They fit to the following equation:

However when fitting curves through the supplied data points it became clear that fitting for the C parameter was going to be difficult. Instead it was fit to:

The best fit found is implemented by the following python code:
# x_in is the ice temp in deg C
def fit_matsuoka_a(x_in):
temp = 0.0
# coefficients
A = -6.3293731455351277E-05
B = 1.6797867246920113E-08
C = -1.4744880953559558E-12
D = 9.1142297584796472E-02
E = -1.3061526747480247E+01
F = 1.1626675440193469E+03
G = -4.2940915550767430E+04
temp = A + B * math.pow(x_in, 2.0) + \
C * math.pow(x_in, 4.0) + \
D / math.pow(x_in, 2.0) + \
E / math.pow(x_in, 4.0) + \
F / math.pow(x_in, 6.0) + \
G / math.pow(x_in, 8.0)
return temp
# x_in is the ice temp in deg C
def fit_matsuoka_b(x_in):
temp = 0.0
# coefficients
A = 3.6656269531875900E-05
B = -6.2610754337689568E-09
C = 4.5947045594069011E-13
D = 5.3986512806528447E-03
E = -6.1224071031577942E-01
F = -2.5506123420729601E+01
G = 4.9422024952720685E+03
temp = A + B * math.pow(x_in, 2.0) + \
C * math.pow(x_in, 4.0) + \
D / math.pow(x_in, 2.0) + \
E / math.pow(x_in, 4.0) + \
F / math.pow(x_in, 6.0) + \
G / math.pow(x_in, 8.0)
return temp
# x_in is the ice temp in deg C
def fit_matsuoka_c(x_in):
temp = 0.0
# coefficients
A = 9.0628357600078143E-08
B = 1.7535861695933664E-12
C = -4.6909178338196244E-16
D = -1.5145302144421151E-05
E = 2.8959559913410331E-03
F = -1.7486054687356639E-01
temp = A + B * math.pow(x_in, 2.0) + \
C * math.pow(x_in, 4.0) + \
D / math.pow(x_in, 2.0) + \
E / math.pow(x_in, 4.0) + \
F / math.pow(x_in, 6.0)
return temp