter an event is (the higher
energetic a muon is), the more information is available to reconstruct the event.
Hence, the angular resolution should improve with increasing energy. Nonetheless,
the median angular resolution of the SplineMPE reconstruction seems to show a
resolution floor and the average resolution on the right of fig. 10.3 even greatly
increases. Studies are currently underway within IceCube to investigate this issue.

While likelihood-based methods provide the best possible reconstruction in theory,
they are often difficult to parameterize or typically limited in complexity and
dimensionality due to practical reasons such as minimization difficulties. In contrast,
a deep learning-based approach can in principle directly learn a likelihood in a
high-dimensional feature space from the given data.
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10 Directional Reconstruction

Figure 10.3: The angular resolution of the various reconstruction methods are
shown for a spectral index of u� = −2.19. On the left, the median angular resolution
is shown, while the average angular resolution is shown on the right. The deep
learning approach can reduce badly mis-reconstructed events.

Tukey Tukey

Figure 10.4: The median and mean angular resolution is shown for the standard
reconstruction and the deep learning approach fine-tuned with a robust tukey loss.
A spectral index of u� = −2.19 is used. Reducing the effect of outliers in the loss
function by applying a robust tukey loss improves the overall resolution.
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10.2 Reduction of Outliers

Many analyses in IceCube searching for neutrinos use the earth as a shield to elimi-
nate the atmospheric muon background. It is nearly impossible for an atmospheric

Figure 10.5: The distribution of background events (down going muons) is
shown for the true zenith angle as well as the zenith angles reconstructed by the
standard reconstruction and the deep learning approach. A cut in the zenith
angle reconstructed by the deep learning approach is more effective in reducing
the background than a cut in the zenith angle reconstructed by the standard
reconstruction.

muon to penetrate the earth. Most of the atmospheric background can therefore be
eliminated by discarding all downgoing events. In practice, this is done by applying
a cut in the reconstructed zenith angle at about 86° discarding all events with zenith
angles below this threshold. In principle, this should discard all background events.
However, muons are occasionally mis-reconstructed, so that down-going muons are
falsely classified as up-going. This poses a key challenge in obtaining pure data
samples.

The standard directional reconstruction, SplineMPE, is very accurate in most cases,
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but it has a high number of outliers as shown in the correlation plot on the top
left of fig. 10.2. With the help of the deep learning approach, these outliers can
be greatly reduced. As a result, purer data samples with higher efficiency can be
obtained.

To illustrate this, the charged-current events of the neutrino simulation dataset are
separated into up and down going muons according to the true simulated zenith
angle. The down going muons are then assumed to be background. This is an
approximation for atmospheric muons. For a more proper investigation, this study
has to be performed on corsika simulation datasets. The distribution of the down
going muons (background) is plotted in fig. 10.5 for the true zenith angle and
the reconstructed zenith angles for the standard method and the deep learning
approach.

A cut in the true zenith angle at 86° discards all down going muons per definition.
For the reconstructed zenith angles, this is not the case. The background distribution
in the standard zenith reconstruction is rather flat with increasing zenith angle, while
the distribution in the zenith angle reconstructed by the deep learning approach
falls off sharply. A cut in the deep learning reconstructed zenith angle is therefore
more effective at reducing the background.

10.3 Conclusion and Outlook

In comparison to the standard directional reconstruction, the deep learning-based
approach can significantly reduce the number of mis-reconstructed events. This is of
great importance for event selections as shown in fig. 10.5. With the help of the deep
learning approach, purer data samples with higher efficiency can be generated.

The median resolution of the deep learning approach cannot yet compete with
the resolution of the standard reconstruction. However, there is still room for
improvement. The directional reconstruction heavily relies on the timing information
which the current network architecture might not optimally use. As mentioned
in ch. 4.3, many different options exist which remain to be investigated. Simple
adjustments such as the fine-tuning with the tukey loss result in a significant jump
in the resolution curve as shown in fig. 10.3 and 10.4. This indicates that solutions
exist, which can further improve the deep learning-based method.

Another option is to combine the strengths of the standard and deep learning-based
reconstruction. An additional machine learning method such as a random forest or
BDT can be used on top of the results produced by the standard and deep learning-
based approach. Especially in regard to the uncertainty estimate (ch. 11) available
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10.3 Conclusion and Outlook

on every reconstructed quantity, the machine learning method should be able to
interpolate between the best reconstructions to further improve the resolution.

Moreover, the standard reconstructions often get stuck in a local minimum of
the likelihood landscape. Seeding with an improved track hypothesis, facilitates
convergence to the global minimum. The track hypothesis provided by the deep
learning approach is well suited as a seed due to the low number of outliers. As an
example, the HESE alert[52] sent out on October 28th, 2017, provided a very poor
initial track reconstruction. Follow-up millipede[59] scans reconstructed a track
which is over 130° away from the online SplineMPE track reconstruction. The alert
was later retracted due to high directional uncertainty. When seeded with the deep
learning track hypothesis (which is 3.5° away from the millipede result), the online
reconstruction reconstructs a track which is 5.1° away from the millipede result.
Assuming that the millipede result is close to the true direction, this is quite an
improvement. However, to obtain quantitative results, a thorough study needs to
be performed.

57



11 Uncertainty Estimation

In order to obtain an uncertainty estimation on the reconstructed quantities, a small
fully connected network is added to the main network as illustrated in fig. 7.1. The
network architecture used is the all-rounder model described in ch. 7.1. The smaller
network obtains the flattened layer of the main network as an input with a gradient
stop applied. Only with the gradient stop can the training of the smaller network
be performed independently of the main network. In the following, this smaller fully
connected network is referred to as the uncertainty layers. Two different approaches
to train the uncertainty layers are described below.

Mean Squared Error

The uncertainty layers can be trained over the mean squared error as described in
ch. 6 with a little modification in eq. (6.1). Instead of the residuals between the
true and predicted values |𝑌true − 𝑌pred|, the residuals

𝛥𝑌 = |𝜎pred − |𝑌true − 𝑌pred|| (11.1)

are used, where 𝜎pred are the uncertainties predicted by the neural network. In
doing so, the network is trained to correctly estimate the residual |𝑌true − 𝑌pred| on
average. This is not identical to a 1-sigma confidence interval and needs to be taken
into account when interpreting the uncertainties estimated by the neural network.

Gaussian Likelihood

An alternative approach is to assume a Gaussian Likelihood. Under the assumption
that the reconstructed value 𝑦pred is normally distributed around the true value 𝑦true,
the probability density can be defined as

𝑓(𝑦pred) = 1√
2𝜋𝜎2

⋅ exp (−1
2

(𝑦pred − 𝑦true)2

𝜎2 ) (11.2)

where 𝜎 is the uncertainty on the reconstruction of 𝑦true.
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11.1 Results

For a batch of 𝑛 events the Gaussian likelihood can then be written as

ℒ =
u�

∏
u�=1

𝑓(𝑦predu�
)
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1
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−1

2
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(11.3)

Maximizing the likelihood in eq. (11.3) is equivalent to minimizing the negative log
likelihood which is used as the loss function

loss =
u�

∑
u�=1

⎛⎜
⎝

ln (𝜎2
predu�

) +
(𝑦predu�
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𝜎2
predu�

⎞⎟
⎠

(11.4)

during traing.

Equation (11.4) defines the loss function for a single label. To incorporate all labels
as well as their weights according to the importance vector ⃗𝐶 as described in ch. 6
the loss function is modified to

loss =
u�

∑
u�=1

( ⃗𝐶)
u�

⋅ 1
𝑛

u�
∑
u�=1

⎛⎜
⎝

ln ((𝜎u�
predu�

)2) +
(𝑦u�

predu�
− 𝑦u�

trueu�
)2

(𝜎u�
predu�

)2
⎞⎟
⎠

(11.5)

where 𝑙 = 1, … , 𝐿 are the labels.

11.1 Results

To validate the uncertainty estimation by the neural network, the pull distributions
for both approaches for the muon energy at detector entry are shown on the left of
fig. 11.1. On the right, the resolution measured in different quantities is shown for
events with a given estimated uncertainty. The top panel shows the results for the
mean squared error approach and the bottom panel for the Gaussian Likelihood.

Assuming Gaussian distributed residuals, a perfect uncertainty estimator is expected
to produce a Gaussian shaped pull distribution with a variance of 1[18]. As previously
mentioned, the uncertainty estimation trained with a mean squared error loss
function is expected to correctly estimate the residual between true and reconstructed
value on average. This can also be seen on the top right of fig. 11.1. The uncertainty
estimated by the neural network is highly correlated to the resolution. A one to
one relation (solid red line) is observed between the estimated uncertainty and the
mean absolute residuals for the mean squared error approach.
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11 Uncertainty Estimation

Figure 11.1: The pull distributions for the muon energy at detector entry are
shown on the left for the mean squared error (top) and the Gaussian Likelihood
approach (bottom). On the right, the resolution of the reconstruction for events
with a given estimated uncertainty is shown for the two methods.
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11.2 Selection of well Reconstructed Events

Assuming that the residuals 𝑥 = 𝑦true − 𝑦pred are normally distributed with a mean
of zero:

𝑓(𝑥) = 1√
2𝜋𝜎2

⋅ exp (− 𝑥2

2𝜎2 ), (11.6)

the mean absolute residual is given by

⟨𝑥abs⟩ = 2
∞

∫
0

𝑥 ⋅ 𝑓(𝑥) d𝑥 = 2𝜎√
2𝜋

. (11.7)

The 1-sigma confidence interval can therefore be obtained by the following relation:

𝜎 = √𝜋
2

⋅ ⟨𝑥abs⟩ ≈ 1.253 ⋅ ⟨𝑥abs⟩. (11.8)

The uncertainty prediction through the mean squared error approach is therefore
expected to underestimate the uncertainty by a factor of about 1.253. For comparison,
a dashed line 𝑓(𝑥) = 1.253 ⋅𝑥 for the corrected uncertainty prediction value is shown.
Similarly, a line 𝑓(𝑥) = 1

1.253 ⋅ 𝑥 is added in the resolution plot for the Gaussian
Likelihood approach, showing that the results of these methods only differ by a
constant factor (for Gaussian distributed residuals).

Training the uncertainty layers with the Gaussian Likelihood approach directly
results in correctly estimated uncertainties as shown in fig. 11.1. In contrast to
the mean squared error approach, the estimated uncertainties do not need to be
corrected.

11.2 Selection of well Reconstructed Events

Another qualitative way of validating the uncertainty estimation is by choosing a
subset of events with a low estimated uncertainty. If the uncertainty estimation
produces reasonable results, this subset should consist of events, which are well
reconstructed. In fig. 11.2, a subset of 10 % of all events with the lowest estimated
uncertainty for the neutrino energy and the muon zenith angle is shown. The
original sample is shown in the background. Using the estimated uncertainty to
select well reconstructed events can significantly boost the resolution. Especially in
regard to the neutrino energy, the achieved resolution is quite remarkable.

With the uncertainty estimation performed by the neural network, a subset of well
reconstructed events can be chosen. This is also used in ch. 9.1.2 to recover events
which previously would have been discarded due to unsuccessful reconstructions of
the standard methods.

61



11 Uncertainty Estimation

Figure 11.2: With the help of the uncertainty estimation performed by the neural
network, a subset of well reconstructed events can be chosen. Shown are the 10 %
of events with the lowest estimated uncertainty for the neutrino energy and the
muon zenith angle. The tukey fine-tuned all-rounder model is used and the original
sample is indicated in the background.

11.3 Track Uncertainty Estimation

The uncertainty estimation as described in this chapter can also be used to obtain an
estimate on the uncertainty of the standard directional reconstruction. The results
obtained here use the track uncertainty model as described in ch. 7.2. Uncertainty
estimators for the standard directional reconstructions exist, but they are heavily
biased and need to be corrected. One fast method is Cramér Rao as described in
ch. 2.2.3. Better methods exists, however, their runtime is prohibitively long, so
that they can only be run on a selection of a few events. The pull distributions for
the (uncorrected) Cramér Rao method as well as for the deep learning approach are
compared in fig. 11.3.

Under the assumption that the residuals between true and reconstructed value for
the azimuth and zenith angle are normally distributed, uncorrelated and have a
zero mean with equal variance, a Rayleigh distribution:

𝑓r(𝑥; 𝜎r) = 𝑥
𝜎2

r
⋅ exp −𝑥2

2𝜎2
r

(11.9)

is expected for the overall track uncertainty. With these assumptions, the pull
distribution for a perfect uncertainty estimator should therefore follow a Rayleigh
distribution with 𝜎r = 1.0.
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11.3 Track Uncertainty Estimation

Figure 11.3: Shown are the energy dependent pull distributions for the Cramér
Rao method (left) and for the deep learning appraoch (right). In contrast to the
deep learning approach, the uncertainty estimate by the Cramér Rao method is
heavily biased.

In practice, however, these assumptions do not hold. The standard directional
reconstruction has a lot of mis-reconstructed events, which do not follow a normal
distribution. In addition, the uncertainty on the zenith and azimuth angle is
correlated. Nevertheless, a comparison between the theoretically expected Rayleigh
distribution and the pull distribution for the Cramér Rao method and the deep
learning approach is shown in fig. 11.4. The results of the deep learning approach
(on the right) tend to follow the expected Rayleigh distribution more closely.

As performed in ch. 11.2, the uncertainty estimation can be qualitatively checked by
choosing well reconstructed events based on the estimated uncertainty. In fig. 11.5
the angular resolution is shown for differently sized subsamples of the charged
current events passing the Muon Online L2 Filter. The subsamples are chosen
according to the estimated uncertainty on the standard directional reconstruction:
SplineMPE. On the left, the selection is based on the uncertainty estimation of the
(uncorrected) Cramér Rao method and on the right it is based on the deep learning
approach.
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11 Uncertainty Estimation

Figure 11.4: The pull distributions for the Cramér Rao Method (left) and the
deep learning apraoch (right) are shown for different energy bins. The theoretically
expected Rayleigh distribution is shown in green and the best fit in orange.
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11.4 Conclusion and Outlook

Figure 11.5: The uncertainty estimation for the standard directional reconstruc-
tion can be used to select well reconstructed tracks. On the left, the selection is
made using Cramér Rao’s (uncorrected) estimate, while the deep learning approach
is used on the right. The angular resolution for events passing the GFU filter is
shown for comparison.

11.4 Conclusion and Outlook

The deep neural network is able to estimate an uncertainty on its reconstruction. In
addition, it can provide an estimate on the uncertainty of the standard reconstruc-
tions. This is qualitatively shown by the pull distributions and the selection of well
reconstructed tracks. For a thorough investigation, Monte Carlo simulations have
to be performed in which single events are re-simulated and re-constructed many
times. Nevertheless, the results are very promising.

Currently, the standard energy reconstructions do not provide an event-by-event
uncertainty estimate. However, a valid uncertainty estimate on the reconstruction
quantities could greatly improve physics analyses.

In addition, for real-time alerts and follow-up programs, a valid uncertainty estimate
is of utmost importance. The HESE alert[52] sent out on October 28th, 2017, is
an example in which the uncertainty on the online track reconstruction is heavily
underestimated. Folllow-up millipede[59] scans reconstructed a track over 140° away
from the initially reported position while the uncertainty on the online reconstruction
was reported as 8.9°. Although the deep learning-based reconstruction is not yet
tested on data, the estimated uncertainty of 142° seems very reasonable.
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12 Runtime and Performance

The developed deep learning-based reconstruction method as presented in this thesis
is designed to improve the Muon Online L2 Filter (see ch. 2.1). To be run online at
the South Pole, strict restrictions on the computational requirements have to be
met. In the following, the runtime of the deep learning approach is evaluated in
comparison to the reconstructions performed for the Muon Online L2 Filter.

Module Mean Time 𝜎 99 % percentile
SPE 2-it. Fit 0.085 s 0.129 s 0.670 s
MPE Fit 0.054 s 0.102 s 0.485 s
Cramér Rao Fits 0.049 ms 0.133 ms 0.560 ms
Bayesian Fit 1.022 ms 5.825 ms 0.024 s
Split Fits 0.066 s 0.236 s 1.291 s
MuEx 6.576 ms 0.023 s 0.091 s
Truncated Energy 2.612 ms 6.204 ms 0.022 s
Paraboloid 0.014 s 0.107 s 0.311 s
SplineMPE 0.036 s 0.152 s 0.793 s
All modules 0.273 s 0.605 s 3.297 s

Table 12.1: The runtime of the reconstructions performed for the Muon Online
L2 Filter are shown. Only the SPE and MPE fits are run on all events of the Muon
Filter stream. The other reconstructions are only run on events passing the Muon
Online L2 Filter or on upgoing events, which means that their actual runtime is
higher. [58, p.6]

The average runtime for the different reconstructions of the Muon Online L2 Filter
is listed in tab. 12.1. The deep learning approach with the all-rounder model as
described in ch. 7.1 has a runtime of (1.5 ± 0.2) ms per event on a Tesla P40. On a
Quadro M1000M, the runtime for the prediction increases to (12 ± 2) ms per event.
This does not include the time needed to load and preprocess the data.

Within the IceTray framework [20] it is not possible to perform the reconstruction
simultaneously on a batch of events. Therefore, the batch size for the inference
step has to be set to one. As a result, the time needed for prediction increases
by approximately a factor of 4. An i3-module within the IceTray framework is
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implemented to test the runtime for the Muon Online L2 Filter in comparison to
the deep learning approach. The i3-module is tested on a data sample as well as
on a simulation dataset. Both datasets only contain events which pass the Muon
Online L2 Filter. Due to brighter events in the simulation dataset (simulated with
a spectral index of 𝛾 = −1), the runtime is expected to be higher compared to the
data sample. The test is performed on a notebook setup with a quadro M1000M
graphics card and an Intel © Core™ i7-6700HQ CPU @2.60 GHz × 8. The results
are displayed in fig.12.1.

Figure 12.1: The distribution of per event runtime is shown for events passing
the Muon Online L2 Filter. The simulation dataset is simulated with a spectral
index of u� = −1 and therefore contains more high energy events than the data
sample.

For comparison, the deep learning approach is also run on a CPU instead of a GPU.
However, this is not preferred as advantages of the GPU’s vectorization can not be
exploited. The standard reconstructions are not capable of running on a GPU or on
multiple CPUs in parallel.

The runtime of the deep learning approach in fig.12.1 is limited by the data prepro-
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12 Runtime and Performance

cessing which is currently implemented in python. This also adds a slight dependence
of the runtime on the brightness of the event. As a result, the variance in the distri-
bution of the runtime increases. The runtime of the prediction itself is independent
of the event. In the current implementation, two loops over the measured pulses are
performed. Transitioning the preprocessing to c++ should considerably speed up
the runtime.

12.1 Fast Model

While developing the all-rounder model as described in ch. 7.1, the runtime did
not play a key role. In case further restrictions on the runtime are imposed, the
presented deep learning approach can be optimized for a short runtime. As an
example, the number of filters are greatly reduced in the fast model ( 7.3) resulting in
a decrease in the runtime for the prediction on a Quadro M1000M from (12 ± 2) ms
down to (1.7 ± 0.9) ms per event. The reconstruction accuracy of this fast model is
summarized in fig. 12.2.

Figure 12.2: The results of the fast model are shown. On the left, the energy
resolution for the muon energy at detector entry is shown and the median angular
resolution is shown on the right.

Another approach to further improve the runtime is to reduce the number of layers
in the network architecture or to investigate how important the input parameters
are and if some of them are negligible. Omitting negligible input parameters will
greatly reduce the time needed for preprocessing.
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12.2 Conclusion and Outlook

12.2 Conclusion and Outlook

The runtime of the deep learning-based approach is fast and essentially independent
of the brightness of the event. Solely the preprocessing introduces a slight dependence
on the number of pulses measured. The deep learning approach is therefore well
suited to be run on-site at the South Pole. Moreover, if necessary, the runtime can be
further improved by code optimization and pruning of the network architecture.

Furthermore, with the advent of Neural Processing Units (AI-chips) in smart-
phones 12, the optimization of neural network architectures and inference in regard
to runtime as well as energy consumption is a field of active research. Significant
advances are to be expected in the near future.

1http://www.dailymail.co.uk/sciencetech/article-4850136/Huawei-installing-AI-chips-
smartphone.html

2https://www.androidauthority.com/smartphone-ai-processor-803019/
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13 Conclusions

The developed deep learning-based reconstruction as presented in this thesis is
currently the best reconstruction method available in IceCube for the reconstruction
of the muon and neutrino energy of charged-current muon-neutrinos. In addition,
the runtime of the reconstruction is very fast and stable, which makes the developed
method a perfect candidate for the on-site employment at the South Pole. Not only
can the energy resolution be greatly improved, but these reconstructions can be
made available at the very beginning of the online processing chain, opening up new
possibilities for real-time analyses and follow-up programs.

The most sophisticated reconstruction methods in IceCube such as millipede [59]
do not reconstruct the muon or neutrino energy, but only the energy loss profile
and the resulting deposited energy in the detector. As shown in app. A.7, the deep
learning approach obtains similar results for the deposited energy. However, the
millipede reconstruction can take hours to reconstruct a single event, while the deep
learning approach has a runtime on the order of ms.

With the deep learning approach, outliers in the directional reconstruction can
be greatly reduced. Currently, the standard directional reconstruction provides
the best median angular resolution, however, possible improvements remain to be
investigated for the deep learning-based reconstruction.

Furthermore, the developed method provides estimates on the uncertainty on all
reconstructed quantities. The neural network can also be used to estimate the
uncertainty on the standard reconstructions. Valid uncertainty estimates are of
utmost importance for real-time alerts and follow-up programs.

All in all, the deep learning-based reconstruction method is a very powerful tool
enhancing the current standard with a great potential for further improvements.
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14 Outlook

The developed deep learning-based reconstruction is able to significantly increase
the reconstruction accuracy while reducing the runtime in comparison to standard
methods. Yet, many paths remain to be explored.

Further Improvements

While the deep learning approach is able to greatly boost the energy resolution,
there is still room for improvement in the directional reconstruction. As mentioned
in 10.3 the results of the standard directional reconstruction and the deep learning
approach can be combined to further improve the angular resolution.

The directional reconstruction heavily relies on the timing information which is
not yet optimally used in the network architecture. A use of the complete DOM
waveform and a full four-dimensional data representation (ch. 4.3.2) could further
improve the performance.

The neural network as presented in this thesis is trained on a single dataset. However,
further datasets exist which can be used for additional training. Consequently, the
network architecture can be increased without the risk of overfitting.

Moreover, the detector consists of multiple parts which are currently handled
separately and only combined in subsequent steps. In addition, the DOMs of the
main IceCube array are not distributed on a perfect grid. A solution is desired
which is able to uniformly handle DOMs in arbitrary positions not restricted to a
fixed grid. One option might be a type of continuous convolution over the input
array. This is also of relevance for the possible detector upgrade which is planned
to instrument strings in a sunflower configuration.

The success of convolutional networks is based on the exploitation of symmetries
and a priori knowledge. In the physics use-case, many symmetries, invariances,
and physical laws exist which could be used to further reduce the number of free
parameters. A combination of likelihood-based methods and deep learning techniques
seems very promising.
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14 Outlook

Moving Towards Data

While many options for possible improvements remain to be investigated, the next
steps should include an investigation on the application of the deep learning-based
method on data. Possible data-MC-mismatches as well as the effects of detector
systematics need to be studied. A first test on historical EHE alerts[9] as described
in appendix A.7 indicates that the deep learning-based reconstruction produces
reasonable results comparable to the performed milllipede[59] scans.

Various options are available to overcome possible obstacles which may arise.
Datasets simulated with different ice models and detector systematics exist. These
can be used to train the network in order to achieve a robust reconstruction. Fur-
thermore, a neural network autoencoder[14, 53] can be employed to train on data.
Once the autoencoder is trained, it can be applied on the Monte Carlo datasets,
resulting in robust features which can then be used as input into a neural network
architecture such as presented in this thesis.

Other Applications

The presented neural network is intended to improve the event reconstructions for
the Muon Online L2 Filter. However, it can be generalized to perform a classification
of event topologies. Most of the online filters in use are based on straight cuts. A
deep learning approach can possibly greatly improve the classification in order to
obtain purer and more efficient data samples. Dedicated deep learning-based event
reconstructions can then be performed for each event topology.

Another advantage of the deep learning approach is that labels can be freely defined.
Currently, five different energy labels and many more directionally related labels
are reconstructed as listed in tab. A.1. However, it is straight forward to define new
labels if desired. This can be useful for analyses which require specific reconstruction
quantities.

Ongoing work is put forth to better understand detector systematics. A neural
network can be trained on real data to predict an event given the first few measured
waveforms. Consequently, the network will learn to model the ice properties and
light propagation. In contrast to standard parameterization approaches, the neural
network is capable of fitting a non-linear function to data in a highly dimensional
feature space. The trained network could then be used to simulate events and to
study the ice properties.

All in all, deep learning techniques have great potential in physics. This successful
feasibility study of a deep learning-based event reconstruction is just the beginning.
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A Appendix

Label Models Description

PrimaryMuonEnergyEntry All-Rounder, Fast Model,
Track Uncertainty

Energy of muon at the entry point
into the detector (convex hull + 60m)

PrimaryMuonEnergyCenter All-Rounder
Energy of muon at the closest
approach point to the center
of the detector

PrimaryMuonEnergy All-Rounder Energy of muon
PrimaryEnergy All-Rounder Energy of neutrino

PrimaryInDetectorEnergyLoss All-Rounder,
Track Uncertainty

Energy deposited in detector
by neutrino or any of its
daughter particles

PrimaryMuonAzimuth All-Rounder,
Track Uncertainty Azimuth angle of muon

PrimaryMuonZenith All-Rounder,
Track Uncertainty Zenith angle of muon

PrimaryMuonDirectionX All-Rounder, Fast Model,
Track Uncertainty

X-coordinate of the muon
direction vector

PrimaryMuonDirectionY All-Rounder, Fast Model,
Track Uncertainty

Y-coordinate of the muon
direction vector

PrimaryMuonDirectionZ All-Rounder, Fast Model,
Track Uncertainty

Z-coordinate of the muon
direction vector

PrimaryMuonEntryX All-Rounder,
Track Uncertainty

X-coordinate of the muon
point of entry into the detector

PrimaryMuonEntryY All-Rounder,
Track Uncertainty

Y-coordinate of the muon
point of entry into the detector

PrimaryMuonEntryZ All-Rounder,
Track Uncertainty

Z-coordinate of the muon
point of entry into the detector

PrimaryMuonExitX All-Rounder,
Track Uncertainty

X-coordinate of the muon at the
exit point out of the detector

PrimaryMuonExitY All-Rounder,
Track Uncertainty

Y-coordinate of the muon at the
exit point out of the detector

PrimaryMuonExitZ All-Rounder,
Track Uncertainty

Z-coordinate of the muon at the
exit point out of the detector

PrimaryMuonCenterX All-Rounder,
Track Uncertainty

X-coordinate of the muon closest
approach point to the center
of the detector

PrimaryMuonCenterY All-Rounder,
Track Uncertainty

Y-coordinate of the muon closest
approach point to the
center of the detector

PrimaryMuonCenterZ All-Rounder,
Track Uncertainty

Z-coordinate of the muon closest
approach point to the
center of the detector

SplineMPETrackUncertainty Track Uncertainty Angular error estimate on the
SplineMPE track reconstruction

SplineMPEAzimuthUncertainty Track Uncertainty Estimated uncertainty on the
SplineMPE Azimuth reconstruction

SplineMPEZenithUncertainty Track Uncertainty Estimated uncertainty on the
SplineMPE Zenith reconstruction

Table A.1: An overview of the reconstructed labels is shown. The models which
reconstruct the given labels are listed in the second column.
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A Appendix

A.1 All-Rounder Model

In the following, supplementary material is shown for the all-rounder model as
described in ch. 7.1.

A.1.1 All-Rounder Model Architecture and Training

A detailed description of the neural network architecture and training procedure of
the all-rounder model (ch. 7.1) is given in the following tables.

Num. Filters Filter Size Padding Activation Res. Add. Max Pooling
100 hex. [2,0,3] same relu Yes No
100 hex. [2,0,3] same relu Yes [2,2,2]
100 hex. [1,0,15] same relu Yes No
100 hex. [2,0,3] same relu Yes [1,1,2]
100 hex. [1,0,15] same relu Yes No
100 hex. [2,0,3] same relu Yes [2,2,2]
100 hex. [2,0,2] same relu Yes [1,1,2]
100 hex. [2,0,3] same relu Yes No
100 hex. [2,0,3] same relu Yes No
100 hex. [1,0,1] same relu Yes No
100 hex. [1,0,1] same relu Yes No

Table A.2: An overview of the 11 convolutional layers over the main IceCube
array input is shown. Dropout is applied to all layers.

Num. Filters Filter Size Padding Activation Res. Add. Max Pooling
100 [8,5] same relu Yes [1,2]
100 [8,7] same relu Yes No
100 [8,7] same relu Yes No
100 [8,3] valid relu No No
100 [1,7] same relu Yes [1,2]
100 [1,7] same relu Yes No
100 [1,1] same relu Yes No
100 [1,1] same relu Yes No

Table A.3: The convolutional layers over the DeepCore input are described.
Dropout is applied to all layers.
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A.1 All-Rounder Model

Num. Neurons Dropout Activation Residual Addition

Prediction Layers: 300 Yes relu No
19 No none Yes

Uncertainty Layers:
50 No relu No
50 No elu No
19 No none No

Table A.4: An overview of the fully connected layers for the prediction and
uncertainty estimation are shown. The combined and flattened result of the
convolutional layers is used as input.

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

30000 10−3 0.2 0.5 3 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

10000 10−3 0.0 0.3 3 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

10000 10−4 0.0 0.2 3 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

30500 10−4 0.0 0.0 1 200 256 All labels: 1
2000 10−5 0.0 0.0 1 200 256 All labels: 1

Table A.5: The all-rounder model is trained in 5 steps as described above. The
dropout rate for the convolutional layers is given in the first dropout column. The
second column is the dropout rate for the fully connected layers.
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A.1.2 All-Rounder Model Results

Figure A.1: The results for the all-rounder model are shown.
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Figure A.2: Correlation plots for the all-rounder model are shown.
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A.2 All-Rounder Model – Tuned to GFU Filter

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

38000 10−3 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

22500 10−4 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

23000 10−5 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

Table A.6: The all-rounder model is fine-tuned to events passing the GFU filter.
The first three steps as described in tab. A.5 are kept, while the training steps
above are performed only on events passing the GFU filter.

Figure A.3: The results for the GFU fine-tuned all-rounder model are shown for
events passing the GFU filter.
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Figure A.4: The results for the GFU fine-tuned all-rounder model are shown for
events passing the GFU filter.
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Figure A.5: The results for the GFU fine-tuned all-rounder model are shown for
events passing the GFU filter.
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A.3 All-Rounder Model – Tuned to Final Level

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

25000 10−3 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

23500 10−4 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

18000 10−5 0.0 0.0 1 200 256

PrimaryEnergy: 0.2
PrimaryMuonEnergy: 0.2
PrimaryMuonEnergyEntry: 2
All other labels: 1

Table A.7: The all-rounder model is fine-tuned to the point source final level.
The first three steps as described in tab. A.5 are kept, while the training steps
above are performed only on events of the final data level.

A.3.1 Results

Figure A.6: The results for the all-rounder model fine-tuned to the final point
source level are shown.
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Figure A.7: The results for the all-rounder model fine-tuned to the final point
source level are shown.
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Figure A.8: The results for the all-rounder model fine-tuned to the final point
source level are shown.
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A.4 All-Rounder Model – Tuned with Tukey Loss

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

43500 10−3 0.0 0.0 1 200 256 All labels: 1
58500 10−4 0.0 0.0 1 200 256 All labels: 1
1500 10−5 0.0 0.0 1 200 256 All labels: 1

Table A.8: The all-rounder model is fine-tuned with the tukey loss. The first
three steps as described in tab. A.5 are kept, while the training steps above are
performed with the tukey loss instead of the mean squared error.

Figure A.9: The results for the tukey fine-tuned all-rounder model are shown.
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Figure A.10: The results for the tukey fine-tuned all-rounder model are shown.
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A.5 Track Uncertainty Model

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

32000 10−3 0.2 0.5 3 70 256 SplineMPETrackUncertainty: 3
All other labels: 1

17000 10−3 0.0 0.3 3 100 256 SplineMPETrackUncertainty: 3
All other labels: 1

21000 10−4 0.0 0.2 3 100 256 SplineMPETrackUncertainty: 3
All other labels: 1

11500 10−4 0.0 0.0 1 100 256 SplineMPETrackUncertainty: 3
All other labels: 1

Table A.9: The track uncertainty model is trained in 4 steps as described above.
The dropout rate for the convolutional layers is given in the first dropout column,
while the dropout rate for the fully connected layers is given in the second column.

Figure A.11: Results of the track uncertainty model are shown.
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A.6 Fast Model

In the following, supplementary material is shown for the fast model as described in
ch. 7.3.

Num. Filters Filter Size Padding Activation Res. Add. Max Pooling
20 hex. [2,0,3] same relu Yes No
20 hex. [2,0,3] same relu Yes [2,2,2]
20 hex. [1,0,15] same relu Yes No
20 hex. [2,0,3] same relu Yes [1,1,2]
20 hex. [1,0,15] same relu Yes No
20 hex. [2,0,3] same relu Yes [2,2,2]
20 hex. [2,0,2] same relu Yes [1,1,2]
20 hex. [2,0,3] same relu Yes No
20 hex. [2,0,3] same relu Yes No
20 hex. [1,0,1] same relu Yes No

Table A.10: An overview of the 10 convolutional layers over the main IceCube
array input is shown. Dropout is applied to all layers.

Num. Filters Filter Size Padding Activation Res. Add. Max Pooling
20 [8,5] same relu Yes [1,2]
20 [8,7] same relu Yes No
20 [8,7] same relu Yes No
20 [8,3] valid relu No No
20 [1,7] same relu Yes [1,2]
20 [1,7] same relu Yes No
20 [1,1] same relu Yes No

Table A.11: The convolutional layers over the DeepCore input are described.
Dropout is applied to all layers.
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Num. Neurons Dropout Activation Residual Addition

Prediction Layers: 100 Yes relu No
4 No none Yes

Uncertainty Layers:
20 No relu No
20 No elu No
4 No exp No

Table A.12: An overview of the fully connected layers for the prediction and
uncertainty estimation are shown. The combined and flattened result of the
convolutional layers is used as input.

Num.
Steps

Learning
Rate

Dropout
Rate

File
Epochs

Files at
Once

Batch
Size

Label
Importance

101500 10−2 0.0 0.0 20 200 512 All labels: 1
52500 10−3 0.0 0.0 6 200 512 All labels: 1
31500 10−4 0.0 0.0 1 200 512 All labels: 1

Table A.13: The fast model is trained in 3 steps as described above. The dropout
rate for the convolutional layers is given in the first dropout column, while the
dropout rate for the fully connected layers is given in the second column.

Figure A.12: Results for the fast model are shown.
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A.7 EHE Alerts

The application of the deep learning-based reconstruction on data has not been
investigated yet. However, a first test on historical EHE alerts[9] is shown here.
For these events, computationally expensive millipede [59] scans are performed.
The millipede scans reconstruct the track as well as the deposited energy in the
detector and are currently the best possible reconstruction available in IceCube.
A likelihood scan for a single event can require several hours of runtime. The
results of the developed deep learning-based reconstruction are compatible with
the results obtained by the millipede scan. In tab. A.14, the reconstruction of the
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Figure A.13: Millipede scans for historical EHE events are shown.

deposited energy in the detector is compared. Millipede scans the likelihood to
obtain the best fit track as well as the 50 % and 90 % confidence intervals. The
results are shown in fig. A.13, A.14, A.15, A.16. For the deep learning-approach,
the 1 𝜎-error contours are plotted. Although, this is just a qualitative check, the
results of the deep learning-method seem reasonable and are in overall agreement
with the millipede reconstruction.
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EHE Event Millipede Scan /TeV
Deep Learning /TeV

(all-rounder + tukey)

2010 alert 0 82.61 105+32
−25

2010 alert 1 108.85 91+28
−21

2010 alert 2 177.59 138+52
−38

2010 alert 3 143.30 70+22
−16

2011 alert 0 26.53 27+8
−6

2011 alert 1 170.77 126+63
−42

2012 alert 0 40.29 51+23
−16

2012 alert 1 33.15 34+12
−9

2012 alert 2 64.78 77+24
−18

2013 alert 0 880.83 1243+406
−306

2013 alert 1 98.72 43+112
−31

2013 alert 2 13.61 16+6
−4

2013 alert 3 184.37 212+99
−67

2013 alert 4 507.70 429+173
−123

2013 alert 5 24.45 10+6
−4

2014 alert 0 2370.78 3431+1895
−1221

2014 alert 1 28.21 34+11
−8

2015 alert 0 37.87 42+13
−10

2015 alert 1 42.46 65+27
−19

2015 alert 2 21.48 24+8
−6

2015 alert 3 53.86 53+19
−14

2015 alert 4 38.79 37+11
−9

2015 alert 5 32.63 34+11
−9

2015 alert 6 22.11 18+5
−4

2016 alert 0 134.95 282+115
−82

2016 alert 1 36.15 25+9
−7

2016 alert 2 55.81 25+31
−14

2016 alert 3 16.95 16+7
−5

Table A.14: The reconstructed deposited energy of historical EHE alerts is shown
for the millipede scan and the deep learning approach.
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Figure A.14: Millipede scans for historical EHE events are shown.
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Figure A.15: Millipede scans for historical EHE events are shown.
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Figure A.16: Millipede scans for historical EHE events are shown.
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