
StorHouse/RM
Concepts

StorHouse/RM Release 3.2

Publication Number
900132 Rev. F

March 21, 2002

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1998-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900132 Rev. F

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. Sun, Microsystems, and Ultra Enterprise are registered
trademarks or trademarks of Sun Microsystems, Inc. Microsoft and Windows are
registered trademarks of Mircrosoft Corporation. UNIX is a registered trademark of the
Open Group. Oracle is a registered trademark and Oracle8i is a trademark of Oracle
Corporation. IBM, DB2, Distributed Relational Database Architecture, DRDA, and
DataJoiner are registered trademarks or trademarks of International Business Machines
Corporation. SequeLink is a registered trademark of MERANT. All other brand or product
names are trademarks or registered trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

NOTE: U.S. GOVERNMENT USERS

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-
7013 or the Commercial Computer Software - Restricted Rights clause
at 48 CFR 52.227-19, as applicable. Unpublished-rights reserved under
the copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

StorHouse/RM Concepts

Contents

Products and applications 4

StorHouse databases 6

User tables 8

Large objects 10

Indexes 12

User tablespaces 14

Metadata 16

Storage management 18

Backup 20

Recovery 22

Software architecture 24

SQL 26

ESQL 28

Data loaders 32

Data unloader 34

Gateways 36

StorHouse/UDB Link 38

Queries 40

Concurrency 42

Database security 44

Administration 46

Welcome

This publication describes the key

concepts of StorHouse/RM. It

explains the structures that store

relational data on StorHouse and

the facilities that access and

manage that data.

4 Sto

Det

Detai
granu
that a
collec
servic
ATM
sale d
photo
and e
exam

Sto

StorH
mana
contr
stora
of cac
indep
erasa
read-
disk j
tape
stora
also r
syste
like d
and r
syste
that o
respo
costs
StorH
Sun
Enter
Products and applications
StorHouse® is the FileTek® enterprise-wide solution for managing the capture,
storage, movement, and access of gigabytes (GB) to petabytes (PB) of relational
and non-relational detail data. StorHouse technology combines industry-leading,
scalable storage devices and Open System processors with specialized storage
management and relational database management system (RDBMS) software
components. Together, these components make StorHouse the ideal hub server,
active archive, or database extension for data warehousing and high volume data-
intensive applications such as Customer Relationship Management (CRM),
Enterprise Resource Planning (ERP), and e-business.

StorHouse as a hub server
As a hub server, StorHouse is an enterprise-wide data warehouse for transaction-
level data. Different operational systems can load detail information into the
centralized StorHouse hub, and multiple dependent data marts can query, or
mine, the hub on a regular or ad hoc basis.

The StorHouse hub server stores static operational data from multiple
operational systems safely and securely. As a centralized, single storage repository,
it provides timely, shared access to one data source, a consistent view of business
activity across the enterprise, and information used to fuel data marts for decision
support and other analytical applications.

CHANNEL CONNECT

ETHERNET

UNIX
server
merchant
database

ETHERNET
TCP/IP

NETBIOS

NTUNIX
workstation

OLAP

MPP
DSS
database

MVS
mainframe

UNIX
application
server

MVS
mainframe

UNIX
server
database E

X
T
R
A
C
T

L
O
A
D

StorHouse
Hub Server

ail data

l data is the most
lar level of information
n enterprise can
t at a single point of
e. A call detail record,
transaction, point-of-
ata, clickstream,
, audio or video clip,
-mail message are all
ples of detail data.

rHouse/SM

ouse/SM, the storage
gement component,
ols a hierarchy of
ge devices composed
he, redundant array of
endent disk (RAID),
ble and write-once-
many (WORM) optical
ukeboxes, automated
libraries, and shelf
ge. StorHouse/SM is
esponsible for critical
m management tasks,
ata migration, backup,
ecovery. It provides
m-managed storage
ptimizes media usage,
nse time, and storage
 for each application.
ouse/SM runs on
 Microsystems Ultra

prise Servers.
rHouse/RM Concepts FileTek Proprietary and Confidential

StorHouse/RM

StorHouse/RM, the FileTek
RDBMS component, works
in conjunction with
StorHouse/SM to
specifically administer the
storage, access, and
movement of relational data.
StorHouse/RM provides
row-level SQL access to
high volumes of detail data
on any layer, including tape,
in the StorHouse storage
hierarchy. SQL access is
available from different
platforms through a variety
of industry-standard
protocols. StorHouse/RM
runs on Sun Solaris™ and
Hewlett-Packard HP-UX
platforms.

Control Center

StorHouse Control Center is
the FileTek Windows®-
based network computing
system for providing
administrative control of
StorHouse. Control Center
consists of one or more
Control Center servers that
communicate with Control
Center clients over a TCP/IP
network. The Control Center
server provides network
connectivity to StorHouse.
The Control Center clients
consist of one or more
graphical user interface
(GUI) modules for
performing StorHouse
system and database
administration tasks,
configuring and managing
Control Center servers, and
analyzing and monitoring
StorHouse activity and
performance.
StorHouse as an active archive
As an archive server, StorHouse is a high capacity back-end archive for one or
more merchant database systems. You can store operational and informational
data in StorHouse and then unload/reload it into the merchant database as
required. Data is always available for ad hoc querying and can be restored to the
merchant database for decision support at any time. Some typical active archive
applications include bill regeneration, subpoena compliance, and audits.

StorHouse as a database extension
As a database extension, StorHouse is a high capacity back-end storage repository
for a primary database. Users and applications need not know the location of the
data. They simply submit a query through the primary database. A database
extension is suitable for operational and historical data, as well as relational and
non-relational data.

Ad hoc query

StorHouse
Active Archive

Reload
Merchant
Database

Application Flat File

Unload

Reload
Merchant
Database

Application Flat File

Unload

Application

Query data
from 12 months ago

Primary
Database

(6 months of data)

Result data

(60 months of data)

StorHouse
Database Extension

Application
Products and applications 5FileTek Proprietary and Confidential

6 Sto

Cap

■ Ma
Sto
lim

■ Ma
act
tim

■ Ma
tab
me

■ Ma
and
dat

■ Ma
ind
me

■ Ma
ind

StorHouse databases
A StorHouse database is a write-once-read-many database, ideal for storing high
volumes of detail data. Each database contains:

■ User table data that you store and access
■ Optional indexes—value, hash, and range—that locate the table data
■ Metadata that describes database components

A StorHouse database has both a logical and a physical structure. Logically, user
tables, indexes, and large object (LOB) data reside in user tablespaces and
metadata resides in a system tablespace. Physically, these components reside in
files. Table data, indexes, and LOB data can reside in the same user tablespace (as
shown below) or different user tablespaces.

StorHouse database user files
StorHouse database user files reside on the StorHouse storage hierarchy. Each
user table consists of one or more segments. Each segment consists of a table data
file, an index file for each index, and one or more LOB subsegment files. Each
time you load data into a user table, StorHouse creates a segment with this set of
segment files. You can load multiple segments at a time, and you can replace
existing segments. Replacing a segment does not remove it from StorHouse but
rather invalidates it, making the files in the segment inaccessible. You can also
merge, or coalesce, segments later. Merging segments enhances performance
because it reduces the number of file and extent opens and closes for a query.

abilities

ximum number of
rHouse databases: No
it

ximum number of
ive databases at a
e: 100

ximum number of user
lespaces: no
aningful limit

ximum number of user
 system tables in a

abase: no limit

ximum number of
exes in a database: no
aningful limit

ximum number of
exes for a table: 150

System table n

Database 1 Database n

User tablespace nUser tablespace 1 System tablespace

System table 1User table 1 User table n

StorHouse

Table data Index 1 Index n LOB data Index Log Index log

LOB data
rHouse/RM Concepts FileTek Proprietary and Confidential

Extents

Segments consist of
StorHouse files that can
reside on any storage
device in the StorHouse
storage hierarchy. Files are
composed of different
extents, or file components:

■ A data extent holds user
data and/or control data.

■ A definitions (DF) extent
contains information
necessary to retrieve the
data.

■ A map extent is the high-
level index that
StorHouse/RM always
reads first when doing
index lookups.

You can retain some or all
extents in the performance
buffer to enhance
performance. For instance,
you can hold the value index
and hash index DF and map
extents in the performance
buffer longer than the table
data extent to speed access
to the data.

Data
DF

Data
Map
DF

Data
Map
DF

Table
data
file

Hash
index
file

Value
index
file

Database user file extents

Data
DF

LOB
file
The following user table consists of three segments. This user table has one value
index, one hash index, and one LOB column.

Range indexes are stored in system tables instead of segments. Depending on size
or by user request, LOB values may be stored in the table data file, or LOB values
in different columns may be stored in the same LOB subsegment file, or LOB
values in a single column may be stored in multiple LOB subsegment files.

StorHouse database system files
StorHouse database system files reside on and are managed by the UNIX® file
system. These database system files contain the following system components or
metadata:

■ System tables
■ System table indexes
■ System table logs
■ System table index logs

Each system component is a separate UNIX file.

Segment 1

Segment 2

Segment 3

Table
data file

Table
data file

Table
data

Table
data file

Value
index file

Value
index file

Index 1
Value index

Value
index file

Hash
index file

Hash
index file

Index 2
Hash index

Hash
index file

LOB
column

LOB
subsegment file

LOB
subsegment file

LOB
subsegment file

User table
StorHouse databases 7FileTek Proprietary and Confidential

Bas

8 Sto

Wha
abo
use

■ Use

– E
r
d

– M
o
(
u

– E
a
s
i

– E
c

■ All
loa

– L

– O
o

■ Use
mu

– M
l

– B
i

■ Seg
inva
vali

– P
r
e
d

– P
c

User tables
A user table is the basic unit of data storage in a StorHouse database. User tables
hold user-accessible data. Logically, StorHouse user tables are like most RDBMS
user tables; they consist of columns and rows of data. Each row contains data
values conforming to the constraints of the columns that make up the row.

Physically, user tables are stored in files on the StorHouse storage hierarchy. The
user tablespace defines the target storage device and the migration path through
the hierarchy. For instance, you can store time critical data on magnetic disk and
then migrate that data to tape or optical as the data ages. The StorHouse software
automatically manages storage and migration based on your user tablespace
parameters.

Integrity constraints on tables
The data type of a column determines the maximum length of data values in the
column and the kind of data that is valid for the column. A data type enforces an
integrity constraint on a column. When you load data into a user table, the value
that you load into a column must be consistent with the length and compatible
with the data type of that column.

Prohibiting null values in a column is another integrity constraint. A null value
stands for an unknown, not applicable, or missing value. If a column allows null
values, then you don’t have to load data values into that column. But remember
that StorHouse user tables are read-only; so, if you define a column as null and
don’t load data into that column, then those data values will always be null.

t’s different
ut StorHouse
r tables?

r tables are read-only.

nsures a permanent
ecord of critical detail
ata

aximizes concurrency
f data to all users
minimal locking/no
pdating)

liminates need to
llocate additional
pace for inserts and

ndex updates

liminates need for
ontinual backups

table data is bulk-
ded.

oads faster

ptimizes data
rganization

r tables are loaded in
ltiple segments.

aximizes concurrent
oading

ypasses time-
ntensive index updates

ments can be
lidated and later

dated or removed.

rovides a way to
ecover from load
rrors or to replace
ata

rohibits access to
ertain table data

ACCOUNT LAST_NAME BILLING

91256
91347
91486
97865
99003

ANDERSEN
WHITE
MCGUIRE
CORNFELD
HAWKINS

12023.98
39022903.89
3988229.55
283.00
109936.10

Columns represent
specific data types
or domains.

Rows represent
specific database
records or tuples.

The intersection of
a row and a column
contains a specific
data value.
rHouse/RM Concepts FileTek Proprietary and Confidential

Column data types

BINARY – array of bytes
with a length from 1 to 256

BLOB – variable-length
array of bytes with a length
from 1 to 2147483638 bytes

CHAR – array of characters
with a length from 1 to 256

CLOB – variable-length
array of characters with a
length from 1 to
2147483638 bytes

DATE – date value in month,
day, year

DOUBLE PRECISION –
double precision, floating-
point number

INTEGER – signed integer
from -2147483648 through
2147483647

NUMERIC or DECIMAL –
decimal floating-point
number with precision and
scale up to 31 digits

REAL – single precision,
floating-point number

SMALLINT – small integer
from -32768 through 32767

TIME – time value in hours,
minutes, seconds, and
optionally milliseconds

TIMESTAMP – date and
time combination with
optional milliseconds and
microseconds

VARBINARY – variable-
length array of bytes with a
length from 1 to 32705 bytes

VARCHAR – variable-length
array of characters with a
Views on tables
You can create a virtual table or view that appears and acts like a table but draws
its content from one or more existing tables and/or views. A view does not
actually contain data and it does not take up storage space like a table. Instead, a
view is defined by a query that references base tables. When you query a view,
you actually query the tables referenced by the view. Views are useful for tailoring
or limiting user access to data. They provide convenience, security, or both by
letting you determine which data in which tables is available to which users.

You can create views on user tables and system tables, but you can’t insert,
update, or delete rows in views based on user tables. StorHouse user tables are
read-only.

ACCOUNT LAST_NAME BILLING

91256
91347
91486
97865
99003

ANDERSEN
WHITE
MCGUIRE
CORNFELD
HAWKINS

12023.98
39022903.89
3988229.55
283.00
109936.10

ACCOUNT LAST_NAME

BaseBase

ACCOUNT LAST_NAME

91256
91347
91486
97865
99003

ANDERSEN
WHITE
MCGUIRE
CORNFELD
HAWKINS

View

This view suppresses the
BILLING column from the
base table.

A view is a pre-defined query
on one or more tables or
views.

table
User tables 9FileTek Proprietary and Confidential

length from 1 to 32705 bytes

10 S

LOB

The f
defin
mech
unloa
LOB

BLO

■ Wh
def
var
byt
var
stri
dat
size

■ Wh
unl
dat
or t

BLO
CLO

■ Wh
hos
info
sep
con
val

■ Wh
spe
use
LO
or C

■ Wh
dat
ES
refe
rep

BLO
CLO
a loca
acce
BLOB
StorH
Large objects
StorHouse/RM supports the storage and retrieval of large objects (LOBs),
including binary large objects (BLOBs) and character large objects (CLOBs).
LOBs may be stored with the rest of the table data (in-line) or in separate files
(out-of-line). StorHouse/RM determines in-line and out-of-line storage on a row-
by-row basis.

In-line LOBs
An in-line LOB is a LOB value that’s stored with the table data. If space permits—
a LOB value does not exceed any user-defined in-line limit and the row does not
exceed 32 KB—you can store a LOB value in a table data file. For instance:

StorHouse/RM treats in-line LOB values like any other variable-length, nullable
field. In-line storage is the default, that is, StorHouse/RM attempts to store LOBs
with the table data unless you specify otherwise.

Out-of-line LOBs
An out-of-line LOB is a LOB value that’s stored in a separate file—called a LOB
subsegment file—from the table data. When defining a LOB column, you can
choose to: (1) always store LOB values out-of-line, (2) or store LOB values in-line
when possible and out-of-line when necessary, (3) or even store values of
different LOB columns in the same LOB subsegment file, for instance, check
images and photos in the same LOB subsegment file. For out-of-line LOBs,
StorHouse/RM inserts an object identifier (OID) in the table row to identify the
LOB subsegment file containing the LOB value.

 data types

ollowing data types
e LOB columns and
anisms for loading,
ding, and accessing
data.

B and CLOB.

en creating a table,
ines a column as a
iable-length array of
es (BLOB) or as a
iable-length character
ng of character-based
a (CLOB) up to 2 GB in
.

en loading or
oading, defines LOB
a in the input data file
he result file.

B_FILE and
B_FILE.

en loading, specifies
t, path, and user
rmation to access
arate LOB files
taining BLOB or CLOB

ues.

en unloading,
cifies host, path, and
r information to write

B result files for BLOB
LOB values.

en transferring LOB
a to a client file through
QL, defines a file
rence variable to
resent the file.

B_LOCATOR and
B_LOCATOR. Defines
tor variable to identify,

ss, and manipulate a
 or CLOB at the
ouse server.

Table data 3 KB In-line check image 28 KBRow 1 - 31 KB

Table data

Table data

In-line check image

OID

Row 1

Row 2

Out-of-line check image row 2

LOB subsegment file 1

OID

OID

Out-of-line photo row 1
Out-of-line photo row 2

LOB subsegment file 2
torHouse/RM Concepts FileTek Proprietary and Confidential

LOB functions

The following functions take
LOB arguments:

■ ASCII
■ BIT_LENGTH
■ BLOB
■ CHAR_LENGTH
■ CLOB
■ CONCAT
■ COUNT
■ INITCAP
■ INSTR
■ LENGTH
■ LOWER
■ LPAD
■ LTRIM
■ NVL
■ OCTET_LENGTH
■ OVERLAY
■ POSITION
■ RPAD
■ RTRIM
■ SUBSTR
■ TO_CHAR
■ TO_DATE
■ TO_HEX
■ TO_NUMBER
■ TO_TIME
■ TRANSLATE
■ TRIM
■ UPPER

LOB statements

The following SQL
statements are exclusive for
LOBs:

■ VALUES INTO
manipulates a LOB
selected with a locator
variable.

■ FREE LOCATOR
releases a locator variable
before the end of a
transaction.

LOB operators

The following operators are
valid for LOB operands:
equal (=), unequal (<>), and
string concatenation (||).
LOB loading and unloading
With the FileTek FTP Data Loader, you can load LOB data from three locations:
(1) in a client file with the other input data, (2) in separate LOB data files (one
LOB value per file) on your client computer, (3) in separate LOB data files on a
remote system. For instance, in the following example, account numbers reside
in a client data file and photos reside in separate LOB files. The data file contains
the file names containing the photos.

Likewise, with the FileTek FTP Data Unloader, you can unload LOB data to three
locations: (1) in a client file with the other result data, (2) in separate LOB result
files (one LOB value per file) on your client computer, (3) in separate LOB result
files on a remote system.

LOB access
When accessing a LOB value from an embedded SQL (ESQL) program, you can:

■ Place the entire LOB value into a host variable that is large enough to hold the
value. The entire LOB value moves from the StorHouse server to the client.

■ Place a reference to a LOB value or part of a value into a locator variable. The
locator variable moves to the client while the LOB value remains on the
StorHouse server. A program can manipulate the value using the locator
variable and fetch it in many parts back to the client.

■ Place a file name into a file reference variable to identify a client file to which
LOB data can be moved. For instance, you can transfer an XML document
from StorHouse to a client file to be read by an XML reader.

Data file

123, photo1
456, photo2

Photo_IDAccount_No

123

456

Client input data

photo1 photo2

Loaded StorHouse Table

LOB files
Large objects 11FileTek Proprietary and Confidential

12 S

Cap

■ Ma
ind

■ Ma
ind
VAR
VAR
byt

■ Ma
col
ind

■ Ma
com
byt
Indexes
Indexes provide efficient access to table data. You can create an index on a column
or combination of columns in a user table. An index based on one column is a
simple index. An index based on multiple columns is a compound index.
StorHouse supports three index types—value, hash, and range.

Value index
Value indexes work best with queries that return multiple rows based on a range
of values. A value index contains an ascending list of all the values in a column (or
group of columns for a compound value index). For each column value, the
index contains an index map to the table row containing that value. By searching
the index rather than the table, then matching column values to row IDs,
StorHouse/RM can more efficiently find requested table rows.

Hash index
Hash indexes work best with queries that return specific rows based on a specific
value. A hash index is a two-part index based on an index map extent and a hit list
that uses a proprietary StorHouse algorithm to effectively locate individual table
rows based on individual index values. For hash indexes (unlike for value
indexes), StorHouse/RM must access the data row to determine that the row’s
column content meets the selection criteria. StorHouse/RM, for example, might
use a hash index for the following SQL statement:

SELECT ACCOUNT
FROM CUSTOMER
WHERE ACCOUNT = 99003

abilities

ximum number of
exes for a table: 150

ximum length of an
exed column (including

BINARY and
CHAR columns): 256

es

ximum number of
umns in a compound
ex: 16

ximum size of a
pound index: 2048

es

BILL_ACCT LAST_NAME BILL_DATE

10000
10001
20000
20001
30000

ANDERSEN
WHITE
MCGUIRE
CORNFELD
HAWKINS

01/10/2000
01/02/2000
01/12/2000
01/15/2000
01/01/2000

BILLING tableValue

10000

10001

20000

20001

30000

Row ID

1

2

3

4

5

Value index

BILL_ACCT column
torHouse/RM Concepts FileTek Proprietary and Confidential

Index basics

■ You can create any index
type for any non-LOB
column.

■ You can create different
types of indexes for the
same column. For
instance, you can create a
range and a value index
for the same column.
StorHouse/RM decides
which index to use to
satisfy a specific query.

■ You can create indexes
before or after you load
the table data. A deferred
index is an index created
after a table is loaded.

■ Value and hash indexes
are stored in index files on
the StorHouse storage
hierarchy.

■ Range indexes are stored
in system tables on the
UNIX file system.

■ Index files can reside on
different storage devices
from table data files and
LOB subsegment files.

■ The StorHouse software
automatically manages
the migration and backup
of index files based on the
user tablespace definition.

■ All index values are stored
in ascending order.

■ Invalidating a segment
invalidates the segment’s
index files as well as the
table data file and any
LOB subsegment files.
Range index
Range indexes are useful for user tables with multiple segments. A range index
contains the lowest and highest column data values for each segment in a user
table. Instead of searching through multiple segments, StorHouse/RM first looks
at the range index to find the specific segment with the requested data values.
Then, StorHouse/RM might use any hash or value indexes to find a specific data
value or range of values in the segment. For instance, in the following example, if
you requested data for 01/15/2000, StorHouse/RM would check the range index
and determine that segment 1 contains the requested value.

Each time you load new data into a table, StorHouse/RM enters the low and high
data values into the range index. If there’s one segment, there’s one low and high
value pair in the range index. If there are 100 segments, there are 100 low and
high value pairs in the range index.

Range indexes are stored in a set of system tables. There are one or two system
tables for each column data type.

01/01/2000
02/01/2000
03/01/2000
04/01/2000
05/01/2000

1
2
3
4
5

BILL_DATE column
Low ValueSegment

01/31/2000
02/29/2000
03/31/2000
04/30/2000
05/31/2000

High Value

Range index

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

BILLING table
Indexes 13FileTek Proprietary and Confidential

14 S

Use
bas

■ A d
mo

■ Wh
tab
use

■ You
col
tab
to d
tab

■ Wh
for
ass
tab
to a
tab

■ You
ind
diff
tab

■ Tab
tab
mu
FS

■ Ind
sub
sto
and
VS
the
file.

■ You
par
sub
diff
User tablespaces
A user tablespace defines where segment files are stored on the StorHouse storage
hierarchy. It also sets attributes that influence storage management, like backup
and migration. Each user tablespace consists of one or more subspaces that define
different storage parameters for different components.

Assigning storage. The VSET (volume set) and FSET (file set) subspace
parameters assign storage on StorHouse. A VSET is one or more physical volumes
that are treated as a logical unit of storage. A volume is a unit of media, such as an
optical disk cartridge or a tape cartridge, on which data can be recorded and read.
You use VSETs to control the physical grouping of files. An FSET is an area of
storage within a volume set. Files are stored in FSETs.

Whether you use multiple subspaces and different VSETs and FSETs in a user
tablespace depends on your data and your access and performance requirements.
For example, to manage the storage of table data, indexes, and LOB data in
different ways but remove them from StorHouse at the same time, you can create
multiple subspaces and assign different FSETs for the same VSET. Or to manage
the storage of all components the same way, you can create one subspace and
assign one FSET in one VSET.

r tablespace
ics

atabase has one or
re user tablespaces.

en you create a user
le, you assign it to a
r tablespace.

 can assign LOB
umns to the same user
lespace as the table or
ifferent user

lespaces.

en you create an index
a user table, you can
ign it to the same user
lespace as the table or
 different user

lespace.

 can assign different
exes of a table to
erent user
lespaces.

le data files of a user
le can be stored in
ltiple VSETs and
ETs.

ex files and LOB
segment files can be

red in multiple VSETs
 FSETs and different

ETs and FSETs from
ir associated table data

 can change storage
ameters later to store
sequent segments

erently.

User tablespace

Subspace 2

Subspace 3

Subspace 1

Table data file
storage parameters

Hash index file
storage parameters

Value index file
storage parameters

OBJECT_TYPE
VSET:
FSET:

ATF:
VTF:
EDC:

MAX_EXT_SIZE:
HOLD:

HOLD_SPECIAL:
GROUP:

H
JAN2000
JAN2000H
1
NOW
Y
800
60
180
STH

OBJECT_TYPE
VSET:
FSET:

ATF:
VTF:
EDC:

MAX_EXT_SIZE:
HOLD:

HOLD_SPECIAL:
GROUP:

V
JAN2000
JAN2000V
1
NOW
Y
500
60
180
STH

OBJECT_TYPE
VSET:
FSET:

ATF:
VTF:
EDC:

MAX_EXT_SIZE:
HOLD:

HOLD_SPECIAL:
GROUP:

T
JAN2000
JAN2000T
2
NEXT
Y
400
2
30
STH

Subspace 4

LOB subsegment file
storage parameters

OBJECT_TYPE
VSET:
FSET:

ATF:
VTF:
EDC:

MAX_EXT_SIZE:
HOLD:

HOLD_SPECIAL:
GROUP:

L
JAN2000
JAN2000L
2
NOW
Y
800
0
30
STH
torHouse/RM Concepts FileTek Proprietary and Confidential

Subspace basics

■ A user tablespace
contains one or more
subspaces.

■ A subspace defines the
storage parameters for a
specific component—
table data only, hash
indexes only, value
indexes only, or LOB data
only—or for all
components.

■ The OBJECT_TYPE
parameter determines the
type of component
allowed in a subspace: T
for table data, H for hash
index, V for value index, L
for LOB data, or blank for
all types.

■ You can create multiple
subspaces for the same
component type, for
instance, one subspace
for January table data,
another subspace for
February table data, and
so on.

■ When loading data,
loading deferred indexes,
and merging segments
you can use default
subspaces, select specific
subspaces, or rotate
among subspaces for
component types.
Migrating performance copies. The ATF (Access Time Factor) subspace
parameter works with the StorHouse migrate function to keep data that is most
likely to be accessed in the StorHouse performance buffer while maintaining a
supply of free space. Additionally, the HOLD (for data extents) and
HOLD_SPECIAL (for DF and map extents) subspace parameters define the
number of days to hold these extents in the performance buffer.

Creating performance and primary file copies. The VTF
(Vulnerability Time Factor) subspace parameter controls the creation of
performance and primary copies of segment files. Performance copies reside in
the StorHouse performance buffer. Primary copies reside in resident file sets on
the designated StorHouse media. During a load, StorHouse/RM can:

■ Bypass the performance buffer and directly write the files to their resident file
sets. StorHouse/RM, however, always writes DF and map extents to both the
performance buffer and resident file sets.

■ Write extents to the performance buffer first and copy them to their file sets
second. StorHouse/RM copies each extent to the resident file set after creating
the extent on the performance buffer. So for a table file, StorHouse/RM
creates the data extent on the performance buffer and then copies the data
extent to its resident file set. Then StorHouse/RM creates the DF extent on
the performance buffer and then copies it to the file set.

■ Write extents to the performance buffer then copy them to their file sets
during the next StorHouse write-back operation.

Using error detection checking. The EDC (Error Detection Code)
subspace parameter determines whether to use the StorHouse error detection
feature for files. StorHouse generates EDCs during data loads and uses EDCs to
detect errors during data movement in StorHouse.

Setting data extent sizes. The MAX_EXT_SIZE subspace parameter
specifies the maximum data extent size (in megabytes) that StorHouse/RM writes
to StorHouse during a load operation. StorHouse/RM checkpoints each data
extent when it reaches the maximum size and then creates a new one. And
StorHouse/RM can recover data extents to the last successful checkpoint.
User tablespaces 15FileTek Proprietary and Confidential

16 S

Met

■ Sto
sys
me
dat

■ Eac
is a
file.

■ All
cor

■ Som
tab

■ Ra
in s

■ The
bac
sys
oth
tab

■ The
res
sys
the
bac
Metadata
Metadata are system components that StorHouse/RM creates and uses to manage
a database. These components, stored on the UNIX file system within a system
tablespace, are as follows:

■ System tables
■ System table indexes
■ System table logs
■ System table index logs

System tablespaces
For each database, StorHouse/RM creates a separate database directory on the
StorHouse server. This database directory, also called system tablespace, contains
all of the system components for a specific database. Physically, the database
system components are UNIX files.

adata basics

rHouse/RM creates a
tem tablespace and
tadata for each new
abase.

h system component
 separate UNIX large

system tables have
responding logs.

e, not all, system
les have indexes.

nge indexes are stored
ystem tables.

 StorHouse metadata
kup utility backs up
tem components and
er files in the system
lespace.

 StorHouse metadata
tore utility recovers
tem components with
 latest metadata
kup files.

Database 1 Database n

System tablespace 1 System tablespace n

StorHouse

System tables

System table indexes

System table logs

System table index logs

CONFIG.CGF I0000000011.IDX T0000000003.TBL T0000000015.LOG
I0000000000.IDX I0000000011.LOG T0000000004.LOG T0000000015.TBL
I0000000000.LOG I0000000012.IDX T0000000004.TBL T0000000016.LOG
I0000000001.IDX I0000000012.LOG T0000000005.LOG T0000000016.TBL
I0000000001.LOG I0000000013.IDX T0000000005.TBL T0000000017.LOG
I0000000002.IDX I0000000013.LOG T0000000006.LOG T0000000017.TBL
I0000000002.LOG I0000000014.IDX T0000000006.TBL T0000000018.LOG
I0000000003.IDX I0000000014.LOG T0000000007.LOG T0000000018.TBL
...

UNIX files
torHouse/RM Concepts FileTek Proprietary and Confidential

System table
indexes

StorHouse/RM creates
system table indexes for
specific system tables when
a database is created.
System table indexes are
stored as UNIX files in the
same directory as the
system table files. Their
operation is transparent to
you.

System table logs

Each system table has a
corresponding system table
log that’s used to recover
changes to system tables.
Before StorHouse/RM
updates a system table, it
first copies a “before image”
of any record being updated
to the system table log and
then makes the change in
the system table. If the
transaction fails or is rolled
back, StorHouse/RM copies
the before image (or undo
record) back to the system
table, removing the change.
If the transaction completes
or is committed, StorHouse/
RM empties the system
table log.

System table index
logs

Each system table index
has a log that can recover
changes to system table
indexes. The operation of
the index log is the same as
the system table log.
System tables
StorHouse/RM creates a set of system tables for each database in the database
system tablespace. System tables contain information about a database.
StorHouse/RM updates system tables when you create database components,
reads system tables to verify that database components exist and that accounts are
authorized to access them, and updates system tables after confirmed loads.
Authorized users can query system tables by submitting a SELECT statement. For
instance, you can query the SYSTBLSPACES system table to list the user
tablespaces in a database or the SYSINDEXES system table to determine the types
of indexes defined for a user table. The following table describes each system
table.

SYSTEM TABLE DESCRIPTION

SYSCOLAUTH Contains column update privileges

SYSCOLUMNS Describes columns of user tables

SYSDBAUTH Lists account database privileges

SYSINDEXES Defines each indexed column

SYSPACKAGE Defines each package in a database

SYSPACKSTMT Contains each statement in a package

SYSRANGES_datatype Contain range index entries

SYSSMUSERS Contains default user tablespaces

SYSSTAT_COL Contains statistics for each indexed column of a segment

SYSSTAT_HIST Contains the spread and frequency of each histogram bucket

SYSSTAT_IDX Contains row averages for queries that use value indexes

SYSSTAT_SMATRIX Contains matrixes for calculating spreads of non-numeric values

SYSSTHFILES Contains StorHouse file and group names for segment files

SYSSTHSEGMENTS Contains information about segments

SYSSTHSPACES Describes subspaces in user tablespaces

SYSSYNONYMS Defines synonyms in a database

SYSTABAUTH Contains account table privileges

SYSTABLES Defines each user table, system table, and view

SYSTBLSPACES Defines each user tablespace in a database

SYSVIEWS Describes each view in a database
Metadata 17FileTek Proprietary and Confidential

18 S

File
fact

The p
is to k
exten
buffe
supp
buffe
files.
StorH
migra
exten
param
to sta
migra
which
This
deriv
attrib
acces

■ Ext
mig
are
per

■ Ext
acc
larg
tha
acc

■ Ext
ten
mig
ext
size

■ Ext
acc
sm
tha
rec
Storage management
StorHouse/SM complements its relational counterpart by providing system-
managed storage features for table data files, index files, LOB subsegment files,
and metadata backup files located anywhere in the StorHouse storage hierarchy.

File management
With StorHouse/SM, you can design and tune data availability strategies and
migration paths through the storage hierarchy. For instance, you can initially
load table data on the performance buffer for fast write time and fast access, or
you can load table data directly to optical or tape. StorHouse/SM can
automatically duplicate file copies in different libraries to increase data
availability and to improve access performance. As access requirements diminish,
StorHouse/SM can migrate files to a lower-cost-per-megabyte media or move
files located on selected volumes to shelf storage automatically based on usage,
access requirements, available space, and user-defined parameters. The following
diagram shows one example of how two files can move through the storage
hierarchy.

 migration
or

urpose of file migration
eep highly accessed
ts in the performance
r while maintaining a
ly of free space in the
r for new high-access
To accomplish this,
ouse maintains a
tion factor for each
t. User-controllable
eters determine when

rt a migration. The
tion factor determines
 extents to migrate.

migration factor is
ed from the file ATF
ute, the size, and the
s history. Typically:

ents with smaller
ration factor values
 migrated off the
formance buffer first.

ents with many
esses tend to have
er migration factors
n extents with few
esses.

ents with larger sizes
d to have smaller
ration factors than

ents with smaller file
s.

ents with older
esses tend to have
aller migration factors
n extents with more
ent accesses.

Mainframe

RAID/MagneticLoad table A

Erasable Optical

Automated Tape

Load table B

UNIX server

Migrate table A

Migrate table B
to tape

to optical

on opticalon performance buffer

WORM Optical

Move table A to shelf Shelf 0

Shelf 1

Shelf 2
torHouse/RM Concepts FileTek Proprietary and Confidential

Storage
performance
features

■ Volume holding lets you
keep frequently accessed
volumes in a library
device. Volumes that you
hold migrate to shelf
storage after other
volumes.

■ Pre-emptive priority
processing ensures that
all transaction-oriented,
time-sensitive requests
have priority over
sequential or batch
requests.

■ Look-ahead queuing
minimizes response time
by servicing all current
requests for a mounted
cartridge before
dismounting it.

■ Platter cycling ensures
that a greater percentage
of chronological data is
mounted and available for
retrieval without the need
to flip cartridges.

■ Duplexing simplifies file
recovery, increases the
availability of data to near
100 percent, and
improves overall response
time. StorHouse
automatically determines
when to access the
duplex copy instead of the
primary copy for better
overall system
performance.
Volume management
A volume is a unit of media on which data can be recorded and read. RAID,
magnetic disk, erasable and WORM optical disk, and tape cartridges are all
examples of StorHouse volumes, or media. Some of the features for managing
volumes are described here.

Migration. StorHouse automatically migrates volumes between libraries and
shelf devices. It selects volumes that aren’t in use, have the oldest access time, or
aren’t flagged for retention—or volume holding—in the library device. You can also
manually move specific volumes between library devices or between a library device
and shelf storage at any time.

Retirement. This feature protects against read errors due to erasable media
degradation. StorHouse retires a volume by moving file extents from erasable
volumes (such as tape) to one or more other volumes in the same volume set.
StorHouse selects volumes for retirement based on media mount limits and volume
mount counts.

■ The media mount limit (recommended by the media manufacturer and initially
set at installation) indicates the number of mounts that a volume of the media
can undergo before the risk of unrecoverable errors due to media degradation
exceeds a safe threshold.

■ The volume mount count indicates the number of times a volume has been used
(mounted and dismounted).

You can also manually retire a volume regardless of the mount count and mount
limit values.

Erasure. For erasable optical and tape media, you can erase entire volumes and
volume sets to remove unused data. Space on erased volumes is available for
reallocation in the volume set.
Storage management 19FileTek Proprietary and Confidential

20 S

File

■ Per
act
on
dis

■ Prim
ava
acc

■ Bac
cop
can
rec
has
des

■ Arc
cop
can
to r
tha
or d
Backup
StorHouse backup facilities simplify data recovery should the need arise.

Backup operations for segment files
StorHouse provides backup operations for creating secondary copies of table data
files, index files, and LOB subsegment files.

■ Write-back copies new file extents from the performance buffer to their
primary file sets. The VTF attribute in each subspace of a user tablespace
determines when write-back occurs for segment files.

■ Backup creates a backup copy of a primary file, leaving the source file
(primary) intact. You can schedule a backup to run automatically at specified
intervals.

■ Archive creates an archive copy of a primary file, leaving the source file intact.
You can schedule an archive to run automatically at specified intervals.

 copies

formance buffer copy –
ive file extents stored
high-speed magnetic
k for optimal access.

ary copy – a file copy
ilable for normal
ess.

kup copy – a duplicate
y of a primary file. You
 use a backup copy to
over a primary file that
 been corrupted or
troyed.

hive copy – a duplicate
y of a primary file. You
 use an archive copy
ecover a primary file
t has been corrupted
estroyed.

Primary copy

Backup copyArchive copy

Optical

Magnetic disk

Write-back

A
rc

hi
ve

or Tape Library

Performance buffer copy

B
ackup
torHouse/RM Concepts FileTek Proprietary and Confidential

Metadata backup
utility features

■ You can back up
metadata for one
database or multiple
databases at the same
time.

■ You can schedule a
metadata backup to run at
specific frequencies (like
hourly, daily) and times.

■ The metadata backup
utility stops when it
detects any active loads.

■ You can set a limit for the
number of backup file
versions to keep. The
maximum is 99 for each
database.

■ StorHouse automatically
deletes old file versions
(based on your limit) to
make room for new ones.

■ The most recent file
version is used to recover
metadata.

■ Only an authorized
account with the
StorHouse OPERATOR,
SERVICE, or SYSTEM
privilege can run the
metadata backup utility.
Backup utility for metadata
The metadata backup utility copies all files from a database directory on UNIX to
one primary file copy on the StorHouse storage hierarchy. These files include:

■ System tables, including range indexes
■ System table indexes
■ System table logs
■ System table index logs

This utility creates metadata backup files in the file set and volume set that you
name using StorHouse system parameters. All metadata backup files for all
databases are grouped in one file set and volume set. Each time you run a backup,
the utility creates a new backup file version for the specified database.

You can create backup and archive copies of metadata backup files, then move
those copies to shelf and store them off-site for disaster recovery purposes.

Volume set for metadata backup files

file version 1

Database BDatabase A

file version 2

file version 3
Backup 21FileTek Proprietary and Confidential

22 S

Disa
gen

Disas
proce
destr
syste
even
exam
torna
Such
users
acces
data
or de
softw
StorH
softw
expe
For m
these
FileT
manu
9001

Gene
proce
mispl
cartri
data
engin
losse
crash
shou
tape
degra
user
creat
volum
ones
powe
upda
gene
can p
and r
state
Recovery
StorHouse attempts to recover from error conditions automatically, but there are
some conditions that require assistance. In the event of a failure or error,
StorHouse provides recovery tools for metadata and segment files. This topic
focuses on general recovery features.

Metadata recovery
The purpose of metadata recovery is to protect databases left in an inconsistent
state due to a failure.

■ An inconsistent database occurs when a single atomic operation that updates
one or more system tables fails before completing and committing all updates.

■ An unprotected database allows access (“dirty reads”) and further updates to
inconsistent metadata.

Structures used to recover metadata are metadata backup files and undo records
in system table logs and system table index logs. Processes used to recover
metadata are the automated metadata recovery process and the metadata restore
utility. Metadata recovery scenarios are described below.

SQL engine failure. If an engine (connection instance) terminates
abnormally during DDL or metadata UPDATE, INSERT, or DELETE processing,
the automated metadata recovery process invokes a recovery process to roll back
incomplete updates and non-committed metadata. Any locks in place at the time
of the failure are held and then released after the roll back.

Power loss or system crash. When the system initializes after a power
loss or operating system crash, the automated metadata recovery process inspects
the database directories for an inconsistent state and invokes a recovery process
for each inconsistent database. The recovery process locks the metadata to
prohibit dirty reads and then releases the locks when recovery completes.

Hardware failure. In the unlikely event that the magnetic disks containing
the database directories should fail, the metadata restore utility can recover the
metadata of one or more databases with the latest metadata backup files. This
utility locks the metadata while copying the metadata backup files to the
database directories.

ster recovery,
eral recovery

ter recovery is the
ss of re-creating a

oyed production
m after a devastating
t or natural disaster (for
ple, a fire, flood,
do, or earthquake).
 events can prevent
 from writing and
sing critical business

because of damaged
stroyed hardware,
are, and media.
ouse provides
are features that
dite disaster recovery.
ore information about
 features, refer to the
ek Recovery Strategies
al, publication number

17.

ral recovery is the
ss of re-creating
aced files and broken
dges or recovering
because of events like
e failures, power
s, or operating system
es. For instance,

ld heavily accessed
cartridges begin to
de, general database

file recovery can re-
e the data on new
es and retire the old

. Or if your site loses
r while an engine is
ting the metadata,
ral metadata recovery
rotect your database
estore it to a consistent
.

torHouse/RM Concepts FileTek Proprietary and Confidential

Segment file
recovery tools

■ Create a replacement
volume in the same
volume set to be
recovered by copying
extents from primary (if
readable), backup, or
archive copies

■ Create new primary
copies from backup or
archive copies

■ Move selected backup or
archive volumes to shelf
storage and store them
off-site for disaster
recovery purposes

■ Disable lost, destroyed, or
otherwise unusable
volumes

■ Preview the backup or
archive volumes that are
needed to recover one or
more disabled primary
volumes

■ Retire tape volumes that
have degraded with use
by copying extents from
one volume in a volume
set to one or more new
volumes in a volume set

■ Validate that all extents on
a volume can be read

■ Implement duplex support
to access backup or
archive copies when the
primary copy is on a
disabled volume or in an
offline device
Segment file recovery
The purpose of segment file recovery is to ensure access to table, index, and LOB
data. Structures used to recover segment files are backup and archive file copies.
Recovery scenarios are described below.

Broken or misplaced volume. If a volume containing segment files
breaks or becomes misplaced or unreadable, you can create a replacement volume
as long as you have backup or archive copies of the unreadable files. To recover a
volume, you first disable it and then issue the StorHouse RECOVER VOLUME
command.

Unreadable files. If a primary copy of a segment file is unreadable for any
reason, you can create a new primary copy from the backup or archive copy. To
recover unreadable segment files, first delete and remove the unreadable primary
files and then re-create the primary files with the StorHouse CREATE PRIMARY
command.

Load errors. If a user table contains incorrect data or you need to create
additional indexes after a load, you can invalidate segments and later delete and
remove them from StorHouse. If a load fails at any point or if StorHouse is shut
down during a load, the FileTek data loaders provide a restart capability that
continues a load from the last checkpoint (data extent) and an abort capability
that automatically deletes and removes any partially written segments. A failure
during an in-progress load does not require metadata recovery because metadata
updates occur only when a load completes successfully and is confirmed.

Primary copy

Backup copyArchive copy

Optical
or Tape Library

CR
EA

TE
 P

R
IM

AR
Y CREATE PRIM

ARY

or
Recovery 23FileTek Proprietary and Confidential

24 S
Software architecture
StorHouse/RM is composed of the following software modules.*

Client

Server

Software for SQL processing Software for data (un)loading

* The following modules are customer-supplied: SequeLink ODBC client driver, User StorHouse application, User FTP
tool, DRDA application requestor, and SNA interface client software.

FileTek
MVS data
loader
utility

StorHouse
communications
manager

StorHouse API

SNA
interface

DRDA
application
requestor

StorHouse/RM API

ESQL or User
StorHouse
application

User
StorHouse
application

SequeLink
ODBC client
driver

User
FTP
tool

StorHouse/
UDB Link

SNA
interface

DRDA
application
server

StorHouse
FTP
server

StorHouse
communications
manager

Server
data
loader

Data
unload-
er

SequeLink
ODBC server
driver

Parser Authorization
manager

Optimizer

Execution
manager

Extractor

Page manager

TPLIDX

Back-end communications manager

StorHouse
API

Front-end communications
manager

StorHouse/SM

SQL statement manager

FileTek
ODBC
driver
torHouse/RM Concepts FileTek Proprietary and Confidential

bled client, Web, and server applications

e (UDB)

bases

 StorHouse

bled client, Web, and server applications

nications manager

kets and unmarshals result set data

mmunicate using LU6.2

 being unloaded

am to StorHouse

tions, and transfer data

e client and server systems

nt, web, and server applications

communicate using LU6.2

 builds a preliminary execution tree

ans

ta retrieval services

to StorHouse or a user FTP tool

bles, and builds index entries

rm StorHouse file functions

including ESCON channel support

se storage hierarchy
Client software

Server software

SequeLink® ODBC client driver Provides access to StorHouse databases from ODBC-ena

StorHouse/UDB Link Enables federation through IBM® DB2® Universal Databas

ESQL Enables C and C++ applications to access StorHouse data

User StorHouse application Contains API calls that enable user applications to access

FileTek ODBC driver Provides access to StorHouse databases from ODBC-ena

StorHouse/RM API Passes prepared SQL statements to the front-end commu

Front-end communications manager Arranges (marshals) prepared SQL in communication pac

DRDA application requestor Requests data from a DRDA application server

SNA interface Refers to the client hardware and software necessary to co

User FTP tool Transfers input data being loaded and receives result data

FileTek MVS data loader utility Prepares input data for loading and transfers the load stre

StorHouse API Lets user applications access StorHouse, perform file func

StorHouse communications manager Manages socket-level communications between StorHous

SequeLink ODBC server driver Lets StorHouse/RM communicate with ODBC-enabled clie

SNA interface Refers to the server hardware and software necessary to

DRDA application server Supplies data to a DRDA application requestor

Back-end communications manager Unmarshals SQL statements and marshals result set data

SQL statement manager Tracks SQL statements through all processing steps

Parser Checks SQL syntax, validates database components, and

Optimizer Builds a final execution tree

Authorization manager Checks granted privileges on database components

Execution manager Runs the constructed execution tree built by the optimizer

Extractor Processes qualifying queries that result in full segment sc

IDX routine Fetches index data through the page manager

TPL routine Fetches tuple (row) data through the page manager

Page manager Translates retrieval requests into calls to StorHouse/SM da

StorHouse FTP server Formats input or result data into a stream and transfers it

Server data loader Receives load streams, loads data into StorHouse user ta

Data unloader Executes unload requests

StorHouse API Enables the server data loader and data unloader to perfo

StorHouse communications manager Manages communications between the client and server,

StorHouse/SM Reads, writes, and manages data on media in the StorHou
Software architecture 25FileTek Proprietary and Confidential

26 S

SQL

StorH
static

■ Sta
em

■ Dyn
are
exe
run

■ The
Em
inte
sta
pro

■ All
sta
em

SQL

Four
StorH
follow

■ Da
(DD
ma
com
and

■ Da
lan
sta
ma

■ Tra
sta
dat

■ ES
dec
exe
inc
SQL
StorHouse provides industry-standard Structured Query Language (SQL) for
accessing StorHouse databases and querying relational data.

Statements
StorHouse supports a subset of ANSI-standard SQL plus extensions defined by
FileTek to support additional capabilities. StorHouse SQL statements are:

STATEMENT TYPE CATEGORY
ALTER TABLESPACE static and dynamic DDL
BEGIN DECLARE SECTION static ESQL, declarative
CLOSE static ESQL, executable
COMMIT WORK static transaction control
CONNECT static ESQL, executable
CREATE INDEX static and dynamic DDL
CREATE SYNONYM static and dynamic DDL
CREATE TABLE static and dynamic DDL
CREATE TABLE SPACE static and dynamic DDL
CREATE VIEW static and dynamic DDL
DECLARE static ESQL, declarative
DELETE static and dynamic DML
DESCRIBE static ESQL, executable
DISCONNECT static ESQL, executable
DROP INDEX static and dynamic DDL
DROP SYNONYM static and dynamic DDL
DROP TABLE static and dynamic DDL
DROP TABLE SPACE static and dynamic DDL
DROP VIEW static and dynamic DDL
END DECLARE SECTION static ESQL, declarative
EXECUTE static ESQL, executable
EXECUTE IMMEDIATE static ESQL, executable
FETCH static ESQL, executable
FREE LOCATOR static ESQL, executable
GRANT static and dynamic DDL
INSERT static and dynamic DML
OPEN static ESQL, executable
PREPARE static ESQL, executable
REVOKE static and dynamic DDL
ROLLBACK WORK static transaction control
SELECT static and dynamic DML
SET CONNECTION static ESQL, executable
UPDATE static and dynamic DML
VALUES INTO static and dynamic DML
WHENEVER static ESQL, declarative

 types

ouse SQL can be
 or dynamic.

tic SQL statements are
bedded in a program.

amic SQL statements
 prepared and
cuted by a program at
time.

 StorHouse
bedded SQL (ESQL)
rface lets you code
tic SQL in C and C++
grams.

StorHouse SQL
tements can be
bedded in a program.

 categories

categories of
ouse SQL are as
s:

ta definition language
L) statements

intain database
ponents and grant
 revoke privileges.

ta manipulation
guage (DML)
tements query and
nipulate data.

nsaction control
tements manage
abase changes.

QL statements,
larative and
cutable, can be
luded in program.
torHouse/RM Concepts FileTek Proprietary and Confidential

Operators

Basic predicates compare
values with a relational
operator, while complex
predicates combine basic
predicates using logical
operators.

■ Relational operators are:
=, >, <, >=, <=, <>

■ Logical operators are:
NOT, AND, and OR

Quantified predicates use
the keywords ANY or
SOME.

Aggregate and
scalar functions

Aggregate functions
summarize information
about groups of rows in a
table. The result contains a
single row per group that
summarizes all selected
rows. StorHouse aggregate
functions are:

■ AVG

■ COUNT

■ MAX

■ MIN

■ SUM

Scalar functions produce a
single value from another
value. In the functions table,
all functions except AVG,
COUNT, MAX, MIN, and
SUM are scalar functions.
Predicates
A predicate reduces the number of rows returned by a query. With predicates, you
can compare values by using operators or keywords. StorHouse supports these
predicates:

Functions
A function is a named operation in an SQL statement, followed by one or more
expressions. StorHouse supports these aggregate and scalar functions:

Basic EXISTS NULL

BETWEEN IN Quantified

Complex LIKE

ABS INITCAP POSITION

ADD_MONTHS INSTR QUARTER

ASCII LAST_DAY RPAD

AVG LEAST RTRIM

BIT_LENGTH LENGTH SECOND

BLOB LOWER SUBSTR

CHAR_LENGTH LPAD SUM

CHR LTRIM TO_CHAR

CLOB MAX TO_DATE

CONCAT MIN TO_HEX

COUNT MINUTE TO_NUMBER

DAYOFMONTH MONTH TO_TIME

DAYOFWEEK MONTHS_BETWEEN TRANSLATE

DAYOFYEAR NEXT_DAY TRIM

DAYS NVL UPPER

DECODE OCTET_LENGTH WEEK

GREATEST OVERLAY YEAR

HOUR
SQL 27FileTek Proprietary and Confidential

28 S

Sta
dyn

Stati
hard
Thes
com
the p
You
you
time
state
issue
table
to se
host
sear
chan
to th
stati
rese
chec
You
varia
num
table
SEL
stati
state
emb
dyna
are b
plac
varia
ESQL
StorHouse provides an Embedded SQL Interface (ESQL) for coding StorHouse
SQL statements in C and C++ programs. By embedding SQL statements in a host
program, you can develop applications that are more flexible than those
developed in just the host language or SQL. Statements embedded in an ESQL
program are called static SQL.

Compiling an ESQL program
Because an ESQL program contains a mix of SQL and host language statements,
you cannot submit it directly to a host language compiler. You must first submit
it to the StorHouse ESQL precompiler, which scans your source program and
translates the embedded SQL into host language statements that include
StorHouse/RM runtime subroutines. The output of this translation is a pure C or
C++ program, which you can compile, link, and execute. The ESQL precompiler
also accepts C or C++ object files and passes them to the C or C++ linker. The
following diagram illustrates the path from source code to executable for an
ESQL program.

tic versus
amic SQL

c SQL statements are
coded in a program.
e statements are

piled when the rest of
rogram is compiled.
use static SQL when
know—at compile
—which SQL
ments you’re going to
 and the names of the
s and columns you plan
lect. Only the values of
 variables in your
ch condition may
ge from one execution
e next. An example of a
c query is an airline
rvation system that
ks for available seats.
would use host
bles to tailor the flight
ber and date, but the
 and columns in the
ECT statement remain
c. Unlike static SQL
ments, which are
edded in a program,
mic SQL statements
uilt at runtime and

ed in a string host
ble.

Linker

Compiler

ESQL
Precompiler

Object Program

All SQL statements have been
replaced by calls to StorHouse/RM
runtime subroutines

System
Editor

Modified
Source Program

Executable
Program

StorHouse/RM
INCLUDE

Files

StorHouse/RM
Libraries

Source Program
Contains embedded SQL
statements
torHouse/RM Concepts FileTek Proprietary and Confidential

Host variables

You can use host variables
to tailor an SQL statement.

■ Input host variables pass
data to StorHouse/RM.
They are typically used in
WHERE clauses.

■ Output host variables
pass data and status
information to your
program. They are
typically used in the INTO
clause of a SELECT or
FETCH statement or in
the VALUES INTO
statement.

For LOBs, you can define
and use the following host
variables:

■ A locator variable is used
to identify and manipulate
a LOB value at the server
or to access parts of a
LOB value.

■ A file reference variable is
used to transfer a LOB
value (or a part of it) to or
from a client file.

You can associate a host
variable with an optional
indicator variable to detect
NULL or truncated values.
Submitting queries with ESQL
You submit queries in an ESQL program with the SELECT statement. StorHouse
ESQL supports the following SELECT statement clauses: FROM, GROUP BY,
HAVING, INTO, ORDER BY, and WHERE. For queries that return only one row,
you use the SELECT statement INTO clause. For queries that return more than
one row, you use a cursor to retrieve—or fetch—one row at a time or an array of
rows into output host variables.

Checking the status of SQL
ESQL programs require a data structure called the SQL Communications Area
(SQLCA) to hold information about the status of your most recently executed
SQL statement. StorHouse updates the SQLCA after every executable SQL
statement. You can use the SQLCA to check return code information, number of
rows fetched, and warning flags. C programs implement the SQLCA as a global
structure that the ESQL precompiler automatically declares and defines.

FETCH multiple rows
at a time into an array
of host variables

FETCH one row
at a time into host
variables

Multiple rows
(use FETCH INTO)

with a cursor

Only one row
(use SELECT INTO)

Queries can return

Database
Queries? Queries?
ESQL 29FileTek Proprietary and Confidential

30 S
Excerpt from an ESQL program
This sample ESQL program illustrates some of the static SQL statements and
techniques used to code an ESQL program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int static_select(void);
static int usage
(
 char *prog
);

static int usage
(
 char *prog
)
{
fprintf(stderr, "Usage: %s <dbname>\n\n", prog);
return (0);
}

main
(
 int argc,
 char *argv[]
)
{
int rc = 0;

EXEC SQL BEGIN DECLARE SECTION;
 char dbname[64];
EXEC SQL END DECLARE SECTION;

if (argc != 2)

 return (usage(argv[0]));

strcpy(dbname, argv[1]);

EXEC SQL
 WHENEVER SQLERROR GOTO err;

EXEC SQL
 CONNECT TO :dbname AS ‘conn1’;

rc = static_select();

EXEC SQL
 DISCONNECT ‘conn1’;

EXEC SQL
 WHENEVER SQLERROR CONTINUE;

return (rc);

This is a Declare Section—
a required ESQL program
component that contains
your host variables,
indicator variables, and
new type declarations. The
ESQL precompiler
generates the
corresponding host
language declarations for
these variables and types
so that you can use them
at your convenience in
SQL and C. ESQL does
not recognize variables or
types defined in C
language statements
coded outside a Declare
Section.

Your program must connect to a
StorHouse database before it can
submit queries. A single program
can connect to up to 10 databases
at a time. The CONNECT and
DISCONNECT statements manage
connectivity.
torHouse/RM Concepts FileTek Proprietary and Confidential

ecking and error handling. This
ors, warnings, or successful execution
nts that physically follow it in the source
ded by another WHENEVER statement

r until the end of the source file.

 the rows that satisfy your queries.
ciates the cursor with the query that
cursor for queries that return more than

ECT statement with the current program
.

set and returns the values into host

g. Once a cursor is closed, you cannot
rsor.

It releases locks and makes any changes
on permanent.

ent transaction and rolls back any
 the transaction.
err:
printf("SQL Error (%ld) %s\n", sqlca.sqlcode, sqlca.sqlerrm);

return (-1);
}

static int static_select()
{
EXEC SQL BEGIN DECLARE SECTION;
 char tretval[33];
EXEC SQL END DECLARE SECTION;

EXEC SQL
 WHENEVER SQLERROR GOTO err;

EXEC SQL
 DECLARE stcur CURSOR FOR
 SELECT tbl
 FROM sysadm.systables
 WHERE tbl NOT LIKE 'SYS%';

EXEC SQL
 WHENEVER NOT FOUND GOTO over;

EXEC SQL
 OPEN stcur;

for (; ;)
{
 tretval[0] = '\0';
 EXEC SQL
 FETCH stcur INTO :tretval;
 printf("%s\n", tretval);
}

over:
EXEC SQL
 CLOSE stcur;
EXEC SQL
 COMMIT WORK;

printf("Static select statement executed successfully\n");

return (0);

err:
fprintf(stderr, "SQL Error: %d %s\n", sqlca.sqlcode,
sqlca.sqlerrm);

EXEC SQL
 WHENEVER SQLERROR CONTINUE;
EXEC SQL
 ROLLBACK WORK;

return (-1);
}

WHENEVER automates condition ch
statement checks the SQLCA for err
and tests all executable SQL stateme
file. It stays in effect until it is superse
that checks for the same condition o

StorHouse uses a cursor to process
DECLARE names a cursor and asso
follows. You must explicitly define a
one row.

OPEN executes the associated SEL
variables and identifies the result set

FETCH reads the rows of the result
variables.

CLOSE terminates cursor processin
perform FETCH operations on the cu

COMMIT WORK ends a transaction.
to the database during that transacti

ROLLBACK WORK cancels the curr
database changes performed during
ESQL 31FileTek Proprietary and Confidential

32 S

Loa

Conc
the s
table
query
being

Conv
with d
data
conve
the c

Segm
You c
segm
invali
segm
segm
need

Subs
can u
selec
or rot
for ea

Data
load
gene
the c
value
or a r

Rest
resta
of fail
start

SQL
loadin
FileT
subm
state
comm
when

Defe
can u
creat
existi
Data loaders
Comprehensive data loader programs developed by FileTek transfer large
amounts of relational data from host environments to StorHouse. You load data
from a UNIX, VAX, or other File Transfer Protocol (FTP) enabled host with the
FileTek FTP Data Loader. You load data from an IBM MVS environment with
the FileTek MVS Data Loader utility. If your MVS machine is FTP-enabled, you
can also run the FileTek FTP Data Loader from MVS.

Loading with FTP
With the FileTek FTP Data Loader, you use your standard client FTP software (or
tool) to communicate with the StorHouse FTP server. These two programs
communicate over a TCP/IP connection to transfer files from your local file
system on your host to a remote file system on StorHouse. The server data loader
then loads your data into StorHouse user tables and builds and stores any
indexes.

Some of the source code for the StorHouse FTP server was derived from the
source code used in the BSD (University of California at Berkeley) FTP tool. You
use standard FTP commands including a standard put command with customized
parameters to transfer data.

ding features

urrency. You can load
ame or different user
s in parallel as well as
 a user table while it’s
 loaded.

ersion. Data fields
ifferent but compatible

types are automatically
rted to the format of

olumns in the tables.

ent management.
an load one or multiple
ents at a time,
date or merge existing
ents, and name
ents in the event they
 to be replaced.

pace selection. You
se default subspaces,
t specific subspaces,
ate among subspaces
ch component type.

 generation. You can
columns with
rated values, such as
urrent date, a constant
, a sequence of values,
ecord number.

art capability. You can
rt loads from the point
ure or abort a load and
at the beginning.

tool. In addition to
g data, you can use a

ek data loader to
it StorHouse SQL

ments. The data loader
its each statement

 it completes.

rred index load. You
se a data loader to
e index entries for
ng segments.

Client

server data
loader

Client
FTP tool

local file

Server

TCP/ IP StorHouse
FTP server
torHouse/RM Concepts FileTek Proprietary and Confidential

LOAD DATA
statement

The SQL-like LOAD DATA
statement describes load
characteristics and input
data. This statement is
similar and compatible with
the control information
supplied for Oracle® and
DB2 load utilities. A FileTek
data loader accepts clauses
that are not part of the
StorHouse syntax but
ignores those that do not
apply to StorHouse. The
LOAD DATA statement
consists of the following
clauses:

■ CHARACTERSET

■ CONCATENTATE

■ CONSTANT

■ CONTINUEIF

■ DEFAULTIF

■ DIFFERENT SEGMENT

■ DISCARDFILE

■ DISCARDS

■ FIELDS

■ INFILE

■ INTO TABLE

■ LOAD

■ NULLIF

■ POSITION

■ PRESERVE BLANKS

■ RECNUM

■ REPLACE SEGMENT

■ SAME SEGMENT

■ SEGMENT

■ SEQUENCE

■ SUBSPACE number

■ SUBSPACE ROTATE

■ SYSDATE

■ TRAILING NULLCOLLS

■ WHEN
Loading from MVS
The FileTek MVS Data Loader utility is an MVS batch program that initiates the
loading of a sequential dataset from a host computer into a StorHouse user table.
Loading data from MVS requires two FileTek data loader programs:

■ The client data loader, which runs on your host computer, prepares your data
for loading and sends it to StorHouse. The FileTek MVS Data Loader utility
is the FileTek-supplied client data loader.

■ The server data loader, which runs on StorHouse, loads your data into
StorHouse user tables and builds and stores any indexes.

The FileTek MVS Data Loader utility uses the channel connection to achieve
maximum data transfer rates.

ServerClient

Mainframe StorHouse

client
data

loader

server
data
loaderESCON
Data loaders 33FileTek Proprietary and Confidential

34 S

Unl

■ Ru
loa
FTP

■ Pip
pro
loa

■ Un
spe
of a
tab

■ For
rec
rec
len

■ Cre
with
typ

– B

– B

– B

– C

– C

– D

– D

– D

– D

– F

– F

– I

– I

– S

– T

– T

– V

– V

■ Pla
CL
the
hos
Data unloader
The FileTek FTP Data Unloader is a tool for copying data from StorHouse user
tables to your host. This utility executes a SELECT statement, then it formats and
transfers the result data to a sequential (or flat) file on your host or to a VRAM
file on StorHouse. You can receive LOB data with the other result data (space
permitting) or in separate files on a client or remote computer.

With the FileTek FTP Data Unloader, you use your standard client FTP tool to
communicate with the StorHouse FTP server. These two programs communicate
over a TCP/IP connection to transfer files between the local and remote file
systems.

Your client FTP tool interacts with you and your local file system. It sends server-
level FTP commands and your control file to the StorHouse FTP server. The
StorHouse FTP server interacts with the remote file system—StorHouse database
tables. It replies to your client FTP commands, invokes a StorHouse process to
execute the unload query, and transfers the result data.

oad features

n multiple unload and
d operations during an

 session

e the output to another
gram, such as a data
ding utility

load an entire table,
cific columns or rows
 table, or multiple

les (join)

mat result data
ords in any of three
ord formats: text, fixed-
gth, or variable-length

ate result data fields
 the following data

es:

INARY

INARY EXTERNAL

LOB

HARACTER

LOB

ATE EXTERNAL

ECIMAL

ECIMAL EXTERNAL

OUBLE

LOAT

LOAT EXTERNAL

NTEGER

NTEGER EXTERNAL

MALLINT

IME EXTERNAL

IMESTAMP EXTERNAL

ARBINARY

ARCHAR

ce each BLOB or
OB value in a file on
 local host or a remote
t

Server replies

Server-level FTP commands (like USER, STOR)

User-level
FTP commands
(like open, put)

Client
FTP
tool

StorHouse
FTP

server

User

Client (host) computer Network (TCP/IP) Server computer
(StorHouse)

Result data

Local file system StorHouse
torHouse/RM Concepts FileTek Proprietary and Confidential

UNLOAD
statement

The SQL-like UNLOAD
statement is the input to an
unload operation. This
statement describes how to
format the result data and
contains the query that
selects the StorHouse data
to unload. Optional
UNLOAD clauses enable
you to:

■ Specify the character set
of result data
(CHARACTERSET
clause)

■ Define delimiters for
character result data
(FIELDS clause)

■ Format all data fields as
CHARACTER data type
(FIELDS clause)

■ Specify a character to
append to the end of
result records
(RECORDS clause)

■ Describe each data field
in result records (USING
clause) including

– Data type

– Position

– Null handling

■ Insert constant text into
result records
(CONSTANT clause)

■ Specify a VRAM file name
to unload data to a file on
StorHouse (OUTFILE
clause)
The unload process
To unload data from StorHouse user tables:

At your computer, prepare a control file containing an UNLOAD
statement.

With your client FTP tool:

■ Start FTP and log into the StorHouse FTP server with the ftp or
open command.

■ Set the transfer type to ASCII or BINARY, if needed, with the type
command.

■ Transfer the control file with the put command.

The StorHouse FTP server parses the FTP commands, then a
StorHouse engine or extractor reads the UNLOAD statement and
prepares your query.

With your client FTP tool, retrieve the result data with the get
command. This step is not needed when unloading data to a
StorHouse VRAM file.

1

2

3

Prepare the input

Transfer the control file

Receive the result data
Data unloader 35FileTek Proprietary and Confidential

36 S

Flow
tran

Supp
query
SPUF

1. SP
to

2. DB
Da
the
na
sy

3. DB
da
int
sh
St

4. VT
St
tra
str

5. Th
re
ne
the
ap

6. Th
su
St
ex

7. Th
ex
da
Gateways
Database gateways enable applications based on an existing RDBMS, such as IBM
DB2 or Microsoft® Access or Oracle®, to interface with StorHouse. StorHouse
supports the IBM Distributed Relational Database Architecture (DRDA)
gateway and the Microsoft Open Database Connectivity (ODBC) gateway. Both
DRDA and ODBC are open software architectures that enable applications to use
SQL to access relational data stored on different, remote computers. For instance,
gateways such as Microsoft SQL Server 7.0 and Oracle8i Heterogeneous
Services can access StorHouse through ODBC.

DRDA gateway
The DRDA gateway translates DB2 requests to a protocol supported by
StorHouse. A DRDA transaction flows over an Advanced Program-to-Program
Communication (APPC) conversation between an application requestor (AR) and
an application server (AS). DB2 is the AR and StorHouse is the AS. APPC is also
known as SNA LU6.2. The SNA interface refers to the layers of hardware and
software necessary to implement the APPC protocol.

For DRDA, you must perform a bind at DB2 to create a package at StorHouse. A
package contains the SQL statements and the access plan for an application. A
bind is the operation that creates a package. StorHouse uses the package to
determine which operation to perform when the DB2 application executes.

Binding a package for StorHouse is the same as binding a package for DB2,
except your local database must be able to recognize the StorHouse location
name (which is the Virtual Telecommunications Access Method (VTAM) LU
name in the DB2 Communications Database tables), and you need any
StorHouse privileges required to execute the SQL statements and to access the
database components in the package.

 of a DRDA
saction

ose you’re submitting a
 using the DB2 tool
I.

UFI sends the query
DB2.

2 uses its Connection
tabase to determine
 logical unit (LU)
me for the StorHouse
stem.

2 builds the DRDA
ta stream and
erfaces with VTAM to
ip the request to
orHouse.

AM locates the
orHouse VTAM LU and
nsfers the data
eam.

e SNA server software
ads the data from the
twork link and passes
 data to the
plication server.

e application server
bmits the query to a
orHouse engine or
tractor.

e StorHouse engine or
tractor returns the
ta.

ApplicationApplication

StorHouse

SNA LU6.2

S
N
A

I
N
T
E
R
F
A
C
EMainframe

S
N
A

I
N
T
E
R
F
A
C
E

Requestor Server
torHouse/RM Concepts FileTek Proprietary and Confidential

Microsoft SQL
Server 7.0 access
to StorHouse

Through an ODBC
connection with Microsoft
SQL Server 7.0, Windows
users can connect to and
access StorHouse data
through a single, familiar
interface. For instance, with
the SQL Server 7.0 import
feature, users can replicate
StorHouse user tables. The
SQL Server 7.0 import
utility:

■ Retrieves the table
definitions from
StorHouse

■ Creates the tables and
indexes on the SQL
Server

■ Unloads the data from
StorHouse

■ Loads the data into the
SQL Server tables

Oracle access to
StorHouse

Oracle users can also
access StorHouse data
transparently through the
Oracle8i Heterogeneous
Services and ODBC. Oracle
administrators simply define
StorHouse tables as
database links using
standard Oracle database
administration and ODBC
tools. To users, the
StorHouse extension
appears as part of the local
Oracle database.
ODBC gateway
Open Database Connectivity (ODBC) is a widely accepted API for relational
database access from personal computers. It is based on the Call Level Interface
(CLI) specifications from X/Open and ISO/IEC for database APIs. This CLI is
similar to dynamic SQL in that SQL statements are passed to StorHouse at
runtime. It differs from embedded SQL because there are no embedded SQL
statements and no precompiler is required.

FileTek provides an ODBC client driver that communicates with StorHouse/RM
through the StorHouse/RM API. FileTek also supports the DataDirect SequeLink
system, which provides ODBC-enabled client, Web, and server applications
access to StorHouse. These applications may be running on a variety of
platforms, including Windows, Solaris, Digital UNIX, SGI IRIX,
OS/390, and any JVM-enabled platform.

The DataDirect SequeLink system consists of client and server components. The
SequeLink server provides data access services between ODBC client applications
and databases like StorHouse. The SequeLink client sends ODBC calls across your
network to the SequeLink server. The server then passes the request to a
StorHouse engine, which processes the request and passes the result to the
SequeLink server, which passes it to the SequeLink client and application.

SequeLink Client

N
e
t
w
o
r
k

Application

SequeLink Server

N
e
t
w
o
r
k

StorHouse
Gateways 37FileTek Proprietary and Confidential

38 S

Fed

A fed
RDBM
applic
subm
refere
RDBM
single
exam
table
datab

Fed

A fed
comp
syste
SQL
is bot
RDBM

Wra

A wra
imple
a fed
StorH
FileT
softw
conn
UDB
instal
defin
DB2
state

Dat

A dat
a dat
syste
datab
sourc
sourc
CREA
state

StorHouse/UDB Link
The StorHouse/UDB Link gives DB2 Universal Database (UDB) users near-
transparent access to the terabytes to petabytes of data supported by
StorHouse/RM. This software, also called the FileTek wrapper, implements the
connection between DB2 UDB release 7.1 or later and StorHouse databases. The
components of a federated DB2 system with the StorHouse/UDB Link are:

How it works
In a federated system, a client communicates with a federator. The federator
appears to the client as a database (even though it may not be one). The client
need not know that the data sources exist or participate in a query. The federator:

■ Accepts and parses a query from the client
■ Breaks a query into smaller queries
■ Submits these queries to one or more data sources
■ Receives the results from the data sources
■ Assembles the results into a single answer set
■ Returns the answer set to the client

The federator maintains a local data dictionary. This dictionary contains
descriptions of the data sources, also called servers, and their available data,
defined by nicknames. The federator uses this information to decide what
portions of the original query will be processed by each data source. The
dictionary also contains user mappings, which associate DB2 authorization IDs
with StorHouse account IDs for specific data sources.

erated system

erated system is an
S that supports

ations and users who
it SQL statements that
nce two or more
Ss or databases in a

 statement (for
ple, a join between

s in different
ases).

erator

erator is the software
onent in a federated
m that coordinates
processing. DB2 UDB
h a federator and an
S.

pper

pper is software that
ments a connection in
erated system. The
ouse/UDB Link is the

ek-supplied wrapper
are to implement the
ection between DB2
and StorHouse. You
l the software and then
e the wrapper with the
CREATE WRAPPER
ment.

a source

a source is a server or
abase in a federated
m. Each StorHouse
ase is a separate data
e. You define data
es with the DB2
TE SERVER

ment.

FileTek WrapperDB2/UDB

Federator (UDB 7.n)

Client

StorHouse
torHouse/RM Concepts FileTek Proprietary and Confidential

Nickname

A nickname is the
representation in a DB2
catalog of a remote table or
a view controlled by a
particular data source. You
define nicknames with the
DB2 CREATE NICKNAME
statement.

User mapping

User mapping is the
correspondence between a
user’s DB2 identity, or
authorization ID, and the
identity used when
communicating with a data
source, for instance, a
StorHouse account ID. You
define user mappings with
the DB2 CREATE USER
MAPPING statement.

Passthru

Passthru is the capability of
a client to issue queries and
other SQL statements
directly to a data source.
You authorize passthru for
specific data sources with
the DB2 GRANT
PASSTHRU statement.

Pushdown

Pushdown is the act of
moving SQL processing into
a particular data source.
Partitioning data
In a federated system, you must determine where you partition, or distribute,
data between DB2 and StorHouse. Criteria for partitioning data include
frequency of access, volume of data, and volatility of data. Partitioning models
that work well with StorHouse are as follows.

Horizontal partitioning

Horizontal partitioning divides rows into sets. Within each set, the rows remain
intact. Partitioning criteria are usually range-based, like date. For instance, rows
with the current month could be stored in DB2 and rows with past months could
be stored in StorHouse. Or rows with pending orders could be stored in DB2 and
rows with filled orders could be stored in StorHouse.

Vertical partitioning

Vertical partitioning splits rows into two or more sets of columns and bases the
data placement decision on the use of columns rather than rows. Columns that
are frequently accessed, smaller, or more volatile could be stored in DB2. Those
columns that are infrequently accessed, larger, or more stable could be stored in
StorHouse.

Summary–Detail partitioning

A third data model places summary data in DB2 and detailed data in StorHouse.
This can be effective if you can divide users into groups based on data access
patterns. Frequently, summary data is sufficient for most users, while only a small
number of users need access to the full detail.

Duplication

In some cases, it may be beneficial to duplicate data between DB2 and
StorHouse. This can be full duplication of all data or duplication of a subset. Full
duplication turns StorHouse into a disaster recovery facility.
StorHouse/UDB Link 39FileTek Proprietary and Confidential

40 S

SEL

The S
state

■ Re
mu
one

■ Spe
sea
retu
tha

■ Gro
set

■ App
qua
gro

■ Sor
asc
ord
col

■ Elim
from

■ Per
com
dat

■ Co
sta
and
ope

SEL

The S
state

■ Re
mu
one

■ Spe
sea
retu
tha

■ Gro
set

■ App
qua
gro

■ Sor
asc
ord
col

■ Elim
from

■ Per
com
dat

■ Co
sta
and
ope
An

Queries
You access StorHouse relational data by submitting a query with a StorHouse
SELECT statement. StorHouse supports these types of queries: selection, join,
extraction, and subquery.

Selection
A selection returns specified columns from one or more rows in one table. For
instance, when you access all the information in a user table for a specific account
number, then you are performing a selection.

Join
A join creates a result set from data in multiple tables or views. StorHouse/RM
supports these types of joins:

■ An inner-join combines the matched rows of the tables. The unmatched rows
are omitted from the result set.

■ A left outer-join combines the matched rows of tables, and for unmatched
rows, combines the values of the left table with null values for the right table.

■ An equi-join joins a column from one table with a column from another table
by using predicates that specify equalities.

■ A self- or auto-join joins a table with itself. For example, you can select all
customer names and numbers that are from the same city as another customer
in the table.

■ A cartesian product joins all rows of two or more tables.

StorHouse/RM supports nested loop and hybrid IN join operations. A hybrid IN
is a type of merge join (single pass through the tables). The optimizer chooses the
most efficient join operation for the query but may consider one type over the
other when certain conditions are met. For instance, the optimizer may use a
hybrid IN join operation when the query is an equi-join and the inner table has a
value index on the join column.

ECT features

torHouse SELECT
ment lets you:

trieve data from one or
ltiple tables or views in
 query

cify restrictions or
rch conditions to
rn only those rows

t satisfy the criteria

up the rows of a result

ly one or more
lifying conditions to
ups of rows

t retrieved data in
ending or descending
er on one or multiple
umns

inate duplicate rows
 a result set

form arithmetic
putations on column

a

mbine SELECT
tements using UNION
 UNION ALL set
rators

ECT features

torHouse SELECT
ment lets you:

trieve data from one or
ltiple tables or views in
 query

cify restrictions or
rch conditions to
rn only those rows

t satisfy the criteria

up the rows of a result

ly one or more
lifying conditions to
ups of rows

t retrieved data in
ending or descending
er on one or multiple
umns

inate duplicate rows
 a result set

form arithmetic
putations on column

a

mbine SELECT
tements using UNION
 UNION ALL set
rators
torHouse/RM Concepts FileTek Proprietary and Confidential

Simple query
requirements

■ The account issuing the
query must have the
SCAN database privilege.

■ The query must not
contain WHERE, ORDER
BY, GROUP BY, or
DISTINCT clauses.

Full segment
select query
requirements

■ All predicates in the
WHERE condition must
be based on columns in
range indexes.

■ The predicates must
select all rows from one or
more segments.

Extractor
requirements

■ The query must refer to
one table and must not
contain any subqueries.

■ The host and StorHouse
systems must have the
same native values key so
that no byte-reordering of
INTEGER and SMALLINT
columns is necessary.

■ The application issuing
the query must not have
changed any values in
SQLDA fields set by
DESCRIBE.
Extraction
An extraction returns one or more columns for all rows of a user table or a range
of segments. Two types of queries are eligible for extraction:

■ A simple query results in a full table scan, which reads every row in a table
without the use of an index.

■ A full segment select query returns data from one or more entire segments with
the use of a range index.

The StorHouse extractor software processes full table scans and full segment selects
quicker and more efficiently than a StorHouse engine. Furthermore, when a
table resides on both StorHouse optical and tape media, the extractor always uses
the tape copy when available to benefit from faster sequential I/O. Simple and
full segment select queries must meet query requirements and additional
extractor requirements to qualify for extractor processing.

Subquery
A subquery is a SELECT statement nested in another SQL statement. The
statement containing the subquery is the parent statement. StorHouse supports
simple and correlated subqueries. A simple subquery executes once for the entire
parent statement, while a correlated subquery executes once for each row produced
by the parent statement. The main uses of subqueries in StorHouse are to define
the set of rows to be included in views and to answer multiple-part questions in
queries.

N

Eligible
query

?

Meets
extractor

rules
?

Y YProcess with
extractor

N

Process with
database engine

Y

Queries 41FileTek Proprietary and Confidential

42 S

Con
con

Three
param
the n
opera
perfo

SQL_
Spec
numb
state
proce
engin
state
beyo

SQL_
Spec
numb
claus
state
the m
INTO
excee

SQL_
the m
StorH
run c
users
maxim
conn
syste
numb
includ
loads
state
of qu
beyo
rejec
Concurrency
StorHouse supports the serializable ANSI/ISO transaction isolation level, which
guarantees the highest read consistency and data integrity in a database.
StorHouse concurrency software facilitates maximum simultaneous access to
data.

Parallelism
Users can load the same or different user tables concurrently. Users can query a
user table while it’s being loaded, and they can access the new segments after the
load completes. One StorHouse engine is required for each load and to handle
each query. System parameters control concurrency. Some of the parallel
operations are shown below.

trolling
currency

 tunable system
eters help manage

umber of concurrent
tions for optimal
rmance.

LDR_MAXLOAD.
ifies the maximum
er of LOAD

ments that can be
ssed at a time. One
e is required per LOAD

ment. Requests
nd the limit are queued.

LDR_MAXINTO.
ifies the maximum
er of INTO TABLE
es in any one LOAD
ment. A load fails when
aximum number of
 TABLE clauses is
ded.

SESSIONS. Specifies
aximum number of
ouse engines that can

oncurrently for all
. This sets the
um number of

ections allowed
m-wide. The maximum
er of connections
es the number of
 (one engine per LOAD
ment) plus the number
eries. Requests
nd the limit are
ted.

Load different user tables in one load

Load multiple segments of the same user table in one load

LOAD
INTO TABLE A

INTO TABLE A

SEGMENT 1

SEGMENT 2

Load multiple segments of multiple user tables in one load

INTO TABLE A

INTO TABLE A

INTO TABLE B

INTO TABLE B

SEGMENT 1

SEGMENT 2

SEGMENT 1

SEGMENT 2

LOAD

LOAD INTO TABLE A

FROM TABLE A

SEGMENT 2

SEGMENT 1SELECT

Query a user table while it’s being loaded

LOAD
INTO TABLE A

INTO TABLE B

SEGMENT 1

SEGMENT 1
torHouse/RM Concepts FileTek Proprietary and Confidential

When locks occur

Metadata backup. A
metadata backup uses a
special database-level lock
that has the effect of read-
locking every system table.
This allows queries to
continue and prevents DDL
statements from changing
the metadata. Any DDL
statements submitted are
queued until after the lock is
released.

Metadata recovery. Any
locks in place at the time of
a transaction failure are held
and then released after roll
back. A recovery process
places any necessary locks
on applicable metadata
during system initialization
and releases those locks
after recovery.

Loads. A load acquires a
shared lock on the user
table during commit
processing. No locks are
held during the middle of a
load. A load acquires and
releases an exclusive lock
on SYSTABLES at load start
and on SYSSTHSEGMENTS
at load end.

DDL processing. All DDL
statements acquire an
exclusive lock on applicable
system tables. Additionally,
CREATE, GRANT, and
REVOKE statements
acquire a shared lock on
applicable user tables; and
DROP statements acquire
an exclusive lock on
applicable user tables.

Queries. A query requires
a shared lock on the user
table.
Locking
StorHouse locking is fully automatic and requires no user action. StorHouse
implements table-level locks only. Tables include user tables, system tables, and
views. Two types of table locks are:

■ A shared (or read) lock reserves a table for reading only. This lock prevents a
table from being dropped. Multiple engines can have a shared lock on the
same table.

■ An exclusive (or write) lock reserves a table for updating only. This lock
prohibits a table from being shared. One engine can have an exclusive lock on
a table. All other lock requests (shared and exclusive) for the table are queued.

An engine holds on to locks—both shared and exclusive—against user tables
throughout a transaction. It releases shared locks against system tables as soon as
it’s done processing the system tables, and it releases exclusive locks against
system tables when the transaction ends. Note that for DDL statements, the
operation is atomic, so the transaction boundaries match the statement
boundaries.

When an engine places a shared lock on a table, subsequent shared lock requests
can access the same table, but an exclusive lock request starts a queue. When
queueing begins, subsequent requests—both shared locks and exclusive locks—
queue up behind the exclusive lock.

When an engine releases an exclusive lock, the next entry in the queue gets the
lock. In the above example, a shared lock (entry 5) would be granted, followed by
the next shared lock (entry 6) in the queue.

Shared lock

Shared lock

Shared lock

Exclusive lock

Shared lock

Table

Shared lock

Queue

Timeline

1

2

3

4

5

6

Concurrency 43FileTek Proprietary and Confidential

44 S

Adm
acc

Each
come
admi

SYSA
admi
all pr
StorH
SYSA
StorH
syste
SYSA
table
datab

PUB
purpo
the p
revok
comp
StorH
SQLE
acces
datab
privile
from
Database security
StorHouse security controls access to StorHouse databases, the administrative
tasks a user can perform, and the tables a user can query or load. This multilevel
security consists of account and privilege facilities.

StorHouse accounts
Only users with valid StorHouse accounts can access a StorHouse database. Users
need a StorHouse account with certain StorHouse privileges to:

■ Perform StorHouse system and database administration tasks
■ Submit StorHouse SQL statements
■ Load data into StorHouse user tables
■ Unload data from StorHouse user tables
■ Access StorHouse data from a host language application (using ESQL) or a

local database application (such as a DB2 application)

Account passwords provide additional validation. An account must always
specify a password when loading data or connecting to a StorHouse database.

Security validation
StorHouse/SM validates all connects to StorHouse databases. Only valid
StorHouse accounts with passwords can connect to StorHouse databases.
StorHouse/SM also validates account access and command privileges.
StorHouse/RM validates account database and database component privileges.

StorHouse tracks all connects and disconnects as well as requests denied due to
invalid account IDs or passwords. It also logs SQL statements submitted and
transaction statistics for each completed transaction. You can then use Control
Center to analyze possible security violations and account activity.

inistrative
ounts

 StorHouse/RM system
s with two

nistrative accounts.

DM. This
nistrator account has
ivileges in all
ouse databases.
DM can perform all
ouse database and
m administration tasks.
DM owns the system

s for each StorHouse
ase.

LIC. This special-
se account simplifies

rocess of granting and
ing database
onent privileges. Any
ouse account with
XECUTE has PUBLIC
s to all StorHouse
ases. PUBLIC
ges, however, vary

database to database.
torHouse/RM Concepts FileTek Proprietary and Confidential

Privilege types

There are four types of
StorHouse privileges.

Access privilege.
Provides the broadest level
of security. It enables an
account to perform
database administration
tasks in all StorHouse
databases.

Command privileges.
Let accounts submit SQL
statements and certain
StorHouse commands in all
StorHouse databases. At a
minimum, an account must
have SQLEXECUTE to
access a StorHouse
database.

Database privileges.
Control the functions an
account can perform in a
specific database.

Database component
privileges. Determine
account access to specific
components—like tables
and views or columns within
tables and views—in a
specific database. An
account authorized to load
data must have INSERT
privilege on the user tables it
can load. Otherwise,
DELETE, INSERT, and
UPDATE apply to system
tables only because
StorHouse does not allow
updates of user tables.
StorHouse privileges
Privileges control access to user table data and determine the administration tasks
a StorHouse account can perform in all databases, in specific databases, or for
specific database components.

TYPE PRIVILEGE AUTHORIZATION

Access SQLADMIN Have DBA privilege in all databases

Command SQLEXECUTE Submit SQL statements in all databases

SQLCOMMAND Run a FileTek data loader in all databases

Database DBA Perform the following in a specific database:

■ Create user tables, indexes, views, and synonyms
for other accounts

■ Insert, update, and delete data in system tables

■ Grant and revoke database and database
component privileges

■ Access any table, view, or synonym

RESOURCE Perform the following in a specific database:

■ Create user tables, indexes, views, and synonyms
for own account

■ Access those database components

■ Grant other accounts SELECT and INDEX
privileges on those components

SCAN Read all rows in any user table on which the account
has SELECT privilege

Database
component

ALL Have all database component privileges for a
specified component

DELETE Delete rows from a system table or system view

INDEX Create an index for a user table

INSERT Load data into a user table or insert rows into a
system table or system view

SELECT Access a user table or system table or view

UPDATE Update columns in a system table or system view
Database security 45FileTek Proprietary and Confidential

46 S

Sto
Per
Mon

With
Perfo
can:

■ Dis
act
me
wri
ope
util

■ Dis
to d

■ Gra
per
pre

■ Cre

CCA

With

■ Ma
ava
a C

■ Est
con
Co
and
sys

■ Co
prin
volu

■ Co
info
sta
info
Ce
Administration
StorHouse Control Center (CC) is the FileTek network computing system used
for StorHouse administration. Control Center consists of server and client
components. A Control Center server, which runs on the Microsoft Windows NT,
XP Pro, or 2000 platform, is a program that enables Control Center clients to
communicate with StorHouse systems through a TCP/IP network and optional
serial ports. A Control Center client, which runs on Windows 95, 98, 2000, XP
Pro, or NT platforms, consists of three graphical user interface (GUI) software
modules:

■ StorHouse/Admin (system and database administration)
■ StorHouse/Performance Monitor (system performance analysis)
■ CCAdmin (Control Center server administration)

You can install all of the client modules or some combination on any client
machine, as indicated in the following sample configuration.

rHouse/
formance
itor

StorHouse/
rmance Monitor you

play near real-time
ivity (such as mounts,
gabytes read and
tten, shelf requests, file
ns, CPU average

ization, and so on)

play historical activity
etermine trends

phically depict system
formance measures in
-defined reports

ate custom reports

dmin

CCAdmin you can:

ke StorHouse systems
ilable or unavailable to
ontrol Center server

ablish or terminate
nections between

ntrol Center servers
 specific StorHouse
tems

nfigure label printers to
t labels for blank
mes

llect diagnostic
rmation, performance
tistics, and activity
rmation about Control

nter servers

CC client

StorHouse/Admin

CC client

• StorHouse/Admin
• StorHouse/Performance

Monitor

CC client

StorHouse

StorHouse/Admin

TCP/IP

MR OH CD HS EC D TR RTS C TS S D RD

modem

CC server

Serial link MR OH CD H S EC DTR RTS CTS SD R D

modem

CC client

StorHouse/
Performance Monitor

TCP/IP

TCP/IP TCP/IPTCP/IP
torHouse/RM Concepts FileTek Proprietary and Confidential

The GUI ISQL tool

StorHouse/Admin provides
an Interactive SQL (ISQL)
tool for submitting SQL
statements to StorHouse.
The following list describes
what you can do with the
ISQL tool.

SQL-entry features:

■ Submit a new SQL
statement, the previous
one, or the next one

■ Save one or more SQL
statements as a script and
later load the script and
run it

Result set features:

■ Save a result set as a text
file on your computer or
network

■ Print a result set

■ Save a result set as a
report and then load that
report as needed

General ISQL features:

■ Log an ISQL session to a
text file

■ Limit result sets to 100
rows or allow larger
results

■ Set options for scripts,
such as stop a script
when an SQL statement
fails or when no rows are
returned

■ Access online help for
StorHouse SQL
StorHouse/Admin
StorHouse/Admin combines StorHouse/SM and StorHouse/RM administration
in one user interface, simplifying the tasks of storage management, database
administration, system operation, and security control. By navigating with a
folder list, you can perform the following database administration functions.

Databases.
Create
databases, list
all databases,
display the size
of user data,
display all
columns in a
database.

DB Accounts. List
all accounts that can
access a database,
grant and revoke
database privileges,
display privileges,
and assign an
account default user
tablespace.

Synonyms. Create public and private
synonyms, drop synonyms, and list
synonyms in a database.

User Tables. Create, clone, and copy user
tables; export DDL, list user tables in a
database; display the size of a user table;
list tables and indexes in a volume set; and
drop user tables.

Columns. Display column definitions of a
user table.

Indexes. Create and drop indexes, list
indexes for a user table, and list index
names in a database.

System tables. Back up and restore
metadata, schedule metadata backups, list
system tables in a database, display
column definitions of system tables, list the
index of system tables, export the contents
of system tables, export the DDL of system
tables and/or indexes, and list account
privileges for system tables.

Tablespaces. Create,
alter, drop, and list user
tablespaces; assign
default user
tablespaces; and list
user tables assigned to
a user tablespace.

Views. Create,
alter, and drop
views; list views in
a database; and
list account
privileges for
views.

Privileges. Grant and revoke database
component privileges for a user table and
list account privileges for a user table.

Segments. Archive and back up segments,
schedule archives and backups, change
segment attributes, invalidate and
revalidate segments, display segment
properties, list segments in a user table, list
extents in a segment, display low and high
values in a segment, and delete segments.
Administration 47FileTek Proprietary and Confidential

Administration 48FileTek Proprietary and Confidential

	Online Guide
	Contents
	Products and applications
	StorHouse as a hub server
	StorHouse as an active archive
	StorHouse as a database extension

	StorHouse databases
	StorHouse database user files
	StorHouse database system files

	User tables
	Integrity constraints on tables
	Views on tables

	Large objects
	In-line LOBs
	Out-of-line LOBs
	LOB loading and unloading
	LOB access

	Indexes
	Value index
	Hash index
	Range index

	User tablespaces
	Metadata
	System tablespaces
	System tables

	Storage management
	File management
	Volume management

	Backup
	Backup operations for segment files
	Backup utility for metadata

	Recovery
	Metadata recovery
	Segment file recovery

	Software architecture
	Client software
	Server software

	SQL
	Statements
	Predicates
	Functions

	ESQL
	Compiling an ESQL program
	Submitting queries with ESQL
	Checking the status of SQL
	Excerpt from an ESQL program

	Data loaders
	Loading with FTP
	Loading from MVS

	Data unloader
	The unload process

	Gateways
	DRDA gateway
	ODBC gateway

	StorHouse/UDB Link
	How it works
	Partitioning data

	Queries
	Selection
	Join
	Extraction
	Subquery

	Concurrency
	Parallelism
	Locking

	Database security
	StorHouse accounts
	Security validation
	StorHouse privileges

	Administration
	StorHouse/Admin

