Callable Interface
Programmer’s Guide

Release 1.7 of the
StorHouse Host Software

Publication Number
900013 Rev. P

March 28, 2002

FileTek

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1987-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900013 Rev. P

NOTE: U.S. GOVERNMENT USERS
Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
or the Commercial Computer Software - Restricted Rights clause at 48
CFR 52.227-19, as applicable. Unpublished-rights reserved under the
copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

FileTek Confidential and Proprietary

Contents

Contents

LTAT =] (oo] 1 4 1= RPN iX
Purpose of This DOCUMENT ...coviiiuiriiriiieiieiietestetct ettt ettt ix

INtended AUIEIICE .oooueeeiiiiieeeeeeee ettt ettt e e e e ettt e e s e s aaaeeeeesessaaatereeeeseanaees ix

CCOMNTEIIES weviiiiiiiiiiieieie ettt et e oo et e et e e s e e e ataaaasaaaeeeeeeeaeeeeeseeeeeaeeeaseseeseeesssssssssssssssnsnsssssssenrnres X

Related DOCUMENEATION .uvviviiiiiiiiiieeeeeieiiiteeeeeeeeereeeeeeeestaaeeeeeeesssaaseeeesssssssseeessssssnseseesssssnnee X

NOLAIONAL CONVENTIONS 1vvvtetieieeieeeeeeeeeeeeeeeeeeeeeeerteeeeseseareeeeeesseeesseeeesssesessrseeesessesassneessesanns xi

Chapter 1. INtroduCtioNo.vuiiiiiiies e e 1-1
Operating ENVIFONMENTcoviiiiiiiiiiiiiiiiiiii s 1-1

Callable Interface Function Hierarchycoccoccoieininineinininiccicencncreecneseeeeieene 1-2

Session Control FUNCHOMNS .ivviiiveeiiiiiiiiiiiiiiiiteeeeeecete e e e et e e e eesseerbeeeeessssaaseeseessssnnnes 1-2

File Operation FUNCHONSccovuiiiiriiiiiiiiiiiiicicceece e 1-3

Data Transfer Control FUNCHONS ...ooovviiiieiieiieiieeeeeee ettt et ee et eeeeereeeseeaeee s 1-3

StorHouse Command FUNCEIONS ...veeeiiiieeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesereeeeeeseeseeeeeesseaesnee 1-4

Notes 0n Multitaskingccccccviuiiiiiiniiiiiiccce s 1-4

Chapter 2: StorHouse Parameters and Data Descriptions 2-1
Session and Data Transfer Link TAentifIers ...cveeeveeveeeiioiieiieeeieeeeieeeeeeeeeeeeeeeeeeenaeeeeeaneeseenneeas 2-1

STOTHOUSE ACCOUNES .ottt e e e et e e e eeeeeeeeeeeeeeeeeeseeeeeeeseseeesssesnasnnns 2-1

Account Identification Codeueivcuiieiiiiieeeeeee ettt et eeeeate e e e seae e e e e e s 2-2

ACCOUNT PASSWOIT 1ottt ettt e e e e e ettt e e e e e e e eaeeeeeeeeeaeeeeeeeesesnereeessesanneareeeas 2-2

Default Access Groups and Rightscccoceiiiiiiiiiiiiiiiiiiiicccccs 2-2

StorHouse Privileesccooiiiiiiiiiiiiiiiiciicce e 2-2

FileTek, Inc. Callable Interface Programmer’s Guide iii

FileTek Confidential and Proprietary

. Contents

StorHouse Files and File Access Groupsccocviviviiiiiiiniiiniiiiicceecceseeeceeees 2-3
StorHouse File NameEs ...cc.ooveiiiiiiriiiiieirine ettt 2-3
File ACCESS GIOUPS ..ouiiiiiiiiiiiieiieteiete ettt 2-4
Group and File Access Passwordsc.cccouevieciiiiiiniiiiininicieiccecseeeee e 2-4

Group Passwordsccoeevieviiiininiiniiiiiiee s 2-4

File PasSWOIAS ...cveueeuiriinieieiieietcic sttt 2-5

File VEISIONS ...ueeuitiieiiitirtiicie ettt sttt 2-5

File REVISIONS ..eviuiiuieiiiirtiieiieitetertetee sttt st sttt 2-6

File Data Representationcc.ccueiverieriiiiiinieieieiiieieieeesie et 2-6

Directory INOrMAationceueoieeieiriinieierietesiese ettt sttt 2-7

Chapter 3: File POSIIONING ...coviiiiiiiiiieei e 3-1

Record SeqUEnCINGc.coviiiiiiiiiiiiiiiiiccete e 3-1
ENtry SEQUENCE ..ovviiiiiiiiiiiiiiiii s 3-1
Ky SEQUENCE ..o 3-1

Current Record POSITION ...c.ce.eiuirueieieirieicicitetentcrteeee ettt eebe e 3-2

Read Functions and Current Record Positioncccceeveiiiieiinininiiiiiiiiicicecceeseseeeees 3-2

Record Sequencing Exampleccocoiiiiiiiiiiiiiiiiiiiiicccee e 3-2

Chapter 4: Control StFUCTUIES ...occevviiiiiiieeii e 4-1

Parameter ValUesccucoiiiiiiiiiiiiiiiiiiicicceec e 4-1
Character STHNESc.cvuiuiiiiiiiiiiiie e 4-1
Externally Specified Parametersc.coecerirenieirininieieinceceeeneseeee e 4-1

RETUIN COES vttt ettt sttt st be et aen 4-2

Indicative Text MESSAZES ..c.ceverviriiuieuiiiiieieiieiitestet ettt st 4-2

Chapter 5: Callable Interface FUNCLIONSoooviiiiiiiiiiiiii e, 5-1

Callable Interface Entry Point INQmescceoveereiririeieieenierieirieeesieie e 5-1

Special Considerations for CICS Programmerscccoeoeveeininierineninicineineeseeseeeeesieeas 5-1
Defining the CICS Interface Programsccccocoiruiiniciniiiiiininiiieiicesecseeeeseneans 5-2
Error Handlingccoccoiiiiiiiiiiiiiicce e 5-3
RESLIICTIONS ..iiuviiiiiiiiiiiiiiiiii e 5-3

Synchronous and Asynchronous FUNCHONSe.veiiiriiniinieiiircieeee e 5-4
SYNChronous FOIMciiiiiiiiiiiiieiirieee e 5-4
Asynchronous FOIM ..ot 5-4

Function Statement Formatccocooviviiiiniiiiiiiiii 5-5

iv Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Contents .

Session Control FUNCHONS ...ttt 5-5
CONNECT et 5-6
DISCONNECT ..ottt 5-9

File Operation FUNCHONScc.oviiiiiiiiiiiiiiiieicicte e 5-11
OPEN .. s 5-12
OPEN-SEQ i 5-13
CREATE-OPEN ...t 5-20
OPEN-VRAM ..ot 5-26
CHECKPOINT ..ot 5-32
CLOSE oo 5-34

Data Transfer Control FUNCHONScveueiriiirieiinieininicinice ettt 5-37
READ Lo 5-38
READ-SEQ .. 5-40
READ-RECORD ...c.ooiiiiiiiiiiiiiicet e 5-42
READ-KEYEDccoiiiiiiiiiiiiiiiici s 5-44
READ-NEXT-KEY ...cccciiiiiiiiiiiiiici s 5-47
WRITE ..o 5-49
WRITE-KEY ..ot 5-51
DELETE ..ot 5-54
CHANGE ..o 5-56

StorHouse Command Submissionccecoveviiiiiinininiiiiiiiccceeeeee e 5-58
SM-CMD-INTE i 5-59

General Usage FUNCHONSoo.oiuiiiiiiiiiiiiiiiiiciceeee et 5-63
CHECK .o 5-64
ECBADDR ..o 5-66
EMSG .o 5-68
ABORT o 5-70

Chapter 6: Sample Program ... 6-1

COBOL Sample Programccccceeeruiiieiiiniiniiicieisesieeeeeiie et 6-2

Appendix A: Pass-Through Functions ... A-1

PTOPEN .o A-2

PTWRTOSM .o A-5

PTRIDFRSM ..ottt A-7

CONFIG ot A-9

FileTek, Inc.

Callable Interface Programmer’s Guide \%

FileTek Confidential and Proprietary

. Contents

Appendix B: ALC Macro Definition ..o B-1
LSMCALL — Call the Callable Interface Programccceecereenieinncninccineinecneeneeeenns B-1
Required Parameterscccccuvuirieiieiiiiiiniiiiieesesieiee ettt B-3
Optional Parametersccioueieiiiinieniiniiiiiieieiete ettt s B-3
Remaining Keywordscccocoiviiiiiiiiiiiiiiiiccce s B-4
Assembly Language Standard Callccoooiiiiiiiiiiiiiiice, B-6
Example: CALL MAaCIO ...cuveuiriiiiiiciieiieiinicictctetcstesteet ettt B-7
Example: LEMCALL MAaCIO ...cvoiiiuiiiiiiiiiiiciieinieieiee ettt B-8
Appendix C: Checkpoint/Restart and Programming Guidelines C-1
CheckPOINT/RESTALT . .cuvviniieiiiiieietrtc ettt sttt C-1
EXAMPIES .viiiiiiiicici e C-1
EXamPple T oottt e C-2
EXamPle 2 oo e C-2
EXamPle 3 oo C-3
EXample 4 ...ooviiiiiiiic e e C-3
Programming GUIElINesc.ccoueciiiiiiniiiiiiiiiiiiiicece s C-4
Defining RESOUICES ...ovvviuiiiiiieiiiiciiicieitc ettt C-4
EXAMPLES .ottt C-5
USer GUIAELINES .vvvneiiieietciieiteie sttt ettt C-6
Permanent FIXESooeevieiiinininieieneneeeeseseneeeeesee ettt s C-6
Index

Vi Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Figures

Figures
and

Tables

Figure 1-1: Callable Interface Function Hierarchyccoccoiviiiiiiinniiniiiiie, 1-2

Tables

Table 2-1:
Table 2-2:

Table B-1:
Table B-2:
Table B-3:

Table C-1:
Table C-2:

Printable ASCII Charactersc.coocurueiiiiiriiiniiciiicincereceeeeee e 2-3
File SyStem TYPES .eveeveueeuirieiiieiinienieictete sttt ettt 2-7
LSMCALL Macro INStructionc..cecvecieriiinieniinieiieiinieeeresesiteneeesie e B-2
CALL MAaCIO ottt B-7
LSMCALL MACIO .uviuiiiiiiiiiiiiiiieicicie sttt s B-8
DATAFILE REVISIONS w.euveeieieiiriirieieniesieetetenie et eeente sttt esteeesseesesne st sseeneens C-2
Example of Open Statements Requiring the Same Resourcecccccoevveuinennee. C-5

FileTek, Inc.

Callable Interface Programmer’s Guide vii

FileTek Confidential and Proprietary

Tables

viii Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Welcome

Welcome

The Callable Interface Programmers Guide describes the StorHouse® Callable
Interface for IBM™ MVS™ hosts. This interface provides access to StorHouse from
end-user applications. For information on the StorHouse Callable Interface for all
other hosts except IBM MVS, please refer to the Generic Callable Interface
Programmers Guide, publication number 900046.

Purpose of This Document

This document is a reference manual that describes the StorHouse Callable Interface
functions. The standard COBOL format, parameter overview, return codes, detailed
function description, and cross-reference to the sample program in Chapter 6,
“Sample Program,” are presented for each function.

Intended Audience

The Callable Interface Programmer’s Guide was written for programmers who write

applications that invoke the StorHouse Callable Interface to access information that
resides on StorHouse.

FileTek, Inc. Callable Interface Programmer’s Guide

FileTek Confidential and Proprietary

Welcome
Contents

Contents

The Callable Interface Programmer’s Guide contains six chapters and three appendices.

Chapter 1, “Introduction,” describes the Callable Interface operating
environment.

Chapter 2, “StorHouse Parameters and Data Descriptions,” contains general
information about StorHouse session and data transfer link identifiers, accounts,
file access groups, and files.

Chapter 3, “File Positioning,” discusses record resequencing and explains how
the various read functions affect record positioning for files.

Chapter 4, “Control Structures,” discusses parameter values, return codes, and
text messages.

Chapter 5, “Callable Interface Functions,” defines each Callable Interface
function in detail. This chapter groups the functions by purpose.

Chapter 6, “Sample Program,” presents a sample COBOL program for the
Callable Interface.

Appendix A, “Pass-Through Functions,” describes pass-through functions that
allow application programs direct access to StorHouse.

Appendix B, “ALC Macro Definition,” explains how to access the Callable
Interface from programs coded in IBM Assembler language.

Appendix C, “Checkpoint/Restart and Programming Guidelines,” discusses
checkpoint/restart operations and offers programming guidelines.

Related Documentation

Users of the Callable Interface should be familiar with these StorHouse documents:

The Messages and Codes Manual, publication number 900032, describes the
messages and return codes generated by the StorHouse system and host software.

The Command Language Reference Manual, publication number 900005,
explains StorHouse Command Language in detail.

The StorHouse Concepts and Facilities Manual, publication number 900026,
explains StorHouse concepts, structures and functions.

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Welcome

Notational Conventions

* The StorHouse Glossary, publication number 900027, defines terminology used
in FileTek® publications. You can use the glossary as a stand-alone reference
manual or as a companion to the StorHouse User Document Set.

» The Host Software Installation and Operations Guide, publication number
900011, explains how to install the host software for StorHouse.

Notational Conventions

This book uses the following conventions for illustrating command formats,
presenting examples, and identifying special terms:

Convention Meaning

Angle brackets (< >) Enclose optional entries

Braces ({ }) Enclose descriptive terms or a choice of entries
Courier font Code

Ellipses (...) A repetition of the preceding material

Italics New terms and emphasized text

lower case Helvetica font User entries

UPPER CASE System responses and StorHouse terms

FileTek, Inc. Callable Interface Programmer’s Guide Xi

FileTek Confidential and Proprietary

Welcome

Notational Conventions

Xii Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

1

Introduction

The StorHouse Callable Interface provides access to StorHouse from user
applications. This interface is implemented as a subroutine invoked from assembly
language (ALC), PL/1, COBOL, FORTRAN, or C programs. By supplying parameters
to this subroutine, a programmer can establish connections, access files, and transfer
records between a host computer system and StorHouse.

The Callable Interface can be used by an application run from a TSO session, a batch
job, an IMS transaction, or a CICS transaction. The user application does not require
authorization, and all of the Callable Interface code that executes in the user’s address
space is re-entrant.

Operating Environment

The Callable Interface operates in either an MVS/SP™ (Release 1.3 or later) or
MVS/XA™ environment. This interface tolerates the MVS/ESA™ environment but
does not exploit ESA capabilities. User applications can be compiled with any of the
following:

e Any MVS Assembler

e PL/1 Optimizing Compiler Release 5.1

e COBOLVSII Compiler 1.1

* FORTRAN VS Compiler 4.1

* Any other compiler that generates standard call-by-reference parameter lists.

Callable Interface modules for a TSO/batch environment use standard MVS system
functions, such as GETMAIN, FREEMAIN, LOAD, and WAIT. The system
programmer responsible for the installation can change the use of these functions
through installation exits. Unless the exits are changed, the Callable Interface should
only be used in environments where use of these system functions is acceptable.

FileTek, Inc.

Callable Interface Programmer’s Guide 1-1

Introduction

FileTek Confidential and Proprietary

Callable Interface Function Hierarchy

For the CICS Interface, Callable Interface modules use standard command level
functions. For more information about the CICS Interface, see Chapter 5, “Callable
Interface Functions.”

Callable Interface Function Hierarchy

Figure 1-1 illustrates how Callable Interface functions are organized in a hierarchical
structure.

‘ Session ‘

‘ File Operation ‘ ‘ StorHouse Command ‘

‘ Data Transfer ‘

Figure 1-1: Callable Interface Function Hierarchy
To perform any StorHouse operation, an application must:
1. Establish a session with StorHouse, using the session function CONNECT.
2. Within a session, initiate file operations, using one of the open functions.
3. Once afile is opened, issue data transfer operations, using one of the read/write
functions, or issue record update operations using the CHANGE or DELETE

function.

In addition, within an established session, a program can issue StorHouse commands
such as SHOW FILE or SHOW ACCOUNT.

Session control, file operation, data transfer, and StorHouse command functions are
described in the following sections. Chapter 5, “Callable Interface Functions,”
explains all parameters for each Callable Interface function.

Session Control Functions

There are two Callable Interface session control functions: CONNECT and
DISCONNECT.

1-2

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Introduction 1
Callable Interface Function Hierarchy

* CONNECT establishes a session between a user application and StorHouse. The
application must supply an account identifier and password for CONNECT so
that the StorHouse security system can validate the session and set session
privileges and defaults.

¢ DISCONNECT ends the established session and releases all session-related host
and StorHouse resources.

One application can establish several sessions. StorHouse assigns each session a
unique session identifier to allow explicit application control of the operations that
are performed in that session. CONNECT returns the session identifier, or C-
TOKEN, to the application as a 32-bit integer value.

File Operation Functions

There are five file operation functions: OPEN-SEQ, CREATE-OPEN, OPEN-VRAM,
CHECKPOINT, and CLOSE.

* OPEN-SEQ allows file-oriented operations that read or create a complete
StorHouse file.

¢ CREATE-OPEN creates a new VRAM™ fjle on StorHouse, and then establishes a
data transfer link for writing data to that file.

* OPEN-VRAM allows read, write, delete, and update access to individual records
in StorHouse VRAM files.

* CHECKPOINT synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse.

* CLOSE terminates the file operation (indicating end-of-file for write operations)
and releases all resources used by the transfer operation.

OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM establish a data transfer link between
the user application and StorHouse. These functions return the O-TOKEN, a 32-bit
integer value that identifies the data transfer path within a given session. The
O-TOKEN also identifies the file being processed in all subsequent transfer-oriented
functions (for example, read and write).

Data Transfer Control Functions

Data transfer operations can be performed once a session has been established and
files have been opened. Data transfer control functions (read and write) allow an
application to send records to and receive records from StorHouse. Individual records
in a VRAM file can be retrieved by record number or by key, and changed or deleted
accordingly.

FileTek, Inc.

Callable Interface Programmer’s Guide 1-3

Introduction

FileTek Confidential and Proprietary

Notes on Multitasking

A record is an arbitrary unit of data. The user completely controls record size. The
user also controls record content, unless the user specifies a translation to ASCII.
Then data should contain only EBCDIC characters that have ASCII equivalents.

StorHouse Command Functions

Within a session, StorHouse command functions allow an application to send
selected Command Language commands to StorHouse and to retrieve response text
from those commands. These functions also allow administrative operations to be
directed from an application rather than from a user at a terminal through the
Interactive Interface.

Notes on Multitasking

A session established by one task can be used from a subtask (in other words, under a
different Task Control Block [TCB]). However, only one function can be performed
at a time. Serialization of calls is the application programmer’s responsibility.
DISCONNECT must be called from the same task that issued CONNECT, and
CLOSE must be called from the same task that issued OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM.

If a file is opened and closed under one TCB and read or written from another TCB,
the two tasks must share Subpool 0 storage. If one of these tasks is a subtask of the
other, this is accomplished by the SZERO=YES operand on the ATTACH MACRO
(this is the default value).

1-4

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

2

StorHouse Parameters and Data Descriptions

This chapter contains general information about StorHouse session and data transfer
link identifiers, accounts, file access groups, and files. For more information about
these topics, refer to the StorHouse Concepts and Facilities Manual and the Command
Language Reference Manual.

Session and Data Transfer Link Identifiers

There are two types of link identifiers: session and data transfer.

» Session link identifier — CONNECT returns the C-TOKEN, or session link
identifier.

* Data transfer link identifier — OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM
return the O-TOKEN, or data transfer link identifier.

The C-TOKEN and O-TOKEN are 32-bit integer values that must be passed to all
other Callable Interface functions that perform operations with the session or data
link. Token values can be moved from one variable to another, but they must not be
subjected to any arithmetic operations, including type conversions.

StorHouse Accounts

An account is a collection of administrative data that StorHouse uses to control a
session. Each account includes an identification code (AID) and a password.
Generally, each account has a default access group, access rights to that group, and a
set of privileges. The following sections describe StorHouse accounts.

FileTek, Inc. Callable Interface Programmer’s Guide 2-1

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Accounts

Account Identification Code

An account identification code, or AID, is similar to a TSO user ID in MVS; it provides
StorHouse with the user's identity. An AID must contain 1 to 12 characters and
include only the following characters: A-Z, 0-9, $, and _ (underscore). An example of
a valid AID is USER.

A program must include an account identifier to establish a session in the Callable
Interface. Multiple programs can use the same or different accounts and can access
StorHouse at the same time.

Account Password

The account password helps maintain system security. Passwords must contain 0 (null)
to 32 characters and include only the following characters: A-Z, 0-9, $, or _
(underscore). Generally, long passwords provide better system protection than short
passwords. Passwords of three or fewer characters offer only marginal protection.

Default Access Groups and Rights

Usually, each account has a default access group and default access rights to that group.
When a command accesses a StorHouse file, StorHouse assumes that the file is in the
default group unless a different group name is specified in the command.

An account may be set up to give read, write, delete, or no default access to the
default group. These are the access rights to the default group. Thus, to perform
operations on files in the default group, it is not necessary for a program to supply a
group access password unless the operation requires an access that differs from the
account’s default access.

In any case, if the default group has a null password, a program automatically receives
the corresponding type of access without having default access or specifying a
password. A program can switch to a different default access group during a session.

For more information about how to specify account information, see Chapter 6,
“Sample Program.”

StorHouse Privileges

Each account has a set of privileges that falls into two categories: access and
command.

* Access privileges allow the program using the account to bypass various system
security checks.

2-2

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions 2

StorHouse Files and File Access Groups

» Command privileges permit the program using the account to perform specific
commands or groups of commands.

The privileges assigned to an account determine the functions that can be performed
by an application. For a complete list of access and command privileges, refer to the
Command Language Reference Manual in the StorHouse User Document Set.

StorHouse Files and File Access Groups

A file is a named collection of logically related data located on a medium and treated
as a unit by StorHouse. Any collection of data generated by a host program can be
stored in StorHouse. Each StorHouse file has a set of attributes that govern where and
how it is stored. Each file can be protected by passwords. A file version can also be
locked to prevent programs using other accounts from reading or writing it and
unlocked to make it available to other programs using other accounts.

StorHouse File Names

A file name is a character string that contains 1 to 56 bytes. StorHouse uses file names
to identify files. The name must be left-justified within the field and padded with
blanks. Uppercase characters are distinct from lowercase characters. At least one
character must be non-blank.

StorHouse file names must consist of printable ASCII characters and/or the ASCII
space character as shown in Table 2-1.

Table 2-1: Printable ASCII Characters

Printable ASCII Characters

A-Z uppercase letters + plus sign 0 parentheses
a-z lowercase letters ~ tilde <> angle brackets
0-9 digits , comma [] square brackets
! exclamation point - hyphen {} braces
quote . period \ backslash
number sign / slash n circumflex
$ dollar sign : colon _ underscore
% percent sign ; semicolon | vertical bar
& ampersand = equal sign ‘ reverse apostrophe

FileTek, Inc. Callable Interface Programmer’s Guide 2-3

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Files and File Access Groups

Table 2-1: Printable ASCII Characters (continued)

Printable ASCII Characters

apostrophe ? question mark space

* asterisk @ at sign

File Access Groups

A file access group is a set of named files. Program access may be restricted to a file
access group. To manipulate files in the set, a program must specify a group name.
Group names must contain 1 to 8 characters and include only the following
characters: A-Z, 0-9, $, or _ (underscore). If the group is protected by passwords, a
program must also specify the group’s read, write, and/or delete password.

Each file in StorHouse is a member of one group. Within that group, each file name
is unique. However, two files may have the same name if they are located in different
file access groups.

Group and File Access Passwords

StorHouse allows the specification of group and file passwords to protect user files
from unauthorized access. The following sections explain how to use group and file
passwords.

Group Passwords
Group passwords may be null or contain 1 to 8 characters, and may include only the
following characters: A-Z, 0-9, $, and _ (underscore).

Group passwords are used as follows:

* Ifagroup has a read password, a program must specify the correct read password
to read a file from StorHouse or display group or file directory information.

e Ifagroup has a write password, a program must specify the correct write
password to write a file into the group or to UNDELETE a file.

* Ifagroup has a delete password, a program must specify the correct delete
password to delete the group, delete a file from the group, change the group’s
passwords, or change passwords or attributes of files in the group.

* Ifagroup has a null password, a program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

2-4

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions 2

StorHouse Files and File Access Groups

* Ifa program specifies a null password where the group has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or
delete access). However, StorHouse does not return an error unless that type of
access is required.

File Passwords

A program can also give individual files read, write, and delete passwords. These file
passwords control access to files in the same way that group passwords control access
to file access groups.

File passwords can be null or contain 1 to 8 characters. Like group passwords, file
passwords may contain only the following characters: A-Z, 0-9, $, or _ (underscore).

File passwords are used as follows:

* Ifafile has a read password, the program must specify the correct read password
to read the file from StorHouse or display directory information about the file.

* Ifa file has a write password, the program must supply the write password to
write a new version of the file to StorHouse or to UNDELETE a file.

* Ifafile has a delete password, the program must specify the correct delete
password to delete the file from StorHouse, or change the file’s attributes or
passwords.

* Ifafile has a null password, the program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

* Ifa program specifies a null password where the file has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or
delete access). However, StorHouse does not return an error code unless that type
of access is required.

The account used by the program must have read, write, or delete access to a file’s
group before the system allows the program to gain the corresponding access to the

file.

For more information about how to specify file access group names and group and
file access passwords, consult the “Data Transfer Control Functions” section of
Chapter 5 and Chapter 6, “Sample Program."

File Versions

A new file version is created whenever a program transfers a non-VRAM file from the
host to StorHouse. A new version of a VRAM file is created whenever a CREATE FILE
command is performed or a CREATE-OPEN call is issued with a checkpoint of 0. The

FileTek, Inc.

Callable Interface Programmer’s Guide 2-5

2

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Files and File Access Groups

new file receives version number 0. If a file of the same name and the same access
group already exists in StorHouse, the number of each previous version decreases by
one. Previous versions may range in number from -1 through -32767 or from -1
through the minimum version number allowed by the LIMIT attribute. If there was a
previous version -32767, it is deleted when a new version is added to StorHouse.

For example, when the file DATAFILE is first added to StorHouse, it becomes version
0. When a new version of DATAFILE is added, that becomes version 0, and the
previous version 0 of DATAFILE becomes version -1.

Refer to the OPEN-SEQ and OPEN-VRAM function descriptions in Chapter 5,
“Callable Interface Functions” for information about specifying version numbers.

File Revisions

For RECORD, KEYED, or KEYSEQUENTIAL VRAM files, StorHouse assigns revision
number 1 to a file version when the file is created on StorHouse. Each time a user
changes the contents of the file version, StorHouse increments the revision number
by 1. A user can change the contents of a file version by opening the file; changing,
deleting, or adding records; and closing the file. Thus, a file version can have multiple
revisions, each identified by a unique revision number.

Revision numbers can be expressed as relative or absolute numbers. Relative revision
numbers range from 0, the current revision, through -65534, the oldest revision.
Absolute revision numbers range from 1 through 65535. For example, assume that
relative version 0 of the file DATAFILE has four revisions. A user can refer to the most
current revision of this file as relative revision number 0 or as absolute revision
number 4.

Refer to the OPEN-VRAM function description in Chapter 5, “Callable Interface
Functions” for information about specifying values for revision numbers.

File Data Representation

StorHouse stores the record stream written by the user application program either as
binary (bitstream) data or as an ASCII character stream. The file format is determined
when the file is created, either by OPEN-SEQ for sequential files, or by the CREATE
FILE command or the CREATE-OPEN function for VRAM files. The record data is
treated as a bitstream unless the DATA-XLATE-FLAG in the file attributes array for
OPEN-SEQ is positive, or the ASCII modifier is specified on the CREATE FILE
command. For information about CREATE FILE, refer to the Command Language
Reference Manual.

2-6

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions 2
StorHouse Files and File Access Groups

Files created through the Callable Interface are considered transportable by
StorHouse. They can be accessed by host computers from different manufacturers
running different operating systems. For binary records, the user application program
is responsible for any required data conversion. For ASCII files, the host translates
from ASCII to the host character mode (EBCDIC for IBM).

Directory Information

The StorHouse directory entry for a file indicates whether the file’s record format is
binary bitstream or ASCII character stream by the value of the file system type. File
system type is set to 65 for ASCII files and to 66 for binary files. Files created by
FileTek host dataset utility programs are given other file system type identifiers, based
on the specific utility used to copy the dataset. These other file system types are
shown in Table 2-2.

Table 2-2: File System Types

File File System Host

Type Type Type Description
01 Standard, StorHouse Framed File
03 17 MVS files copied using DF/DSS
65 n/a Transportable ASCII Character Stream
66 n/a Transportable BINARY Stream

FileTek, Inc.

Callable Interface Programmer’s Guide 2-7

2

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Files and File Access Groups

2-8

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

3

File Positioning

This chapter discusses record resequencing and explains how the various read
functions affect record positioning for files.

Record Sequencing

Records in a keyed VRAM file are sequenced by both entry and key. Entry sequenced
records are sequenced by the order they were written to the file. Key sequenced
records are sequenced by the values of key fields in each record.

Entry Sequence

The write operation that builds a file determines the entry sequence for records in
that file. Each new record is appended to the end of the file, independent of record
content. Entry sequence determines the order in which sequential read operations
retrieve records. Entry sequence has no effect on the order in which key value read
operations and next-key sequence read operations retrieve records.

Key Sequence

Each key that is defined for a file determines a key sequence for records in that file. In
key sequence, records are ordered by the increasing value of their key field, which is
considered only as a binary bitstring. Key sequence determines the order in which
next-key read operations retrieve records. The order in which records with duplicate
keys are returned is not necessarily the same as their entry sequence.

FileTek, Inc.

Callable Interface Programmer’s Guide 3-1

FileTek Confidential and Proprietary

3 File Positioning
Current Record Position

Current Record Position

Any opened StorHouse file has a current record position. A keyed VRAM file has two
current record positions:

o Sequential position, which follows record entry sequence.
* Key position, which follows key sequence.

A file can have several keys but only one key position. Key position is always relative
to the last key that was used to read a record.

For a keyed VRAM file, open sets the sequential record position to the beginning of

the file, which is the first record in entry sequence. Open does not initialize key
position.

Read Functions and Current Record Position

Four functions can be used to read a VRAM file:
* READ-SEQ - retrieves the next record in entry sequence order.

* READ-KEYED - retrieves a record by exact match of a specified value for a given
key.

* READ-NEXT-KEY - retrieves the next record in key sequence order.

* READ-RECORD - retrieves a specific record by record number.

Read functions maintain current record position for a file as follows:

* Every read operation updates sequential record position.

* Only READ-KEYED and READ-NEXT-KEY update key position. READ-KEYED

sets the current key position and must be called at least once prior to calling
READ-NEXT-KEY.

Record Sequencing Example

The following example shows a VRAM file with two keys, NAME and ENUM. The
file was created by writing the following records, where record number matches the
entry sequence.

3-2 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

File Positioning

Record Sequencing Example 3

N Value of Key NAME K\SI S
1 Jones 327
2 Smith 409
3 Doe 427
4 Johnson 283
5 Smith 265
6 Brooks 301

If the file is opened and read sequentially, then the records are read in the following

order: 1, 2, 3, 4, 5, 6.

The following table indicates how each read function affects the file’s current record
position.

. . Record
Read Operation Function NAME key ENUM key
Number
1. | OPEN-VRAM None
2. | READ-SEQUENTIAL 1 Jones 327
3. | READ-RECORD 4 4 Johnson 283
4. | READ-SEQUENTIAL 5 Smith 265
5. | READ-KEYED 3 Doe 427
(KEY=NAME
(VALUE=Doe)
6. | READ-NEXT-KEY 4 Johnson 283
7. | READ-SEQUENTIAL 5 Smith 265
8. | READ-KEYED 4 Johnson 283
(KEY=ENUM)
(VALUE=283)
9. | READ-NEXT-KEY 6 Brooks 301
10. | READ-KEYED 2 Smith 409
(KEY=NAME)
(VALUE=Smith)
11. | READ-NEXT-KEY 5 Smith 265
12. | READ-SEQUENTIAL 6 Brooks 301

Note that in the preceding table, operations 10 and 11 may return record number 5,
then record number 2. The order of duplicate key records may be changed by the
file’s update and delete history.

FileTek, Inc.

Callable Interface Programmer’s Guide 3-3

3

File Positioning

FileTek Confidential and Proprietary

Record Sequencing Example

3-4

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

A

Control Structures

This chapter discusses parameter values and return codes.

Parameter Values

Parameter values can be specified as character strings or externally through JCL
statements.

Character Strings

All character strings must be left-justified and blank-filled. The character set is A-Z,
a-z, 0-9, and the following special characters:

ANy

Some character string fields have additional restrictions on the character set and are
documented as required in Chapter 5, “Callable Interface Functions.”

Externally Specified Parameters

The values for some parameters can be externally specified through JCL statements.
These parameters are documented specifically for each function. All such parameters
are strings and link to a JCL statement when the string value specified in the program
has the format (illustrated for COBOL):

05 nane PI C X(12) VALUE ' DD=ddnane
The value must begin exactly with the characters “DD=" in uppercase. The JCL

statement referenced is named by “ddname”. The actual value assigned to the
parameter is taken from a field on the associated JCL statement. The specific field

FileTek, Inc.

Callable Interface Programmer’s Guide 4-1

FileTek Confidential and Proprietary

4 Control Structures
Return Codes

differs for various parameters and is documented in the specific function parameter
description.

Return Codes

Return codes are binary values returned in a word (32 bits). The parameter is named
R-CODE in all function call descriptions. All returned values are positive.

The return code 0 always indicates normal completion. All return code values are
documented in the Messages and Codes Manual in the StorHouse User Document Set.
Common return codes for each function are documented in the function description
section of this manual.

Indicative Text Messages

A Callable Interface function may generate text messages that provide commentary,
warnings, and error diagnostics associated with the processing of the function. These
messages are text strings that can be printed or displayed at a terminal.

These messages are not returned directly by the function. They are placed in a
message stack and can be retrieved only by calling the EMSG function. These
messages may be ignored. The stack is cleared when the next function request is
made.

The indicative text message stack is normally cleared when the session or the data
transfer operation is ended. However, clearing the text message stack in this manner
also deletes any messages that were generated during the session disconnect or during
the transfer close operation. It is the user’s responsibility to indicate whether these
messages will be retrieved, either when the session is established or when the data
transfer is opened. The definition sections for CONNECT, OPEN-SEQ, CREATE-
OPEN, and OPEN-VRAM document the use of a flag to control this message
retention capability.

A non-zero return code does not guarantee that an indicative message is available.
Conversely, a zero return code does not guarantee that there are no messages in the
stack.

4-2 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

5

Callable Interface Functions

Chapter 5 contains a detailed definition of all Callable Interface functions. The
functions are grouped into the following categories:

Session control

File operation

Data transfer

StorHouse command interface
General usage.

Chapter 5 also explains Callable Interface entry point names, special considerations
for CICS programmers, and how to issue functions in synchronous and asynchronous
form.

Callable Interface Entry Point Names

Callable Interface functions are invoked through two entry points: LSMCALL and
LSMCICS.

e All TSO/batch programs use the entry point LIMCALL. For FORTRAN
programs, LSMCAL is an alias for LSMCALL.

* All CICS programs must use the entry point LSMCICS.

Special Considerations for CICS Programmers

All material presented in this document applies to both the Callable Interface and the
CICS Interface with the exception of the program names as described in the previous
paragraph.

FileTek, Inc. Callable Interface Programmer’s Guide 5-1

FileTek Confidential and Proprietary

Callable Interface Functions

Special Considerations for CICS Programmers

Note

Note

All function parameter lists are identical for LSMCALL and LSMCICS with the
following exception:

For every CICS Interface function, the first two parameters in the CICS Interface
parameter list must be DFHEIBLK and DFHCOMMAREA. DFHEIBLK and
DFHCOMMAREA are then followed by the standard parameter list that is
documented for each function listed in this manual.

Defining the CICS Interface Programs

The CICS Interface uses CICS Distributed Transaction Processing facilities. It consists
of one transaction, LSMC, and five programs: LSMCFLH, LSMCICS, LSMLSMC,
LSMLOAD, and LSMUXSSN. LSMLOAD and LSMUXSSN are components of the
standard (non-CICS) StorHouse Host Interface. LSMCICS is the interface stub link-
edited with a user transaction program. It provides functions in a CICS environment
equivalent to those of LSMCALL, the interface stub used in a Batch or TSO
environment.

When a user program CALLs the LSMCICS stub, LSMCICS executes a CICS LINK to
program LSMCFLH. When first establishing a StorHouse session (CONNECT
function), LSMCFLH starts server transaction LSMC, which then invokes program
LSMLSMC. The LSMC transaction remains active for the life of a user’s StorHouse
session (CONNECT to DISCONNECT) and processes user requests from LSMCFLH
to the Host Subsystem and StorHouse. During a StorHouse session, a user
application may consist of one CICS conversational transaction, or it may span
multiple CICS pseudo-conversational tasks across multiple CICS regions and systems.
Application designers and programmers must work with CICS system programmers
to develop and define the required CICS resource definitions. (Refer to Chapter 7 of
the Host Software Installation and Operations Guide in the StorHouse User Document
Set.)

Please note the following important requirement for O-TOKENs and C-TOKEN:S, the
session identifiers that are returned to a user program after OPEN and CONNECT
function requests, respectively:

CICS pseudo-conversational transaction programs that use the CICS interface must
be written so that O-TOKENs and C-TOKENS are saved and passed to subsequent
transactions and programs that use the same StorHouse session.

This can be accomplished by defining the tokens in a COMMAREA specified on
various CICS control transfer commands.

For example, it is desired that PROGRAM 1 issue a CONNECT request and then
return to CICS specifying that transaction NEXT gets control. Transaction NEXT will
then do more StorHouse processing. To achieve this, PROGRAM 1 defines the
following in its WORKING-STORAGE:

5-2

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
Special Considerations for CICS Programmers

01 C TOKEN PI C S9(8) COWP VALUE +0.

01 COMVAREA- FOR- TRANSACTI ON- NEXT.
05PASS- C- TOKEN PI C S9(8) COwWP.

(other storage definitions)

PROGRAM 1 states the following in its PROCEDURE DIVISION:

CALL ‘LSMCICS USI NG DFHEI BLK, DFHCOMMAREA,
CONNECT, C- TOKEN, R- CODE,
...other paraneters...

When it is time to pass control to transaction NEXT, PROGRAM 1 states:

MOVE C- TOKEN TO PASS- C- TOKEN.
EXEC CI CS RETURN TRANSI D (‘ NEXT")
COMVAREA (COMWAREA- FOR- NEXT- TRANSACTI ON)
LENGTH (LENGTH OF COMVAREA- FOR- NEXT- TRANSACTI ON)

Error Handling

When interface programs LIMCFLH and LSMLSMC encounter errors associated with
their processing, rather than StorHouse-related errors, both write error messages to
CSMT, the CICS transient data queue in the CICS region where they are executing.
They also write error messages to CEBRtermid, a temporary storage queue in the
CICS region that owns the terminal associated with the transaction. To view these
messages, the terminal operator can invoke the CEBR transaction. By default, CEBR
browses CEBRtermid. This is the same convention used by COBOL II. Messages
written to the CSMT DESTID appear in the CICS region SYSOUT output. To assist
in finding Interface messages within this large output dataset, all messages begin with
an exclamation mark (!). When using a product like SDSE, a FIND ! command locates
these messages.

Restrictions

The CICS environment imposes the following restrictions on an applications
programmer:

* All application programs must be written in Command Level CICS using
Assembler, COBOL, COBOLII, PL/1, or C.

* Asynchronous forms of Callable Interface functions are not allowed.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-3

FileTek Confidential and Proprietary

Callable Interface Functions

Synchronous and Asynchronous Functions

* Aswith any database-type system (such as DB2), CICS resources should not be
held across calls to LSMCICS.

¢ Non-terminal related tasks can CALL LSMCICS to access StorHouse. However,
any such transaction must complete the StorHouse session. That is, the
transaction must perform CONNECT, OPEN, READ/WRITE, CLOSE, and
DISCONNECT within the scope of its execution.

* User applications employing CICS Asynchronous Processing techniques such as
the following example cannot change terminals, unless the specified transaction
does not access StorHouse:

EXEC CI CS START (transid) FROM (startdata) TERM D (xxx)

* All transaction programs that CALL LSMCICS must have the original EIBTRMID
that performed the CONNECT.

Synchronous and Asynchronous Functions

Functions can be issued in synchronous or asynchronous form as explained below.
The functions described in this chapter are presented in synchronous form. To
change a function from synchronous to asynchronous, prefix AS to the function
name. For example, the asynchronous form of READ-SEQ is ASREAD-SEQ.

Synchronous Form

In synchronous form, control is returned to the user program only when a function has
completed. In other words, a request was passed to the StorHouse Subsystem, and the
Subsystem returned a response.

For some functions, the StorHouse Subsystem signals completion only after it passes
a request to the library device and the library device signals completion back to the
StorHouse Subsystem. For other functions, completion means only that the user
program can continue as though all processing associated with the function has been
completed, even though the Subsystem may have only partially acted on the request.
For example, WRITE signals completion when data has been moved from the user
buffer to an assembly buffer in the Subsystem.

Asynchronous Form

In asynchronous form, control from a function call is returned to the user program as
soon as the request has been forwarded to the StorHouse Subsystem. The user must
call CHECK prior to using the results of the request. The user can obtain the address

5-4

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
Function Statement Format

of an Event Control Block (ECB) that is POSTed when the function completes by
calling ECBADDR.

Function Statement Format

This chapter shows all function statement formats for COBOL. For FORTRAN, PL/1,
assembler (ALC), or C programs, infer the parameter list from the COBOL examples.

PL/1 programs must declare the StorHouse LSMCALL as follows:

DECLARE LSMCALL EXTERNAL OPTI ONS (ASSEMBLER, | NTER);

Session Control Functions

Two session control functions allow an application to begin or end a StorHouse
session. These functions are:

e CONNECT
¢ DISCONNECT.

CONNECT and DISCONNECT are described in the following sections.

FileTek, Inc. Callable Interface Programmer’s Guide 5-5

FileTek Confidential and Proprietary

Callable Interface Functions

CONNECT

CONNECT

C-TOKEN

R-CODE

CONNECT establishes a session with StorHouse. A session must exist before any
other functions can be performed. CONNECT requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG CONNECT, C- TOKEN, R- CODE, MESSAGE- FLAG,
ACCOUNT, PASSWORD, SM- | DENTI FI ER,
SUBSYSTEM | DENTI FI ER.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
CONNECT, C- TOKEN, R- CODE, MESSAGE- FLAG,
ACCOUNT, PASSWORD, SM | DENTI FI ER,
SUBSYSTEM | DENTI FI ER.

Working Storage Section for COBOL Program

01 CONNECT PIC X(16) VALUE ' CONNECT' .
01 C- TOKEN PIC S9(8) COWP SYNC.

01 R- CODE PIC S9(8) COWP SYNC,

01 MESSAGE- FLAG PIC S9(8) COWP SYNC,

01 ACCOUNT PI C X(12).

01 PASSWORD PI C X(32).

01 SM | DENTI FI ER PI C X(6).

01 SUBSYSTEM | DENTI FI ER Pl C X(4).

Parameter Overview
Session identifier set by CONNECT. The application program should not manipulate
(in particular, not cause arithmetic conversion to) the result. It should only be used as

the C-TOKEN parameter to other function calls related to this session.

Final status from the requested operation; see the following section “Return Codes.”

5-6

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

MESSAGE-FLAG

ACCOUNT

PASSWORD

SM-IDENTIFIER

SUBSYSTEM-
IDENTIFIER

Callable Interface Functions 5
CONNECT

An integer set to zero or non-zero. If non-zero, MESSAGE-FLAG indicates that the
caller requires text messages from all session errors including
CONNECT/DISCONNECT function errors. If zero, messages may not be retrievable
if the session has terminated.

A 12-byte character string containing the StorHouse account identification code
(AID) that is used for the session. This field allows only a restricted character set.
Lowercase characters may be specified but will be treated as uppercase. The only
special characters allowed are _ (underscore) and $.

A 32-byte character string containing the StorHouse password associated with the
account. (See the description of the ACCOUNT parameter.) Only a restricted
character set is allowed. A blank character string indicates that no password was
specified.

A 6-byte character string identifying the specific StorHouse system to be accessed. If
blank, the default or only StorHouse system for the specified subsystem (see below) is
accessed.

A 4-byte character string containing the name for the StorHouse Subsystem. If blank,
the default subsystem name LSMS is used. The default may be overridden by a
//LSMSssnm DD DUMMY statement inserted into execution JCL, where “ssnm” is
the subsystem name to be used.

Return Codes

Any non-zero value indicates that the session was not established. In this case, do not
call DISCONNECT. However, if MESSAGE-FLAG was set (non-zero), then call EMSG
to retrieve all messages.

Detailed Function Description

The first step in any interaction with StorHouse is to establish a session by calling
CONNECT. The session is identified with an account identification code, and
security is provided by requiring an associated password. After a successful (return
code zero) CONNECT, other StorHouse functions can be performed.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the session
ends. The dynamic memory allocated for the session is not released until all messages
have been returned; that is, EMSG receives return code 3065, which indicates that
there are no more messages.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-7

FileTek Confidential and Proprietary

5 Callable Interface Functions
CONNECT

Notes
* CONNECT has no asynchronous form; there is no ASCONNECT.

¢ A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the responsibility of
the user.

OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM are considered session-related
functions.

* Sessions can be shared to the same extent that DCBs can be shared. In general,
sessions should not be used across multiple tasks.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 100- CONNECT- TO- SM

5-8 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
DISCONNECT

DISCONNECT

DISCONNECT concludes a session by terminating the connection with StorHouse
that was established by CONNECT. Standard StorHouse features are required.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG DI SCONNECT, C- TOKEN, R- CCDE.

CALL ‘LSMCI CS USI NG DFHEI BLK, COMVAREA,
DI SCONNECT, C- TOKEN, R- CODE.

Working Storage Section for COBOL Program

01 DI SCONNECT PIC X(16) VALUE ' DI SCONNECT' .
01 C TOKEN PIC S9(8) COMP SYNC.
01 R- CODE PIC S9(8) COMP SYNC.

Parameter Overview

C-TOKEN The session identifier returned by CONNECT.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

Return Codes

Any non-zero value indicates that the session was not concluded successfully. If
DISCONNECT fails, resources allocated by StorHouse support routines, both in the
user address space and in the StorHouse Subsystem address space, may not be
released.

FileTek, Inc. Callable Interface Programmer’s Guide 5-9

FileTek Confidential and Proprietary

5 Callable Interface Functions
DISCONNECT

Detailed Function Description

The final step in any interaction with StorHouse is to conclude a session by calling
DISCONNECT. The session is identified by the C-TOKEN variable returned from
CONNECT. A successful (return code zero) DISCONNECT concludes the session
and releases all resources allocated by StorHouse support functions.

Notes

¢ A session can be established in one task (under one TCB) and then used in
another task; however, DISCONNECT must be issued from the same task (TCB)
that issued the CONNECT.

* File operations should be explicitly closed before signing off; otherwise, the data
transfer ends with an abort status, and DISCONNECT returns an error (2957).

e If MESSAGE-FLAG was set when the session was established (see CONNECT),
then EMSG should always be called following DISCONNECT.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program:”

PARAGRAPH 700- DI SCONNECT

5-10 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
File Operation Functions

File Operation Functions

The five file operation functions are:

* OPEN-SEQ - opens a non-VRAM file on StorHouse. Non-VRAM files are
processed sequentially.

¢ CREATE-OPEN - creates a new VRAM file on StorHouse and then establishes a
data transfer link for writing data to that file.

* OPEN-VRAM - opens a StorHouse VRAM file. VRAM files can be processed
sequentially, or individual records can be accessed by record number or by key

value, depending on the file access method.

* CHECKPOINT - synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse.

* CLOSE - terminates the file operation.

These functions are described in the following sections.

FileTek, Inc. Callable Interface Programmer’s Guide 5-11

FileTek Confidential and Proprietary

5 Callable Interface Functions
OPEN

OPEN

OPEN is an obsolete function that is retained only for compatibility with prior
releases. New applications that process sequential files should use OPEN-SEQ. For
information about OPEN, refer to a prior version of this document.

5-12 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
OPEN-SEQ

OPEN-SEQ

OPEN-SEQ establishes a data transfer link between the user program and StorHouse,
sets the direction of the data flow, and identifies the file that will be referenced. This
function allows sequential transfer of complete files, using the read or write functions.
OPEN-SEQ requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG OPEN- SEQ C- TOKEN, R- CODE, MESSAGE- FLAG,
O TOKEN, MCDE, FI LE- NAVE, VERSI ON,
FI LE- PASSWORDS, GROUP- NAME,
GROUP- PASSWORDS, FI LE- LOCATI ON,
FI LE- ATTRI B, FI LE- OPTI ONS.

CICS Environment

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
OPEN- SEQ C- TOKEN, R- CODE, MESSAGE- FLAG,
O TOKEN, MCDE, FI LE- NAVE, VERSI ON,
FI LE- PASSWORDS, GROUP- NAME,
GROUP- PASSWORDS, FI LE- LOCATI ON,
FI LE- ATTRI B, FI LE- OPTI ONS.

Working Storage Section for COBOL Program

01 OPEN- SEQ PIC X(16) VALUE ' OPEN- SEQ .

01 C- TOKEN PIC S9(8) COVP SYNC.

01 R- CODE PIC S9(8) COWP SYNC.

01 MESSAGE- FLAG PIC S9(8) COWP SYNC.

01 O TOKEN PIC S9(8) COWP SYNC.

01 MODE PI C X(6).

01 FI LE- NAVE PI C X(56).

01 VERSI ON PIC S9(8) COVP SYNC.

01 FI LE- PASSWORDS.
05 FI LE- READ- PASSWORD PIC X(8) VALUE SPACES.
05 FI LE- WRI TE- PASSWORD PIC X(8) VALUE SPACES.
05 FI LE- DELETE- PASSWORD PIC X(8) VALUE SPACES.

01 GROUP- NAVE PIC X(8).

FileTek, Inc. Callable Interface Programmer’s Guide 5-13

FileTek Confidential and Proprietary

5 Callable Interface Functions
OPEN-SEQ

01 GROUP- PASSVORDS.
05 GROUP- READ- PASSWORD PI C X(8) VALUE SPACES.
05 GROUP- VWRI TE- PASSWORD PI C X(8) VALUE SPACES.
05 GROUP- DELETE- PASSWORD PI C X(8) VALUE SPACES.
01 FI LE- LOCATI ON.

05 VOLUVESET- NAVE PI C X(8).
05 FI LESET- NANVE PIC X(8).
01 FILE- ATTRI B.
05 FATTR- LI ST-SI ZE PI C S9(8) COWP SYNC VALUE 8.
05 FATTR- FI LE- SI ZE PI C S9(8) COWP SYNC.

05 FATTR- MAX- RECORD- LEN PIC S9(8) COWP SYNC.
05 FATTR- TRANSPORT- FLAG PIC S9(8) COWP SYNC.
05 FATTR- DATA- XLATE- FLAG PIC S9(8) COWP SYNC.
05 FATTR- FI XED- RECORD- FL PIC S9(8) COWw SYNC

05 FATTR- CC- ANSI - FLAG PIC S9(8) COWP SYNC,
05 FATTR- CC- MACH FLAG PIC S9(8) COWP SYNC,
05 FATTR- BLOCK- Sl ZE PIC S9(8) COWP SYNC,
01 FI LE- OPTI ONS.
05 FOPTS- LI ST-SI ZE PIC S9(8) COWP SYNC VALUE 8.
05 FOPTS- LOCK PIC S9(8) COWP SYNC,
05 FOPTS-WAIT PIC S9(8) COWP SYNC,
05 FOPTS- ATF PIC S9(8) COWP SYNC,
05 FOPTS- EDC PIC S9(8) COWP SYNC,
05 FOPTS-LIMT PIC S9(8) COWP SYNC,
05 FOPTS- NEW PIC S9(8) COWP SYNC,
05 FOPTS- UNLOCK PIC S9(8) COWP SYNC,
05 FOPTS- VTF PIC S9(8) COWP SYNC,

Parameter Overview

C-TOKEN Session identifier (connect token).
R-CODE Final status from the requested operation; see the following section “Return Codes.”

MESSAGE-FLAG An integer set to zero or non-zero. If non-zero, MESSAGE-FLAG indicates that the
caller requires indicative text messages from all data transfer operation errors
including CLOSE errors. If zero, messages may not be retrievable if the data transfer
has terminated.

O-TOKEN A variable that is set to the data transfer operation identifier (open token). The
application program should not manipulate (in particular, not cause arithmetic
conversion to) the result; it should only be used as the O-TOKEN parameter to other
function calls for this file.

MODE A 6-byte character string that identifies the file reference mode. Valid MODE values
are READ and WRITE.

FILE-NAME A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
characters “DD=". In this case, the file name used will be the DSNAME specified on

5-14 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

VERSION

FILE-PASSWORDS

GROUP-NAME

GROUP-

PASSWORDS

FILE-LOCATION

FILE-ATTRIB

Callable Interface Functions 5
OPEN-SEQ

the named DD statement. File names shorter than 56 characters must be padded on

the right with blanks.

File version number, which applies only to READ operations. Zero is the default
(most current) version. A negative value indicates a relative version number. Positive
values are not supported.

An array of three 8-character variables containing the read, write, and delete
passwords associated with the file name. The array entry for a password that is not
supplied must be all blanks.

An 8-byte character string that identifies the file access group. If the file is stored
under the user’s default group, this parameter need not be supplied; that is, its value

must be all blanks.

An array of three 8-character variables containing the read, write, and delete
passwords for the group. The GROUP-PASSWORDS array has the same format as the
FILE-PASSWORDS array.

An array of two 8-character variables containing the file’s destination volume set
name and file set name, respectively. If a default is used, FILE-LOCATION should
contain all blanks. This parameter applies to WRITE operations only.

An array of 32-bit integers that provides file attributes. The caller specifies values for
the first entry in the array, FATTR-LIST-SIZE, and for FATTR-BLOCK-SIZE. FATTR-
LIST-SIZE contains the number of the other elements in the file attributes array. To
supply or retrieve all available file attributes, set FATTR-LIST-SIZE to 8.

For MODE=WRITE, the caller specifies file attributes. FATTR-FILE-SIZE is required.
All other attributes are optional. The caller must supply a value for all attributes
included in the array. Attributes not included in the array assume a value of 0, which
indicates use of the default. (The actual default value may not equal zero.)

For MODE=READ, all file attributes, except for FATTR-BLOCK-SIZE, are returned to
the caller.

For flag values, a negative value implies the opposite of the positive value; zero
indicates that the default is used.

The elements in the FILE-ATTRIB array must be listed in the following order:
* FATTR-LIST-SIZE — number of other elements in the array.

* FATTR-FILE-SIZE — total file size in bytes. This estimate must be larger than the
actual number of bytes that will be transferred.

* FATTR-MAX-RECORD-LEN - maximum length for any record in the file.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-15

FileTek Confidential and Proprietary

5 Callable Interface Functions
OPEN-SEQ

FILE-OPTIONS

* FATTR-TRANSPORT-FLAG - flag value; if positive, the file is in a transportable
format that can be retrieved by dissimilar host systems.

* FATTR-DATA-XLATE-FLAG - flag value; if positive, data will be stored as ASCII
characters. The data is translated from EBCDIC to ASCII when the file is stored
on StorHouse and translated from ASCII to EBCDIC when retrieved by the host.

* FATTR-FIXED-RECORD-FL — flag value; if positive, the records are fixed length.

* FATTR-CC-ANSI-FLAG - flag value; if positive, the first character of each record
is a print carriage control character of the FORTRAN (or ANSI) type.

* FATTR-CC-MACH-FLAG - flag value; if positive, the first character of each
record is a print carriage control character of “machine” type.

* FATTR-BLOCK-SIZE - size in bytes of a buffer area used by the StorHouse
software to block user records prior to moving data to or from the StorHouse
Subsystem. The caller does not have to reserve this area because it is GETMAINed
and FREEMAINed by the StorHouse software.

The caller specifies the value for block size. A value of zero defaults to the site-selected
value for block size. A value of 1 to 256 causes buffering to be bypassed.

The recommended block size is between 32,000 and 100,000 bytes and should
contain 2 or more records plus 4 bytes.

An array of 32-bit integers that provide file options. These options correspond to the

StorHouse GET and PUT command modifiers. For information about GET and PUT,

refer to the Command Language Reference Manual.

The caller sets the first entry in the FILE-OPTIONS array, FOPTS-LIST-SIZE, to the

number of the other elements in the array. To access all options, set FOPTS-LIST-SIZE

to 8.

Other entries are either integer or flag values.

* Integers are either positive or 0. Zero indicates that the default value is used.
Note: The actual default value may not equal zero.

* Flags are any positive value (indicates “true” and the option is selected), any

negative value (indicates the opposite of “true”), or zero (indicates use of the

default).

The caller must supply a value for all attributes included in the array. Attributes not
included in the array assume a value of 0, which indicates use of the default.

5-16

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
OPEN-SEQ

The elements in the FILE-OPTIONS array are:

FOPTS-LIST-SIZE — number of other elements in the array.

FOPTS-LOCK - lock flag. A positive value indicates that the file is to be explicitly
locked; it will remain locked after the file operation completes.

FOPTS-WAIT — wait for file lock flag.

* For READ operations, a positive value indicates that the data transfer
operation should wait for a locked file to be unlocked.

* For WRITE operations, this field is no longer used. It is not necessary to
change existing code. For new programs, set this field to 0.

FOPTS-ATF — Access Time Factor (ATF). ATF can be 1, 2, or 3. This field is used
for WRITE operations only.

FOPTS-EDC — error detection code identifier. FOPTS-EDC can be a positive
integer equal to 1 or 2; zero to indicate use of the default (which is
recommended); or negative to indicate that no EDC will be generated for data in
the file. This field is used for WRITE operations only.

FOPTS-LIMIT - file version LIMIT value. FOPTS-LIMIT can be a positive integer
between 1 and 32768. This field is used for WRITE operations only.

FOPTS-NEW — new file flag. A positive value indicates that a previous version of
the file (same group and file name) must not exist in StorHouse. This field is
used for WRITE operations only.

FOPTS-UNLOCK — unlock flag. This field is obsolete. It is not necessary to
change existing code. For new programs, set FOPTS-UNLOCK to 0.

FOPTS-VTF — Vulnerability Time Factor (VTF). VTF is an integer equal to 1, 2,
3, or 4. A value of 1 indicates /VTF=NEVER; 2 indicates /VTF=NEXT; 3 indicates
/VTF=NOW,; and 4 indicates /VTF=DIRECT. This field is used for WRITE
operations only.

Refer to the Command Language Reference Manual for information about the
VTF attribute.

Return Codes

Any non-zero value indicates that the file was not opened. In this case, any other
StorHouse functions relating to this file should not be issued. In particular, CLOSE
will fail due to an invalid O-TOKEN.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-17

FileTek Confidential and Proprietary

Callable Interface Functions

Detailed Function Description

OPEN-SEQ is used to open a non-VRAM file on StorHouse. The StorHouse file
name is identified by the value of FILE-NAME, and the type of processing is provided
by the value of MODE. C-TOKEN contains the session identifier returned by
CONNECT. OPEN-SEQ returns a file identifier in the O-TOKEN variable. After a
successful OPEN-SEQ (that is, a return code of zero), other StorHouse functions
relating to this file can be performed.

A StorHouse file opened with OPEN-SEQ can only be processed sequentially.
Facilities implemented by the optional VRAM component, such as reading a record
by record number, cannot be used.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the file is
closed. The dynamic memory allocated for the transfer operation is not released until
all messages have been returned; that is, a 3065 return code, indicating no more
messages, has been received from EMSG.

Notes

¢ Each OPEN-SEQ establishes a transfer link and returns a file identifier
(O-TOKEN). It is the user’s responsibility to maintain the integrity of the open
tokens.

¢ A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

OPEN-SEQ must be considered a session-related function.

* Ifafileis opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

* If the return code is not zero and the associated messages (if any) are to be
retrieved, EMSG should be called specifying the C-TOKEN rather than the
O-TOKEN.

* Refer to Appendix C for a discussion of programming guidelines for using
multiple open statements.

5-18

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
OPEN-SEQ

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1000- OPEN- NONVRAM

FileTek, Inc. Callable Interface Programmer’s Guide 5-19

FileTek Confidential and Proprietary

Callable Interface Functions

CREATE-OPEN

CREATE-OPEN

CREATE-OPEN creates a new VRAM file on StorHouse, and then establishes a data
transfer link for writing data to that file. CREATE-OPEN is equivalent to issuing a
StorHouse Command Language CREATE FILE command followed by OPEN-VRAM
in mode APPEND. CREATE-OPEN requires the StorHouse VRAM component.

CREATE-OPEN requires RECORD privilege. For more information about StorHouse
privileges, refer to the Command Language Reference Manual.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG CREATE- OPEN, C- TOKEN, R- CODE,
VESSAGE- FLAG, O TOKEN, FI LE- NAME
FI LE- PASSWORD, GROUP- NAME,
GROUP- PASSWORD, MODEL- FI LE- NAME,
FI LE- LOCATI ON, FI LE- ATTRI B.

CICS Environment

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
CREATE- OPEN, C- TOKEN, R- CODE,
VESSAGE- FLAG, O- TOKEN, FI LE- NAME,
FI LE- PASSWORD, GROUP- NAME,
GROUP- PASSWORD, MODEL- FI LE- NAME,
FI LE- LOCATI ON, FI LE- ATTRI B.

Working Storage Section for COBOL Program

01 CREATE- OPEN PIC X(16) VALUE ‘ CREATE- OPEN .
01 C- TOKEN PIC S9(8) COWP SYNC.

01 R- CODE PIC S9(8) COWP SYNC,

01 MESSAGE- FLAG PIC S9(8) COWP SYNC,

01 O TOKEN PIC S9(8) COWP SYNC,

01 FI LE- NAVE PI C X(56).

01 FI LE- PASSWORD PI C X(8).

01 GROUP- NAVE PIC X(8).

01 GROUP- PASSWORD PI C X(8).

01 MODEL- FI LE- NAVE Pl C X(56).

5-20

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

C-TOKEN

R-CODE

MESSAGE-FLAG

O-TOKEN

FILE-NAME

FILE-PASSWORD

Callable Interface Functions 5
CREATE-OPEN

01 FI LE- LOCATI ON.

05 VOLUVESET- NAVE PIC X(8).
05 FI LESET- NAMVE PIC X(8).
01 FI LE-ATTRI B.

05 FATTR- LI ST-SI ZE PI C S9(8) COWP SYNC VALUE 9.
05 FATTR- BLOCK- S| ZE PIC S9(8) COWP SYNC.
05 FATTR- CHECKPO NT PI C S9(8) COWP SYNC.
05 FATTR- FI LE- SI ZE PI C S9(8) COWP SYNC.
05 FATTR- DATA- XLATE PI C S9(8) COWP SYNC.
05 FATTR- ATF PIC S9(8) COWP SYNC.
05 FATTR- CACHE PIC S9(8) COWP SYNC.
05 FATTR- EDC PIC S9(8) COWP SYNC.
05 FATTR-LIMT PIC S9(8) COWP SYNC.
05 FATTR- VT PI C S9(8) COWP SYNC.

Parameter Overview

The session identifier returned by CONNECT.
Final status from the requested operation; see the following section “Return Codes.”

An integer set to zero or non-zero. If non-zero, this flag indicates that the caller
requires text messages from all data transfer errors including CLOSE function errors.
If zero, messages may not be retrievable after CLOSE has been issued.

Variable set by CREATE-OPEN to the file identifier. The application program should
not manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the O-TOKEN parameter to other function calls for this file.

A 56-byte character string that contains either the StorHouse file name or the

DDname to be referenced. If the DDname is specified, the string must begin with the
characters DD=. In this case, the file name used will be the DSNAME specified on the
named DD statement. File names shorter than 56 characters must be padded on the

right with blanks.

An 8-character variable containing the write password for the file. This password
must match the write password for the model file (see MODEL-FILE-NAME) unless
the user has the privilege to bypass file passwords. If the user has the privilege to
bypass file passwords, this value is not used unless there is no model file. All other
passwords for the new file will be copied from the passwords defined for the model

file. If no write password is defined for the model file, this variable should be set to all
blanks.

If no model file name is provided, the FILE-PASSWORD value becomes the new read,
write, and delete passwords for the newly created file. The file password value also
supplies the write and delete passwords for any existing version of that file.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-21

FileTek Confidential and Proprietary

5 Callable Interface Functions
CREATE-OPEN

GROUP-NAME

GROUP-
PASSWORD

MODEL-FILE-
NAME

FILE-LOCATION

FILE-ATTRIB

An 8-byte character string that identifies the file access group for the new file and for
the model file (see MODEL-FILE-NAME). If the file is stored under the account’s
default group, this parameter may be specified as all blanks. SETGROUP privilege is
required to specify any group other than the user’s default.

An 8-character variable containing the write password for the file access group. If no
write password is defined for the group, this variable should be set to all blanks.

A 56-byte character string that contains either the StorHouse file name or the

DDname to be referenced. If the DDname is specified, the string must begin with the
characters DD=. In this case, the file name used will be the DSNAME specified on the
named DD statement. File names shorter than 56 characters must be padded on the

right with blanks.

The model file must already exist on StorHouse. File characteristics for the new file
(whose name is given by FILE-NAME) are determined by copying the characteristics
of the model file. These characteristics are overridden by non-default values in the
FILE-ATTRIB array.

Only RECORD type files can be created without a model file specification. If blanks
are specified for the model file name, then file attributes are determined only from
the FILE-ATTRIB array.

MODEL-FILE-NAME must not be the same as FILE-NAME. That is, a prior version
of a file cannot be used as a model for a new version of the same file.

An array of two, 8-character variables containing the file’s destination volume set
name and file set name. If a variable contains all blanks, the default value associated
with the StorHouse account is used. If the account’s default value is also blank, the
value is copied from the model file.
An array of 32-bit integers that provide file attributes. The first entry in the array
must be set to the number of other elements in the array. To provide all attributes, set
FATTR-LIST-SIZE to 9.
Other entries in the array are either integers or flag values.
* Integers are either positive or 0. Zero indicates that the default is used.

Note: The actual default value may not equal zero.
* Flags have one of three values:

* Dositive indicates true (the option is selected).

* Negative indicates false (the option is not selected).
* Zero indicates use of the default value.

5-22

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary
Callable Interface Functions 5
CREATE-OPEN

The caller must supply a value for all attributes included in the array. Attributes not
included in the array assume a value of 0. Either a file size or checkpoint must be
supplied.

Non-default values override attributes determined from the model file. If no model
file name is specified, non-default values override normal StorHouse file attribute

defaults.
The elements of the FILE-ATTRIB array are:
* FATTR-LIST-SIZE — the number of other elements in the array.

* FATTR-BLOCK-SIZE — the size in bytes of a buffer area used by the Callable
Interface to block user records prior to moving data to the StorHouse Subsystem.
The caller does not have to reserve this area because it is GETMAINed and
FREEMAINed by the StorHouse software.

The caller supplies the value for block size. A value of 0 causes a site-selected
value to be used for block size. A value of 1 to 256 causes buffering to be
bypassed. The recommended block size is between 32,000 and 100,000 bytes
and should be large enough to contain two or more records plus four bytes.

* FATTR-CHECKPOINT - a checkpoint number at which file processing should
be restarted. For normal (non-restart) operations, 0 must be specified. If a non-
zero checkpoint value is specified, then the remaining entries in this attribute
array are ignored.

* FATTR-FILE-SIZE — the number of bytes of storage space (in units of 1000 bytes)
allocated whenever a file is opened for an append operation and whenever a
checkpoint is issued. The value must contain enough space for the largest extent
set that is written. This extent set includes a data extent, a DF extent, and for
KEYED files, a K extent. A file size must always be specified (non-zero) for file
creation (in other words, FATTR-CHECKPOINT value is zero). Refer to the
Command Language Reference Manual for more information about specifying file
size.

* FATTR-DATA-XLATE — a flag value; if positive, data is stored as ASCII characters.
The data is translated from EBCDIC to ASCII as it is transferred to StorHouse
and is translated from ASCII to the local code for the host as it is transferred to
the host (for IBM mainframes the local code is EBCDIC).

* FATTR-ATF — Access Time Factor, a positive integer equal to 1, 2, or 3. Refer to
the Command Language Reference Manual for additional information.

* FATTR-CACHE — the number of records cached by StorHouse during read
operations for files opened with a mode of READ or UPDATE and a method
including RECORD or KEYED. The cache value may be specified as a negative
value. A negative value turns off caching and ignores the cache specification for

the model file.

FileTek, Inc. Callable Interface Programmer’s Guide 5-23

FileTek Confidential and Proprietary
5 Callable Interface Functions
CREATE-OPEN

* FATTR-EDC - a flag value; if positive error detection coding is enabled. If
negative, EDC is disabled.

* FATTR-LIMIT - the file version limit value, a positive integer between 1 and
32768, or 0 for default.

* FATTR-VTF — Vulnerability Time Factor, an integer equal to 2, 3, or 4.

e 2 indicates a VTF of NEXT
¢ 3 indicates a VIF of NOW
¢ 4 indicates a VTF of DIRECT.

Refer to the Command Language Reference Manual for additional information
about the VTF attribute.

Return Codes

2629 Indicates that the caller supplied an invalid checkpoint number.
2635 May be caused by the following errors:

* CREATE-OPEN was used to create a new version of the model file.
* The specified model file is open for write or update by another user.
* A user tried to CREATE-OPEN a file whose highest version was already in use.

Refer to the error message text retrieved by EMSG to identify the specific cause of
error.

Any Other Non-Zero Indicates that the file was not created and is not open. Any other StorHouse
Code functions relating to this file should not be issued. In particular, CLOSE will fail
because of an invalid O-TOKEN.

Detailed Function Description

CREATE-OPEN creates a VRAM file on StorHouse and builds an open data transfer
path to allow WRITE operations to that file. The VRAM file is identified by the value
of FILE-NAME. C-TOKEN is the session identifier recurned by CONNECT. CREATE-
OPEN returns a file identifier in the O-TOKEN variable. After a successful CREATE-
OPEN (a return code of zero), operations for this file can be performed.

5-24 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
CREATE-OPEN

Notes

* FEach CREATE-OPEN establishes another transfer link and returns another file
identifier (O-TOKEN). It is the responsibility of the user to maintain the
integrity of the open tokens.

* If the amount of space indicated by the FATTR-FILE-SIZE variable cannot be
allocated, StorHouse returns an error code. Refer to the Command Language
Reference Manual (CREATE FILE command) for information about how to
estimate VRAM file sizes.

* If the return code is non-zero, there may be associated error messages. These
messages can be retrieved using the EMSG function. The C-TOKEN (not the
O-TOKEN) must be specified in the EMSG call.

¢ A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility. CREATE-OPEN must be considered a session-related function.

* Ifafile is opened and closed under one TCB and written from another TCB, the
two tasks must share Subpool 0 storage. If one of these tasks is a subtask of the
other, this is accomplished by the SZERO=YES operand on the ATTACH MACRO
(this is the default value).

* Generally, model files should be created only for use as models, not for use as
data files. When a file is used as a model, it is referenced (mounted) as part of
CREATE-OPEN processing. If the model is on optical storage, a physical platter
mount may be required. Allocating models as empty files on level F storage
prevents this extra platter mount.

* The additional technical information about programming guidelines for using
multiple open statements and checkpoints supplied in Appendix C,
“Checkpoint/Restart and Programming Guidelines,” also applies to CREATE-
OPEN.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc. Callable Interface Programmer’s Guide 5-25

FileTek Confidential and Proprietary

Callable Interface Functions

OPEN-VRAM

OPEN-VRAM establishes a data transfer link between the user program and
StorHouse, sets the direction of the data flow, indicates the type of processing that
will be performed, and identifies the file that will be referenced. OPEN-VRAM
requires the StorHouse VRAM Component.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG OPEN- VRAM C- TOKEN, R- CODE,
VESSAGE- FLAG, O- TOKEN, MODE,
ACCESS- METHCOD, FI LE- NAME,
REVI SI ON, FI LE- PASSVWORDS,
GROUP- NAME, GROUP- PASSVORDS,
REL- REC- NUM FI LE- ATTRI B.

CICS Environment

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
OPEN- VRAM C- TCKEN, R- CODE,
VESSAGE- FLAG, O- TOKEN, MODE,
ACCESS- METHCOD, FI LE- NAME,
REVI SI ON, FI LE- PASSWORDS,
GROUP- NAME, GROUP- PASSVORDS,
REL- REC- NUM FI LE- ATTRI B.

Working Storage Section for COBOL Program

01 OPEN- VRAM PIC X(16) VALUE ' OPEN- VRAM .
01 C- TOKEN PIC S9(8) COWP SYNC.
01 R- CODE PIC S9(8) COWP SYNC,
01 MESSAGE- FLAG PIC S9(8) COWP SYNC,
01 O TOKEN PIC S9(8) COWP SYNC,
01 MODE PI C X(6).
01 ACCESS- METHOD PI C X(24).
01 FI LE- NAVE PI C X(56).
01 REVI SI ON PIC S9(8) COWP SYNC,
01 FI LE- PASSWORDS.

05 FI LE- READ- PASSWORD PI C X(8).

5-26

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

C-TOKEN

R-CODE

MESSAGE-FLAG

O-TOKEN

MODE

ACCESS-METHOD

Callable Interface Functions 5
OPEN-VRAM

05 FI LE- WRI TE- PASSWORD PIC X(8).
01 GROUP- NAME PIC X(8).
01 GROUP- PASSWORDS.
05 GROUP- READ- PASSWORD PIC X(8).
05 GROUP-WRI TE- PASSWORD ~ PI C X(8).
01 REL- REC- NUM PIC S9(8) COWP SYNC.
01 FILE-ATTRI B.
05 FATTR- LI ST-SI ZE PI C S9(8) COWP SYNC VALUE 8.

05 FATTR- MAX- RECORD- LEN PIC S9(8) COWw SYNC
05 FATTR- LAST- PHY- REC-NUM PI C S9(8) COVP SYNC.
05 FATTR- LAST-LOG REC-NUM PIC S9(8) COWP SYNC.
05 FATTR-FI LE- REVI SION-NUM PI C S9(8) COVP SYNC.

05 FATTR- FI LE- TYPE PIC S9(8) COWP SYNC.
05 FATTR- BLOCK- SI ZE PIC S9(8) COw SYNC
05 FATTR- VERSI ON PIC S9(8) COWw SYNC
05 FATTR- CHECKPT PIC S9(8) COWw SYNC

Parameter Overview

The session identifier returned by CONNECT.
Final status from the requested operation; see the following section “Return Codes.”

An integer set to zero or non-zero. If non-zero, this flag indicates that the caller
requires text messages from all data transfer errors, including CLOSE function errors.
If zero, messages may not be retrievable after CLOSE has been issued.

Variable set by OPEN-VRAM to the file identifier. The application program should
not manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the O-TOKEN parameter to other function calls for this file.

A 6-byte character string that identifies the file reference mode. Valid MODE values
are READ, UPDATE, and APPEND.

A 24-byte character string that contains the type of processing to be performed on the
file. The valid types are SEQUENTIAL, RECORD, KEYED, ALL, or a combination of
any two or three of SEQUENTIAL, RECORD, and KEYED, separated by commas.
The type ALL specifies that all methods are included. Specify ALL for KRA-type
VRAM files only. If you specify ALL for RRA-type VRAM files, OPEN-VRAM will fail.

FILE-NAME A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
characters “DD=". In this case, the file name used will be the DSNAME specified on
the named DD statement. File names shorter than 56 characters must be padded on
the right with blanks.

REVISION An integer set by the user to indicate the file version’s revision number.
FileTek, Inc. Callable Interface Programmer’s Guide 5-27

FileTek Confidential and Proprietary

Callable Interface Functions

OPEN-VRAM

FILE-PASSWORDS

GROUP-NAME

GROUP-

PASSWORDS

REL-REC-NUM

FILE-ATTRIB

e Zero is the default (most current) revision.
* A positive integer indicates an absolute revision number.
* A negative integer indicates a relative revision number.

It is the user’s responsibility to track absolute revision numbers.

An array of two, 8-character variables containing the read and write passwords
associated with the file name. The array entry for a password that is not supplied
must be all blanks.

An 8-byte character string that identifies the file access group. If the file is stored
under the user’s default group, this parameter need not be supplied; that is, its value

must be all blanks.

An array of two, 8-character variables containing the read and write passwords for the
group. The GROUP-PASSWORDS array has the same format as the FILE-
PASSWORDS array.

The relative record number of the first record to be read from StorHouse. This value
is only meaningful when MODE=READ and ACCESS-METHOD-=
SEQUENTIAL.

An array of 32-bit integers that provides file attributes. The caller must set the first
entry in the array, FATTR-LIST-SIZE, to the number of the other elements in the
array. The minimum value allowed is 1. The caller also specifies a value for FATTR-
BLOCK-SIZE and may specify a value for FATTR-VERSION, and when applicable,
FATTR-CHECKPT. (Refer to the descriptions of FATTR-VERSION and FATTR-
CHECKPT))

All other file attribute values, except for FATTR-CHECKPT, are returned to the caller

when the file is opened. The FATTR-CHECKPT value is returned to the caller only if

the caller does both of the following:

* Supplies a zero value

* Attempts to open a checkpointed, software-disabled file with OPEN-VRAM,
MODE=APPEND.

In this case, the returned value in FATTR-CHECKPT is the file’s last checkpoint
number.

The elements in the file attributes array must be listed in the following order:

* FATTR-LIST-SIZE — the number of the other elements in the array

* FATTR-MAX-RECORD-LEN — the maximum length for any record in the file
* FATTR-LAST-PHY-REC-NUM - the last physical record number in the file

* FATTR-LAST-LOG-REC-NUM - the last logical record number in the file

5-28

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

2629

2630

Callable Interface Functions 5
OPEN-VRAM

¢ FATTR-FILE-REVISION-NUM - the absolute revision number of the file version

* FATTR-FILE-TYPE — the VRAM file type. A value of 0 indicates an RRA file, and

a value of 1 indicates a KRA file. VRAM file type is specified when the file is
created on StorHouse with the StorHouse Command Language CREATE FILE
command. For information about CREATE FILE, refer to the Command
Language Reference Manual.

* FATTR-BLOCK-SIZE - the size in bytes of a buffer area used by the Callable

Interface to block user records prior to moving data to or from the StorHouse
Subsystem. It is not necessary for the caller to reserve this area because it is
GETMAINed and FREEMAINed by the Callable Interface.

The caller supplies the value for block size. A value of 0 defaults to the site-
selected value for block size. A value of 1 to 256 causes buffering to be bypassed.

The recommended block size is between 32,000 and 100,000 bytes and should
contain two or more records plus four bytes.

FATTR-BLOCK-SIZE is used only when MODE=APPEND, or when
MODE=READ and ACCESS-METHOD=SEQUENTIAL.

* FATTR-VERSION - a user-supplied value that indicates the version of the file to

be opened

* To open the latest version, omit the attribute or supply a zero, which is the

default.

* To open a specific version, supply its relative version number as a negative

number (-1 through -32767).
* Dositive values are not supported.

* FATTR-CHECKPT - a value supplied by the caller at open (MODE=APPEND) to
indicate the checkpoint number where file processing should be restarted. If zero
or omitted, a normal (nonrestart) OPEN-VRAM occurs.

After OPEN-VRAM is issued, the value of FATTR-CHECKPT is returned to the

caller only if MODE=APPEND, the file being opened is checkpointed and
software disabled, and the caller set FATTR-CHECKPT to 0.

Return Codes

Indicates that the caller supplied an invalid checkpoint number.

Indicates that the file was not opened because it is software disabled and that a valid
checkpoint exists. The last checkpoint number is returned in FATTR-CHECKPT.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-29

FileTek Confidential and Proprietary

Callable Interface Functions

OPEN-VRAM

2636

2637

Any Other Non-Zero

Code

Indicates that the caller supplied a checkpoint number but MODE was not APPEND.

Indicates that the caller attempted to open a noncurrent revision of a file at a
checkpoint. Only the current revision of a file can be opened at a checkpoint.

Indicates that the file was not opened. Any other StorHouse functions relating to this
file should not be issued. In particular, CLOSE will fail due to an invalid O-TOKEN.

Detailed Function Description

The OPEN-VRAM function opens a VRAM file in StorHouse. The VRAM file is
identified by the value of FILE-NAME, and the type of processing to be performed is
provided by FATTR-FILE-TYPE and MODE. C-TOKEN is the session identifier
returned by CONNECT. OPEN-VRAM returns a file identifier in the

O-TOKEN variable. After a successful OPEN-VRAM (that is, a return code of zero),
other StorHouse functions relating to this file can be performed.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the data
transfer operation is closed. The dynamic memory allocated for the data transfer
operation is not released until all messages have been returned; that is, EMSG receives
a 3065 return code, indicating no more messages.

Notes

e Each OPEN-VRAM establishes another transfer link and returns another file
identifier (O-TOKEN). It is the responsibility of the user to maintain the
integrity of the open tokens.

* A VRAM file can be opened with MODE=APPEND either to write records into a
newly created (empty) file or to add records to a file that already contains data.
The two cases can be distinguished by checking the LAST_PHY_REC_NUM
attribute after open; for a new file, this attribute is set to zero.

* By issuing OPEN-VRAM with MODE=APPEND, StorHouse attempts to allocate
the amount of space that was specified as the value of the /SIZE modifier on the
CREATE FILE command for the file currently being opened. If this amount of
space cannot be allocated (for example, the file’s destination file set is filled and
cannot extend), StorHouse returns an error code. Refer to the Command
Language Reference Manual (CREATE FILE command) for more information
about how to estimate VRAM file size.

* If the caller attempts to open a checkpointed, software-disabled file and does not
supply a checkpoint number, OPEN-VRAM returns 2630 as the value of
R-CODE and the last checkpoint number in FATTR-CHECKPT. To open the
software disabled file at the returned checkpoint, the caller can issue another

5-30

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
OPEN-VRAM

OPEN-VRAM (MODE=APPEND) and supply the previously returned checkpoint
number as the current value of FATTR-CHECKPT.

Only the current (most recent) revision of a file version may be opened at a
checkpoint.

* The following example illustrates how logical and physical record numbers are
assigned in a file change. If the last physical record number in a file is record
number 8, and record number 8 is deleted, the last physical record number
remains 8. The last logical record number is 7. New records appended to the file
begin at record number 9.

e If the return code is non-zero and the associated messages (if any) are to be
retrieved, EMSG should be called specifying the C-TOKEN rather than the
O-TOKEN.

¢ A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

OPEN-VRAM must be considered a session-related function.

* Ifafileis opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

* Refer to Appendix C for additional technical information about programming

guidelines for using multiple open statements and for using OPEN-VRAM and
CHECKPOINT.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARACGRAPH 1100- OPEN- VRAM

FileTek, Inc. Callable Interface Programmer’s Guide 5-31

FileTek Confidential and Proprietary

Callable Interface Functions

CHECKPOINT

CHECKPOINT

O-TOKEN

R-CODE

RETURN-CKPT-
NUM

CHECKPOINT synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse. CHECKPOINT requires the
VRAM StorHouse software component.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’" USI NG CHECKPO NT, O- TOKEN, R- CODE,
RETURN- CKPT- NUM

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
CHECKPQA NT, O TOGKEN, R- CODE,
RETURN- CKPT- NUM

Working Storage Section for COBOL Program

01 CHECKPO NT PI C X(16) VALUE ' CHECKPO NT' .
01 O TOKEN PIC S9(8) COVP SYNC.
01 R- CODE PIC S9(8) COWP SYNC.

01 RETURN- CKPT-NUM PIC S9(8) COVP SYNC.

Parameter Overview

The file identifier returned by OPEN-VRAM or CREATE-OPEN.
Final status from the requested operation; see the following section “Return Codes.”

An integer set by StorHouse to the binary number associated with this checkpoint.

5-32

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
CHECKPOINT

Return Codes

Any non-zero value indicates that the file was not successfully checkpointed. No
other operation may be performed against a file that returns an error during
CHECKPOINT, except for CLOSE.

Detailed Function Description

CHECKPOINT synchronizes file transfer to ensure that all record(s) have been
written to StorHouse.

CHECKPOINT returns the checkpoint number (value of RETURN-CKPT-NUM) that
must be used to restart the file transfer operation at this position. A data transfer
operation (MODE=APPEND only) can be restarted by specifying this checkpoint
number in the OPEN-VRAM function (FATTR-CHECKPT parameter) or the
CREATE-OPEN function (FATTR-CHECKPOINT).

Notes

e To perform CHECKPOINT with OPEN-VRAM, the value for MODE in the
OPEN-VRAM call must have been set to APPEND. ACCESS-METHOD is
ignored when MODE=APPEND.

* Refer to Appendix C, “Checkpoint/Restart and Programming Guidelines,” for
information about using CHECKPOINT and OPEN-VRAM.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc. Callable Interface Programmer’s Guide 5-33

CLOSE

FileTek Confidential and Proprietary

Callable Interface Functions

CLOSE

O-TOKEN

R-CODE

XFER-ABORT-
FLAG

CLOSE closes the file and terminates the data transfer operation that was started by
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM. CLOSE requires StorHouse standard
features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’" USI NG CLOSE, O TOKEN, R- CODE, XFER- ABORT- FLAG.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
CLOSE, O TOKEN, R- CODE, XFER- ABORT- FLAG.

Working Storage Section for COBOL Program

01 CLOSE PI C X(16) VALUE ' CLOSE .
01 O TOKEN PIC S9(8) COVP SYNC.
01 R- CODE PIC S9(8) COWP SYNC.

01 XFER- ABORT- FLAG PIC S9(8) COW SYNC.

Parameter Overview

The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.
Final status from the requested operation; see the following section “Return Codes.”

A flag set by the user indicating either that the file transfer has completed normally or
that the StorHouse transfer should be aborted.

* A zero value means that this CLOSE indicates end-of-data.

* A non-zero value indicates that StorHouse should abort the data transfer. This
prevents a file from being cataloged on StorHouse and also cleans up any buffers
that may be in transit.

5-34

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
CLOSE

XFER-ABORT-FLAG is set (non-zero) when the data stream to StorHouse must be
terminated because of an error.

Setting XFER-ABORT-FLAG forces a return code of 3000. If CLOSE is being called
because of a non-zero return code from READ/WRITE, do not set XFER-ABORT-
FLAG. This may cause the return code identifying the actual cause of the failure to be
lost.

XFER-ABORT-FLAG is only used for write operations.

Return Codes

Any non-zero value indicates that the file was not closed properly.

After a file write operation, a non-zero return code means that the file cannot be
guaranteed to be stored in StorHouse.

Detailed Function Description

The final step in any StorHouse file processing is to close the file, using CLOSE. The
file is identified by the O-TOKEN returned from OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM.

For a sequential write operation, CLOSE indicates end-of-file. All in-transit data
buffers are written to StorHouse, and transfer end is signaled. StorHouse completes
file storage and directory update operations, and honors the requested VTF level prior
to returning operation status. A return code of 0 from CLOSE indicates that the file
has been stored in StorHouse.

For a sequential read operation, CLOSE terminates the transfer and flushes any in-
transit data buffers. A non-zero return code indicates that all data from the file has
not been delivered to the application program.

For record-oriented transfers, CLOSE causes completion of all file and index updates.
A return code of 0 indicates that the file state in StorHouse is synchronized with the
state expected by the application program.

CLOSE always releases all StorHouse resources used for the transfer operation. If the
MESSAGE-FLAG was clear (0) in the OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM
function call, then CLOSE also releases all host resources used by the transfer.
Otherwise, EMSG must be called to retrieve all indicative text messages before host
resources are completely released.

A successful CLOSE (that is, a return code of 0), terminates the data transfer link and
closes the file associated with the O-TOKEN.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-35

FileTek Confidential and Proprietary

Callable Interface Functions

CLOSE

Notes

A file can be opened in one task (under one TCB) and then used in another task;
however, CLOSE may be issued only from the same task (TCB) that issued
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

When closing a VRAM file, some record pointers or data must still be posted to
the file. If the allocated file size is too small, the file becomes software disabled,
and data that was written to the file is lost. Refer to the Command Language
Reference Manual (CREATE FILE command) for information about how to
estimate VRAM file size.

If MESSAGE-FLAG was set in the open function that began the transfer, then the
application should call EMSG following CLOSE until a return code of 3065,

indicating no more messages, is received.

If a non-zero return code is received from the I/O operation, the programmer

should:
¢ (Call the ESMG function
¢ Call CLOSE with the XFER-ABORT-FLAG not set

* Ensure that the return code and messages returned from the ESMG function
and CLOSE are logged.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARACGRAPH 1300- CLOSE- SM FI LE

5-36

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
Data Transfer Control Functions

Data Transfer Control Functions

Data transfer control functions can be performed once a session has been established
and files have been opened. These functions are:

READ - requests the next sequential record of a non-VRAM file from StorHouse.
READ-SEQ — requests the next sequential record from a VRAM file.

READ-RECORD - requests a record from a VRAM file. The record is identified
by its relative record number.

READ-KEYED - retrieves a record from a VRAM file. The record is identified by
user-supplied key information.

READ-NEXT-KEY — requests the next key entry-sequenced record from a VRAM
file.

WRITE — sends a record to StorHouse.
WRITE-KEY — transfers an external key record and a data record to StorHouse.
DELETE- deletes the last record read from a VRAM file.

CHANGE - changes the last record read in a VRAM file.

The following sections describe these functions.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-37

FileTek Confidential and Proprietary

5 Callable Interface Functions
READ

READ

O-TOKEN
R-CODE
BUFFER

BUFFER-SIZE

RETURN-REC-LEN

READ requests the next sequential record of a non-VRAM file from StorHouse.
READ requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG READ, O TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
READ, O- TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN.

Working Storage Section for COBOL Program

01 READ Pl C X(16) VALUE ' READ .
01 O TOKEN PI C S9(8) COWP SYNC.

01 R- CODE PI C S9(8) COVWP SYNC.

01 BUFFER PI C X(buffer-size).

01 BUFFER- SI ZE Pl C S9(8) COWP SYNC.
01 RETURN- REG- LEN PI C S9(8) COWP SYNC.

Parameter Overview

The file identifier initialized by OPEN-SEQ.

Final status from the requested operation; see the following section “Return Codes.”
An area where the data record is placed.

A user-specified integer value indicating the size, in bytes, of the read BUFFER.

An integer value returned by READ, containing the length of the record read from
StorHouse.

5-38

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

5650

2188

Other Non-Zero
Values

Callable Interface Functions 5
READ

Return Codes

An end of file was encountered.

The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

A record was not read successfully.

Detailed Function Description

READ allows a user to read the next sequential record from the StorHouse file that
was previously opened with OPEN-SEQ.

The StorHouse file is identified by the O-TOKEN returned by OPEN-SEQ. The
MODE in the open call must be set to READ. The record is placed into a user-
supplied buffer. READ returns the length of the record read.

Notes

* READ updates a file’s sequential record position. For more information about file
positioning, refer to Chapter 3, “File Positioning.”

¢ Do not use READ for VRAM files; use READ-SEQ instead.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 310- READ- SM

FileTek, Inc.

Callable Interface Programmer’s Guide 5-39

FileTek Confidential and Proprietary

Callable Interface Functions

READ-SEQ

READ-SEQ

O-TOKEN

R-CODE

BUFFER

BUFFER-SIZE

READ-SEQ requests the next sequential record from a VRAM file. READ-SEQ
requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG READ- SEQ O TCKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,
RETURN- REC- NUM

CALL ‘' LSMCI CS' USI NG

DFHEI BLK, COMVAREA,

READ- SEQ, O- TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,
RETURN- REC- NUM

Working Storage Section for COBOL Program

01 READ- SEQ Pl C X(16) VALUE ' READ- SEQ .
01 O TOKEN PI C S9(8) COWP SYNC.

01 R- CODE PI C S9(8) COVWP SYNC.

01 BUFFER PI C X(buffer-size).

01 BUFFER- SI ZE PI C S9(8) COVWP SYNC.

01 RETURN- REC- LEN PI C S9(8) COWP SYNC.

01 RETURN- REC- NUM PI C S9(8) COWP SYNC.

Parameter Overview
The file identifier initialized by OPEN-VRAM.

Final status from the requested operation; see the following section “Return Codes.”
An area where the data record is placed.

A user-specified integer value indicating the size, in bytes, of the read BUFFER.

5-40

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

RETURN-REC-LEN

RETURN-REC-
NUM

5650

2188

Other Non-Zero
Values

Callable Interface Functions 5
READ-SEQ

An integer value returned by READ-SEQ, containing the length of the record read
from StorHouse.

An integer value returned by READ-SEQ, containing the record number of the record
read from StorHouse.

Return Codes

An end of file was encountered.

The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

A record was not read successfully.

Detailed Function Description

READ-SEQ allows a user to read the next sequential record from the VRAM file that
was previously opened with OPEN-VRAM. The VRAM file is identified by the
O-TOKEN returned by OPEN-VRAM. The record is placed into a user-supplied
buffer. READ-SEQ returns the length of the record read and the record number.

Notes

* READ-SEQ updates a file’s sequential record position. For more information
about file positioning, refer to Chapter 3, “File Positioning.”

* To perform this function, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include SEQUENTIAL.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc.

Callable Interface Programmer’s Guide 5-41

FileTek Confidential and Proprietary

Callable Interface Functions

READ-RECORD

READ-RECORD

O-TOKEN

R-CODE

BUFFER

BUFFER-SIZE

READ-RECORD requests a record from a VRAM file. The record is identified by its
relative record number. READ-RECORD requires the StorHouse VRAM Component.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL®" USI NG READ- RECCRD, O TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,
REL- REC- NUM

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
READ- RECORD, O- TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,
REL- REC- NUM

Working Storage Section for COBOL Program

01 READ- RECORD PI C X(16) VALUE ' READ- RECORD' .

01 O TOKEN PI C S9(8) COWP SYNC.
01 R- CODE PI C S9(8) COVWP SYNC.
01 BUFFER PI C X(buffer-size).

01 BUFFER-SIZE PIC S9(8) COWP SYNC.
01 RETURN-REC-LEN PIC S9(8) COVP SYNC.
01 REL-REC-NUM PIC S9(8) COWP SYNC.

Parameter Overview
The file identifier initialized by OPEN-VRAM.

Final status from the requested operation; see the following section “Return Codes.”
An area where the data record is placed.

A user-specified integer value indicating the size, in bytes, of the read BUFFER.

5-42

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

RETURN-REC-LEN

REL-REC-NUM

2587

2588

2188

Any Other Non-Zero

Value

Callable Interface Functions 5
READ-RECORD

An integer value returned by READ-RECORD, containing the length of the record
read from StorHouse.

A variable containing the relative record number of the record to be read from
StorHouse.

Return Codes

The record number was out of range; the record could not be found.
The record number was deleted.

The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

A record was not read successfully.

Detailed Function Description

READ-RECORD allows a user to read a relative record from the VRAM file that was
previously opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN
returned by OPEN-VRAM. The record is identified by the relative record number.
The record read from StorHouse is placed into a user-supplied buffer. READ-
RECORD also returns the length of the record read.

Notes

* READ-RECORD updates a file’s sequential record position. For more
information about file positioning, refer to Chapter 3, “File Positioning.”

* To perform this function, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include RECORD.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 510- READ- AND- PRI NT

FileTek, Inc.

Callable Interface Programmer’s Guide 5-43

FileTek Confidential and Proprietary

Callable Interface Functions

READ-KEYED
READ-KEYED retrieves a record from a VRAM file. The record is identified by user-
supplied key information. READ-KEYED requires the StorHouse VRAM component
with the KRA feature.
Statement Format for COBOL
TSO/Batch/IMS Environment
CALL ‘ LSMCALL’ USI NG READ- KEYED, O TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN, KEY- NAME,
KEY- VALUE, KEY- LENGTH, RETURN- REC- NUM
CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
READ- KEYED, O- TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN, KEY- NAME,
KEY- VALUE, KEY- LENGTH, RETURN- REC- NUM
Working Storage Section for COBOL Program
01 READ- KEYED PIC X(16) VALUE ' READ- KEYED .
01 O TOKEN PIC S9(8) COVP SYNC.
01 R- CODE PIC S9(8) COMP SYNC.
01 BUFFER PI C X(buffer-size).
01 BUFFER- SI ZE Pl C S9(8) COWP SYNC.
01 RETURN- REC- LEN PI C S9(8) COWP SYNC.
01 KEY- NAME Pl C X(56) .
01 KEY- VALUE PI C X(key- I ength).
01 KEY- LENGTH Pl C S9(8) COWP SYNC.
01 RETURN- REG-NUM PI C S9(8) COWP SYNC.
Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.
R-CODE Final status from the requested operation; see the following section“Return Codes.”

5-44

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

BUFFER
BUFFER-SIZE

RETURN-REC-LEN

KEY-NAME

KEY-VALUE

KEY-LENGTH

RETURN-REC-
NUM

2587
2588
2188

Any Other Non-Zero
Value

Callable Interface Functions 5
READ-KEYED

An area where the data record is placed.
A user-specified integer value indicating the size, in bytes, of the read BUFFER.

An integer value returned by READ-KEYED, containing the length of the record read
from StorHouse.

The user-supplied name of the key field that is used to find the record. The
maximum size for KEY-NAME is 56 bytes. An example of a KEY-NAME is
“LASTNAME”.

The user-supplied value of the key used to search for the record. An example of a
KEY-VALUE is “Kelly”.

A user-supplied integer value indicating the size of KEY-VALUE. The maximum
length is 254 characters.

An integer that is set by StorHouse to the record number of the last record read from
StorHouse.

Return Codes
No record was found with the supplied key.
The record was deleted.

The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

A record was not read successfully.

Detailed Function Description

READ-KEYED reads a record from the VRAM file that was previously opened with
OPEN-VRAM. The file is identified by the O-TOKEN returned by OPEN-VRAM.

The record is identified by the key parameters KEY-NAME and KEY-VALUE and is
placed into the user-supplied buffer. READ-KEYED also returns the length of the
record.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-45

FileTek Confidential and Proprietary

5 Callable Interface Functions
READ-KEYED

Notes

* READ-KEYED updates a file’s sequential and key record positions. For more
information about file positioning, refer to Chapter 3, “File Positioning.”

* To perform READ-KEYED, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include KEYED.

* The following is true for KEYSEQUENTIAL files only. If READ-KEYED cannot
locate the requested key and returns message XKBADRNO (return code 2587),
READ-KEYED maintains the current key record position. A subsequent READ-
NEXT-KEYED or READ-SEQUENTIAL will find the record with the next greater
key value. This subsequent record may be read but not changed or deleted.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARACGRAPH 610- READ- KEYED

5-46 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions

READ-NEXT-KEY

READ-NEXT-KEY requests the next key entry sequenced record from a VRAM file.
READ-NEXT-KEY requires the StorHouse VRAM component with the KRA feature.

Statement Format for COBOL

TSO/Batch/IMS Environment

READ-NEXT-KEY

CALL ‘ LSMCALL" USI NG READ- NEXT- KEY, O TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,

RETURN- REC- NUM

CALL ‘' LSMCI CS' USI NG

DFHEI BLK, COMVAREA,

READ- NEXT- KEY, O- TOKEN, R- CODE, BUFFER,
BUFFER- SI ZE, RETURN- REC- LEN,

RETURN- REC- NUM

Working Storage

01
01
01
01
01
01
01

READ- NEXT-KEY PIC
O TOKEN PI C
R- CODE PIC
BUFFER PIC
BUFFER- SI ZE PIC
RETURN- REC- LEN PI C

RETURN- REC- NUM PI C

Section for COBOL Program

X(16)

S9(8) COWP SYNC.
S9(8) COVWP SYNC.
X(buffer-size).

S9(8) COVWP SYNC.
S9(8) COWP SYNC.
S9(8) COWP SYNC.

Parameter Overview

VALUE ' READ- NEXT- KEY' .

O-TOKEN The file identifier initialized by OPEN-VRAM.
R-CODE Final status from the requested operation; see the following section “Return Codes.”
BUFFER An area where the data record is placed.
BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.
FileTek, Inc. Callable Interface Programmer’s Guide 5-47

FileTek Confidential and Proprietary

Callable Interface Functions

READ-NEXT-KEY

RETURN-REC-LEN

RETURN-REC-
NUM

5650

2188

Any Other Non-Zero

Value

An integer value returned by READ-NEXT-KEY, containing the length of the record
read from StorHouse.

An integer value returned by READ-NEXT-KEY, containing the record number of the
record read from StorHouse.

Return Codes

An end of file was encountered.

The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

A record was not successfully read.

Detailed Function Description

READ-NEXT-KEY allows a user to read the next key entry-sequenced record from the
VRAM file that was previously opened with OPEN-VRAM. The VRAM file is
identified by the O-TOKEN returned by OPEN-VRAM. The record is placed into a
user-supplied buffer. READ-NEXT-KEY returns the length of the record read and the
record number.

Notes

* READ-NEXT-KEY updates a file’s sequential and key record positions. For more
information about file positioning, refer to Chapter 3, “File Positioning.”

* To perform READ-NEXT-KEY, the MODE in the OPEN-VRAM call must be set
to UPDATE or READ. The ACCESS-METHOD must include KEYED.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 610- READ- KEYED

5-48

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
WRITE

WRITE

WRITE sends a record to StorHouse. WRITE requires the StorHouse standard
features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG WRI TE, O TOKEN, R- CODE, BUFFER,
RECORD- LENGTH, RETURN- REC- NUM

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
VRI TE, O- TOKEN, R- CODE, BUFFER,
RECORD- LENGTH, RETURN- REC- NUM

Working Storage Section for COBOL Program

01 WRITE Pl C X(16) VALUE ' WRI TE' .
01 O TOKEN PI C S9(8) COWP SYNC.

01 R- CODE PI C S9(8) COVWP SYNC.

01 BUFFER PI C X(buffer-size).

01 RECORD-LENGTH PI C S9(8) COVP SYNC.
01 RETURN- REG- NUM PI C S9(8) COWP SYNC.

Parameter Overview

O-TOKEN The file identifier initialized by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.
R-CODE Final status from the requested operation; see the following section “Return Codes.”
BUFFER Buffer containing the record to be written to StorHouse.

RECORD-LENGTH An integer value containing the length, in bytes, of the record written to StorHouse.

FileTek, Inc. Callable Interface Programmer’s Guide 5-49

WRITE

FileTek Confidential and Proprietary

Callable Interface Functions

RETURN-REC-
NUM

2210

Any Other Non-Zero

Value

An integer value set by the StorHouse software containing the record number of the
record written.

Return Codes

This is a warning that the record is too short. For a KEYED file, this warning is
returned if the record is too short to contain all of its key fields.

The record was not written to StorHouse.

Detailed Function Description

WRITE allows a user to send a record to a file on StorHouse previously opened with
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

For non-VRAM files, the file is identified by the O-TOKEN returned by OPEN-SEQ.
For VRAM files, the file is identified by the O-TOKEN returned by OPEN-VRAM or
CREATE-OPEN.

The record is sent from the user-supplied buffer to StorHouse. The record written is
the next sequential record in the file.

Notes

e WRITE moves data from the user record area (BUFFER) to internal buffers
controlled by the Callable Interface. WRITE may return to the caller without
actually transferring all user data to StorHouse. Therefore, you can guarantee
that the data is stored in StorHouse only after a successful CLOSE or
CHECKPOINT.

* Any insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file is lost.

* To perform WRITE on a VRAM file, you first must call either OPEN-VRAM with
MODE set to APPEND and ACCESS-METHOD set to any valid value or call

CREATE-OPEN. To perform WRITE on a non-VRAM file, call OPEN-SEQ with
MODE set to WRITE.

¢ WRITE and WRITE-KEY can be used in the same session.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1200- WRI TE- TO- SM

5-50

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
WRITE-KEY

WRITE-KEY

WRITE-KEY transfers an external key record and a data record to StorHouse. WRITE-
KEY requires the StorHouse VRAM component and KRA feature.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG WRI TE- KEY, O TOKEN, R- CODE, BUFFER,
RECORD- LENGTH, KEY, KEY- LENGTH,
RETURN- REC- NUM

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
VRI TE- KEY, O- TOKEN, R- CODE, BUFFER,
RECORD- LENGTH, KEY, KEY- LENGTH,
RETURN- REC- NUM

Working Storage Section for COBOL Program

01 WRI TE- KEY PIC X(16) VALUE ' WRI TE- KEY' .
01 O TOKEN PIC S9(8) COVP SYNC.

01 R CODE PIC S9(8) COW SYNC.

01 BUFFER PI C S9(8).

01 RECORD-LENGTH PIC S9(8).

01 KEY PI C X(key- I ength).

01 KEY- LENGTH PI C S9(8).

01 RETURN- REG- NUM PI C S9(8) COVP SYNC.

Parameter Overview

O-TOKEN The file identifier initialized by OPEN-VRAM or CREATE-OPEN.
R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER The buffer containing the data record to be written to StorHouse.

FileTek, Inc. Callable Interface Programmer’s Guide 5-51

FileTek Confidential and Proprietary

Callable Interface Functions

WRITE-KEY

RECORD-LENGTH

KEY

KEY-LENGTH

RETURN-REC-
NUM

2210

Any Other Non-Zero

Values

An integer value containing the length, in bytes, of the data record written to
StorHouse.

The external key associated with the data record.
The length, in bytes, of the external key.

A returned integer value set to the record number associated with the data record.

Return Codes

A warning indicating that the external key record is too short to contain all of its key

fields.

The record or external key was not written to StorHouse.

Detailed Function Description

WRITE-KEY writes an external key record and a data record to a StorHouse file that is
identified by the O-TOKEN returned by OPEN-VRAM or CREATE-OPEN. The file
must have been created either with the CREATE FILE command using the
/EXTERNAL modifier, or with CREATE-OPEN using a model file with external keys.
Refer to the Command Language Reference Manual for information about CREATE
FILE. The data record is sent from the user-supplied buffer to StorHouse and
becomes the next sequential record in the file.

Notes

e WRITE-KEY moves data from the user record area (BUFFER) to internal buffers
maintained by the Callable Interface. WRITE-KEY may return to the caller
without actually transferring all of the user data to StorHouse. Therefore, data

can only be guaranteed to be stored in StorHouse after a successful CLOSE or
CHECKPOINT.

* To perform WRITE-KEY, the file must be opened either using OPEN-VRAM with
a MODE of APPEND, or using CREATE-OPEN with a model file with external
keys.

¢ The Callable Interface considers a WRITE-KEY with a KEY-LENGTH of 0 the
same as a WRITE. WRITE and WRITE-KEY can be used in the same session.

* To write a data record and no external key record, specify a value of 0 for KEY-
LENGTH. For example, to write one external key record and five associated data
records, issue WRITE-KEY to write the external key record and the first data

5-52

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5

WRITE-KEY

record. Then issue WRITE-KEY four times with a specified KEY-LENGTH of 0 to
write the remaining four data records.

* The actual external key record cannot be accessed by an application. Key
information is extracted from the record and stored in a key data base on
StorHouse. Therefore, users cannot change an external key record once it is
written or read an external key file to determine the keys.

* By definition, external keys are external to, or not part of, the data record.
Therefore, data records associated with a given external key should contain
control information that allows an application to determine when it has
processed the last data record belonging to that external key.

* An insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file is lost.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc. Callable Interface Programmer’s Guide 5-53

FileTek Confidential and Proprietary

5 Callable Interface Functions
DELETE

DELETE

O-TOKEN

R-CODE

2612

Any Non-Zero Value

DELETE deletes the last record read from a VRAM file. DELETE requires the
StorHouse VRAM component.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’" USI NG DELETE, O TOKEN, R- CODE.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
DELETE, O TOKEN, R- CODE.

Working Storage Section for COBOL Program

01 DELETE PIC X(16) VALUE ' DELETE .
01 O TOKEN PIC S9(8) COMP SYNC.
01 R- CODE PIC S9(8) COVP SYNC

Parameter Overview
The file identifier initialized by OPEN-VRAM.

Final status from the requested operation; see the following section “Return Codes.”

Return Codes

A return code of 2612 indicates that an attempt was made to delete a record without
reading the record first.

Any non-zero value indicates that a record was not deleted from StorHouse.

5-54

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
DELETE

Detailed Function Description

DELETE allows a user to delete the last record read from a StorHouse file previously
opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN returned
by OPEN-VRAM.

Note

To perform DELETE, the MODE in the OPEN-VRAM call must be set to UPDATE.
For a more complete discussion of MODE and the associated ACCESS-METHOD
parameter, refer to the OPEN-VRAM function description.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc. Callable Interface Programmer’s Guide 5-55

FileTek Confidential and Proprietary

5 Callable Interface Functions
CHANGE

CHANGE

O-TOKEN
R-CODE
BUFFER

RECORD-LENGTH

CHANGE changes the last record read in a VRAM file. CHANGE requires the
StorHouse VRAM component.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL" USI NG CHANGE, O TOKEN, R- CODE, BUFFER,
RECORD- LENGTH.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
CHANGE, O TOKEN, R- CODE, BUFFER,
RECORD- LENGTH.

Working Storage Section for COBOL Program

01 CHANGE Pl C X(16) VALUE ' CHANCE' .
01 O TOKEN PI C S9(8) COWP SYNC.

01 R- CODE PI C S9(8) COVWP SYNC.

01 BUFFER PI C X(buffer-size).

01 RECORD-LENGTH PI C S9(8) COVP SYNC.

Parameter Overview

The file identifier initialized by OPEN-VRAM.
Final status from the requested operation; see the following section “Return Codes.”
The buffer containing the change record to be written to StorHouse.

An integer value containing the length of the change record written to StorHouse.

5-56

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

2612

Any Non-Zero Value

Callable Interface Functions 5
CHANGE

Return Codes

An attempt was made to change a record without reading the record first.

A record was not changed.

Detailed Function Description

CHANGE allows a user to change the last record read from the VRAM file that was
previously opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN
returned by OPEN-VRAM.

Note

To perform CHANGE, the MODE in the OPEN-VRAM call must be set to UPDATE.
For a more complete discussion of MODE and the associated ACCESS-METHOD
parameter, refer to the OPEN-VRAM function description.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc.

Callable Interface Programmer’s Guide 5-57

FileTek Confidential and Proprietary

5 Callable Interface Functions

StorHouse Command Submission

StorHouse Command Submission

There is one StorHouse command submission function: SM-CMD-INTE
SM-CMD-INTF allows an application to:

* Send selected StorHouse Command Language commands to StorHouse and to
retrieve response text from those commands.

* Direct administrative operations from an application rather than from a user at a
terminal through the Interactive Interface.

SM-CMD-INTF is described in the following section.

5-58 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
SM-CMD-INTF

SM-CMD-INTF

SM-CMD-INTE, the StorHouse Command Interface function, sends a text string to
StorHouse to be processed as a StorHouse command. SM-CMD-INTF requires
StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’" USI NG SM CMVD- | NTF, C- TOKEN, R- CODE, CR- BUF,
CR- LEN, RESP- BUF, RESP- BUFSI ZE,
RESP- | NFO.

CALL ‘' LSMCI CS' USI NG DFHEI BLK, COMVAREA,
SM CMD- | NTF, C- TOKEN, R- CODE, CR- BUF,
CR- LEN, RESP- BUF, RESP- BUFSI ZE,
RESP- | NFO

Working Storage Section for COBOL Program

01 SM CNMD- | NTF PIC X(16) VALUE ' SM CVD- | NTF' .

01 C TOKEN PIC S9(8) COWP SYNC.

01 R-CODE PIC S9(8) COw SYNC

01 CR- BUF PI C X(buffer-size).

01 CR-LEN PIC S9(8) COWw SYNC

01 RESP-BUF PI C X(resp-bufsize).

01 RESP- BUFSI ZE PIC S9(8) COW SYNC VALUE | S nn2.

01 RESP-1 NFO
05 RINFO- LI ST-SI ZE PIC S9(8) COw SYNC VALUE 6.

05 RI NFO- LENGTH PI C S9(8) COWP SYNC.
05 RI NFO- STATUS PI C S9(8) COWP SYNC.
05 RI NFO- SEVERI TY PIC S9(8) COW SYNC.
05 RINFO-CMD-ENDED PIC S9(8) COWP SYNC.
05 RI NFO- PROVPT Pl C S9(8) COWP SYNC.
05 RI NFO- SUPPRESS PI C S9(8) COWP SYNC.

FileTek, Inc. Callable Interface Programmer’s Guide 5-59

FileTek Confidential and Proprietary

Callable Interface Functions

SM-CMD-INTF

C-TOKEN

R-CODE

CR-BUF

CR-LEN

RESP-BUFFER

RESP-BUFSIZE

RESP-INFO

Parameter Overview

The session identifier set by CONNECT.
Final status from the requested operation; see the following section “Return Codes.”

A buffer containing the command/reply text that is sent to StorHouse. The
maximum length of this buffer is 255 bytes.

An integer value containing the length of the text in the buffer named by CR-BUE.
The area where the response text from the StorHouse command is placed.

An integer value giving the size of the response buffer. This value should be no
smaller than 132. If the response buffer is too small to contain the response text, then
the response is truncated to fit in the supplied buffer, and the return status indicates
an error.

RESP-BUFSIZE may not equal zero. A zero value causes a 3022 return code,
indicating that a zero buffer size was passed to a StorHouse read function.

An array of 32-bit integers that provides detailed information about the length and
type of response text returned by StorHouse. The elements in the array are:

* RINFO-LIST-SIZE — the number of other elements in the RESP-INFO array. The
caller must set this entry to 6.

* RINFO-LENGTH - the length of the response text.

e RINFO-STATUS — the status code associated with execution of the command.
This code is returned only when command end is indicated. Note that RINFO-
STATUS refers to the StorHouse status, while R-CODE indicates host system
problems.

* RINFO-SEVERITY - the severity of the error indicated in RINFO-STATUS,
expressed as a value between 0 and 20; see “Return Codes.”

* RINFO-CMD-ENDED - a flag indicating (if 1) that the command has completed
execution.

* RINFO-PROMPT - a flag indicating (if 1) that the response text is actually a
prompt from StorHouse.

* RINFO-SUPPRESS — a flag indicating (if 1) that StorHouse suggests suppression
of printing or displaying the information supplied in response to a prompt. This
flag is valid only if RINFO-PROMPT is set.

5-60

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Any Non-Zero Value

Zero Value

Callable Interface Functions 5
SM-CMD-INTF

Return Codes

A command text was not processed by StorHouse.
If R-CODE is non-zero, do not use RINFO-STATUS and RINFO-SEVERITY.

Indicates that the command was successfully passed to StorHouse and that a response
was received.

RINFO-STATUS indicates the status associated with StorHouse’s execution of the
command. Use RINFO-SEVERITY to examine the general condition associated with
command execution without testing for specific status codes.

The severity codes are:

* 00 — normal; no errors detected.

* 04 — warning; results may not be as expected.

* 08 — error; results are probably incorrect, and corrective action may be required.

* 12 —severe errors occurred; corrective action is required.

* 16 — request could not be processed.

* 20 — hardware or system software error prevented command processing. (Partial
execution may have occurred, or StorHouse may have processed the command,
but responses have been lost.)

Detailed Function Description

SM-CMD-INTF allows direct user access to the StorHouse command processing
facilities by sending a text string in the CR-BUF to StorHouse. StorHouse then
processes the string as a StorHouse command. The session is identified by the O-
TOKEN returned by CONNECT. The command text is sent from the user-supplied
buffer.

SM-CMD-INTF returns the command response to the user-supplied response buffer.
RINFO-CMD-ENDED is set (non-zero) when no additional response information is
available for this command. If RINFO-CMD-ENDED is not set (zero), SM-CMD-

INTF must be called again to retrieve additional response text.

For a description of available commands, refer to the Command Language Reference
Manual.

SM-CMD-INTF is only intended for accessing informational commands, such as
SHOW FILE. The following commands cannot be issued from SM-CMD-INT:

¢ GET and PUT. A file-oriented OPEN must be used.

* SET USER to change session defaults.

FileTek, Inc.

Callable Interface Programmer’s Guide 5-61

FileTek Confidential and Proprietary

Callable Interface Functions

SM-CMD-INTF

* Any command that creates or deletes files (for example, REMOVE FILE, CREATE
FILE, DELETE).

* Any command that changes passwords (for example, SET GROUP).

For more information about StorHouse Command Language commands that can be
accessed with SM-CMD-INTE, consult your StorHouse system administrator or your
FileTek customer support representative.

When RINFO-PROMPT is set, StorHouse is requesting additional information to
complete execution of the submitted command. The response string in the RESP-
BUFFER is a prompt that indicates the type of information to be provided. Whenever
this occurs, SM-CMD-INTF must be called again with the reply to the prompt in
CR-BUE

Note

Failure to call SM-CMD-INTF repeatedly until end of command is indicated causes
the session link to become unusable. Once SM-CMD-INTF has been called, other
functions cannot be called until end of command has been returned. The only
exceptions are CHECK, ECBADDR, EMSG, and ABORT. Whenever RINFO-
PROMPT is set, the next call to SM-CMD-INTF supplies a response. If CR-LEN is
zero, a null response is sent to StorHouse, which implies use of a default.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

5-62

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5

General Usage Functions

General Usage Functions

The general usage functions are:

* CHECK — waits for and tests the completion status of any asynchronous
operation.

* ECBADDR - returns the address of the ECB that is POSTed when the
asynchronous function last requested for the C-TOKEN or O-TOKEN completes.

* EMSG - retrieves indicative messages associated with a previous return code.
* ABORT - attempts to terminate the last asynchronous function started within a
session or the last asynchronous data transfer function. ABORT can also be used

to request termination of an SM-CMD-INTF sequence.

These functions are described in the following sections.

FileTek, Inc. Callable Interface Programmer’s Guide 5-63

FileTek Confidential and Proprietary

Callable Interface Functions

CHECK

CHECK

C-TOKEN

O-TOKEN

R-CODE

2974

CHECK waits for and tests the completion status of any asynchronous operation.
CHECK requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG CHECK, { C- TOKEN| O- TOKEN} , R- CODE.

CALL ‘ LSMCI CS' USI NG DFHEI BLK, COMMAREA,
CHECK, { C- TOKEN| O- TOKEN} , R- CODE.

Working Storage Section for COBOL Program

01 CHECK PIC X(16) VALUE ' CHECK' .
01 x- TOKEN PIC S9(8) COMP SYNC.
01 R- CODE PIC S9(8) COMP SYNC.

Parameter Overview

The session identifier returned by CONNECT.
The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

Final status from the requested operation; see the following section “Return Codes.”

Return Codes

The return code from CHECK is the code returned by the previous asynchronous
function.

No asynchronous operations were outstanding at the time of CHECK for the
particular session or file.

5-64

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
CHECK

Detailed Function Description

CHECK waits for and tests the completion status of a previous asynchronous
function. If a C-TOKEN is supplied, the CHECK applies to the last function started
on a session link. If an O-TOKEN is supplied, then the last asynchronous data
transfer function associated with that O-TOKEN is checked.

Notes
* There is no asynchronous form of CHECK; that is, ASCHECK cannot be used.

* For applications that must WAIT for multiple, concurrent, asynchronous events,
the address of the ECB can be obtained. (See ECBADDR in Chapter 6, “Sample
Program.”) CHECK can then be called after the application has determined that
the original function has completed. The ECB complete bit must not be cleared
prior to calling CHECK.

* Important: CHECK must always be called. It is not sufficient just to WAIT for
the ECB to be POSTed.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc. Callable Interface Programmer’s Guide 5-65

FileTek Confidential and Proprietary

5 Callable Interface Functions
ECBADDR

ECBADDR

C-TOKEN
O-TOKEN
R-CODE

RETURN-ECB-
ADDR

ECBADDR returns to the caller the address of the ECB that is POSTed when the
asynchronous function last requested for the C-TOKEN or O-TOKEN completes.
ECBADDR requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG ECBADDR, { C- TOKEN| O- TOKEN}, R- CODE,
RETURN- ECB- ADDR.

CALL ' LSMCI CS' US| NG DFHEI BLK, COMVAREA,
ECBADDR, { G- TOKEN| O- TOKEN} , R- CODE,
RETURN- ECB- ADDR.

Working Storage Section for COBOL Program

01 ECBADDR PIC X(16) VALUE ' ECBADDR .
01 x- TOKEN PIC S9(8) COVP SYNC.
01 R- CODE PIC S9(8) COVP SYNC.
01 RETURN- ECB- ADDRPI C S9(8) COMP SYNC.

Parameter Overview

The session identifier returned by CONNECT.
The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.
Final status from the requested operation; see the following section “Return Codes.”

The address of the ECB that is POSTed when the asynchronous function last
requested for the C-TOKEN or O-TOKEN completes.

5-66

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5
ECBADDR

Return Codes
The return code from ECBADDR is always 0.

Detailed Function Description

For applications that must WAIT for multiple, concurrent, asynchronous events, the
address of the ECB can be obtained by using ECBADDR. If a C-TOKEN is supplied,
ECBADDR applies to the last function started on a session link. If an O-TOKEN is
supplied, then the last asynchronous data transfer function associated with that
O-TOKEN is checked.

Note

There is no asynchronous form of ECBADDR; that is, ASECBADDR cannot be used.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc.

Callable Interface Programmer’s Guide 5-67

FileTek Confidential and Proprietary

Callable Interface Functions

EMSG

EMSG

C-TOKEN

O-TOKEN

R-CODE

MESSAGE-
BUFFER

EMSG retrieves indicative messages associated with a previous return code. EMSG
requires StorHouse standard features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG EMBG, { C- TOKEN| O- TOKEN}, R- CODE,
MESSAGE- BUFFER, MESSAGE- BUFFER- SI ZE,
RETURNED- MESSAGE- LEN,

CALL ' LSMCI CS' US| NG DFHEI BLK, COMVAREA,
EMSG, { C- TOKEN| O- TOKEN} , R- CODE,
MESSAGE- BUFFER, MESSAGE- BUFFER- S| ZE,
RETURNED- MESSAGE- LEN.

Working Storage Section for COBOL Program

01 EMSG PIC X(16) VALUE ' EMSG .
01 x- TOKEN PIC S9(8) COW SYNC.

01 R- CODE PIC S9(8) COW SYNC.

01 MESSACGE- BUFFER PI C X(buffer-size).

01 MESSACE- BUFFER- SI ZE PIC S9(8) COW SYNC VALUE IS nnn.
01 RETURNED- MESSAGE-LEN PIC S9(8) COWP SYNC.

Parameter Overview

The session identifier set by CONNECT.
The file identifier returned by an OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.
Final status from the requested operation; see the following section “Return Codes.”

The area into which the error message text will be moved.

5-68

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

MESSAGE-
BUFFER-SIZE

RETURNED-
MESSAGE-LEN

3065

Callable Interface Functions 5
EMSG

A user-specified integer value containing the size of the MESSAGE-BUFFER.

An integer value that is returned by EMSG containing the length of the retrieved error
message.

Return Codes

There are no more messages in the message buffer for the previously called function.

Detailed Function Description

EMSG allows a user to retrieve indicative text messages associated with a previous
function call. If a C-TOKEN is supplied, EMSG returns the error message associated
with the return code from the last session-related command. If an O-TOKEN is
supplied, EMSG returns the text messages associated with the last file-related
command.

EMSG returns one message in the user-supplied buffer. The length of the message is
also returned.

Notes

* There is no asynchronous form of EMSG; that is, ASEMSG cannot be used.

* The maximum buffer length required to retrieve an error message is 132 bytes. If
the user-supplied buffer is shorter than 132 bytes, some messages may be
truncated when returned. Messages are padded with blanks to the full size of the

supplied buffer.

e If MESSAGE-FLAG was set for a CONNECT, OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM, then EMSG must be called after a DISCONNECT or CLOSE, or
after a failing CONNECT. EMSG must be called repeatedly until a return code of
3065, indicating no more messages, is received. Otherwise, dynamically allocated
memory used by the LIMCALL routine may not be released.

e The C-TOKEN is the correct token for an EMSG call following any type of open
request.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1510- CALL- EMSG, 1610- CALL- EMSG

FileTek, Inc.

Callable Interface Programmer’s Guide 5-69

FileTek Confidential and Proprietary

5 Callable Interface Functions
ABORT

ABORT

O-TOKEN
C-TOKEN

R-CODE

2989

2990

ABORT attempts to terminate the last asynchronous function started within a session
or the last asynchronous data transfer function. ABORT can also be used to request
termination of an SM-CMD-INTF sequence. ABORT requires StorHouse standard
features.

Statement Format for COBOL

TSO/Batch/IMS Environment

CALL ‘ LSMCALL’ USI NG ABORT, { O TOKEN| C- TOKEN} , R- CODE.

CALL ' LSMCI CS' US| NG DFHEI BLK, COMVAREA,
ABORT, { O TOKEN| G- TOKEN} , R- CODE.

Working Storage Section for COBOL Program

01 ABORT PIC X(16) VALUE ' ABORT' .
01 x- TOKEN PIC S9(8) COWP SYNC.
01 R- CODE PIC S9(8) COWP SYNC,

Parameter Overview

The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.
The session identifier returned by CONNECT.

Status from the abort requested; see “Return Codes.”

Return Codes

Neither an asynchronous function nor an SM-CMD-INTF sequence was outstanding.

The function to be aborted was CONNECT, which is not allowed.

5-70

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Callable Interface Functions 5

ABORT

Zero is the only other return code from ABORT. CHECK must be issued to retrieve
the return code associated with the aborted function.

Detailed Function Description

ABORT unconditionally attempts to terminate the last function started on a session
or a data transfer function. If a C-TOKEN is supplied, the ABORT applies to the last
function started on a session link. If an O-TOKEN is supplied, then the last data
transfer function associated with that O-TOKEN is aborted.

Notes

There is no asynchronous form of ABORT; that is, ASABORT cannot be used.

ABORT can only request termination of a function. The function may have
already completed or may complete before the abort request is forwarded. The
return code associated with the original function must be analyzed to determine
the actual outcome of the abort attempt.

ABORT is intended as a mechanism to terminate a pending asynchronous
operation for a data transfer or session, when that transfer or session is to be
subsequently terminated.

For some operations, such as a sequential read or write, ABORT causes the entire
data transfer to fail.

When ABORT is issued during an SM-CMD-INTF sequence, termination of
processing of the command by StorHouse is requested. However, the user must
continue calling SM-CMD-INTF until command-ended is indicated.

Cross-Reference to Sample Program

There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”

FileTek, Inc.

Callable Interface Programmer’s Guide 5-71

FileTek Confidential and Proprietary

5 Callable Interface Functions
ABORT

5-72 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

6

Sample Program

The sample program in this chapter illustrates the use of the standard IBM StorHouse
host Callable Interface. The sample program performs the following functions:

Establishes a session with the StorHouse.

Transfers a sequential file from the host to a non-VRAM file on StorHouse.
Reads and prints all records in the non-VRAM file.

Transfers the same host file to a VRAM file on StorHouse.

Reads the VRAM file by relative record number.

Reads the VRAM file by key.

Ends a session with StorHouse.

If any errors occur, the program prints an error message (using EMSG), closes the
host files, and terminates.

Note This document reflects the name change from Storage Machine to StorHouse. The
code will be updated in a later release.

FileTek, Inc. Callable Interface Programmer’s Guide 6-1

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

COBOL Sample Program

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. SAMPCOB.

EE R I I S R I O I S O

*

THIS | S THE COBOL SAMPLE PROGRAM FOR FI LETEK' S CALLABLE
| NTERFACE. TH S PROGRAM DCES THE FOLLOW NG

*
*
*
CONNECTS TO STORHOUSE. *
TRANSFERS A HOST SEQUENTI AL FILE TO A NON- VRAM STORHOUSE FI LE. *
READS AND PRI NTS ALL RECORDS FROM THE NON- VRAM STORHOUSE FI LE. *
*
*
*
*
*
*

PROCESSES THE VRAM FI LE BY RELATI VE RECORD NUMBER.
PROCESSES THE VRAM FI LE BY KEY.

1
2
3.
4. TRANSFERS THE SAME HOST FILE TO A VRAM STORHOUSE FI LE.
5
6
7. DI SCONNECTS FROM STORHOUSE.

*
*
*
*
*
*
*
*
*
*
*
*
*

R R I I R O R

ENVI RONMVENT DI VI SI ON.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.

SELECT HOST-FI LE ASSI GN TO HOSTFI LE
ORGANI ZATI ON | S SEQUENTI AL
ACCESS |'S SEQUENTI AL.

SELECT PRI NT-FILE ASSI GN TO SYSPRI NT
ORGANI ZATI ON | S SEQUENTI AL
ACCESS |'S SEQUENTI AL.

DATA DI VI SI ON.
FI LE SECTI ON.

THE HOST SEQUENTI AL FI LE CONTAI NS 80- BYTE RECORDS. A SOCI AL SECURI TY
NUMBER IS IN POSI TIONS 1 THRU 9.

* % X

FD HOST-FI LE
LABEL RECORDS STANDARD
BLOCK CONTAINS 0 RECORDS
RECORDI NG MODE IS F
DATA RECORD | S HOST- RECORD.
01 HOST- RECORD.
05 HOST- RECORD- SSN PIC 9(9).
05 HOST- RECORD- DATA PIC X(71).

*

* PRINT-FILE IS USED TO PRI NT ERROR MESSAGES AND DATA RECORDS.

*

FD PRI NT-FI LE
LABEL RECORDS STANDARD
BLOCK CONTAINS 0 RECORDS
RECORDI NG MODE IS F
DATA RECCORD | S PRI NT- RECORD.
01 PRI NT- RECORD.

6-2 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

05 PRI NT- RECORD- CC PIC X
05 PRI NT- RECORD- DATA PI C X(132).
IORKI NG STORAGE SECTI ON.
*
* DEFI NE THE STORHOUSE FUNCTI ON CHARACTER STRI NG | DENTI FI ERS
*
01 SML- FUNCTI ON- CONNECT PI C X(16) VALUE ' CONNECT' .
01 SML- FUNCTI ON- DI SCONNECT PI C X(16) VALUE ' DI SCONNECT' .
01 SML- FUNCTI ON- OPEN- SEQ PI C X(16) VALUE ' OPEN- SEQ .
01 SML- FUNCTI ON- OPEN- VRAM PI C X(16) VALUE ' OPEN- VRAM .
01 SML- FUNCTI ON- CLCSE PIC X(16) VALUE ' CLOSE .
01 SML- FUNCTI ON- EMBG PI C X(16) VALUE ' EMSG .
01 SML- FUNCTI ON- READ PI C X(16) VALUE ' READ .
01 SML- FUNCTI ON- READ-RECORD PI C X(16) VALUE ' READ- RECORD .
01 SML- FUNCTI ON- READ- NEXT- KEY PIC X(16) VALUE ' READ- NEXT- KEY' .
01 SML- FUNCTI ON-WRI TE PIC X(16) VALUE ' WRITE' .
*
* DEFI NE THE STORHOUSE COVMAND AND TRANSFER LI NK TOKEN | DENTI Fl ERS
*
01 SML- CONNECT- TCKEN PI C S9(8) SYNC COWP.
01 SML- OPEN- TOKEN PI C S9(8) SYNC COWP.
*
* DEFI NE THE STORHOUSE RETURN CODE AREAS
*
01 SML- RETURN- CODE PI C S9(8) SYNC COWP.
01 SML- EMSG- RETURN- CODE PI C S9(8) SYNC COWP.
*
* DEFI NE THE PARAMETERS SPECI FI C TO THE CONNECT FUNCTI ON
*
01 SML- CMDLI NK- ENMSGFLAG PIC S9(8) SYNC COWVP VALUE +1.
01 SML- ACCOUNT PI C X(12) VALUE ' YOUR_ACCT' .
01 SML- PASSWORD PI C X(32) VALUE ' YOUR_PSVD .
01 SML-LIBRARY-1D PI C X(6) VALUE SPACES.
01 SML- SUBSYSTEM I D PI C X(4) VALUE SPACES.
*
* THE DI SCONNECT FUNCTI ON REQUI RES ONLY THE FUNCTI ON | DENTI FI ER,

*

EE

CONNECT- TOKEN, AND RETURN- CODE PARAMETERS.

DEFI NE THE PARAMETERS SPECI FI C TO THE CLOSE FUNCTI ON

01 SML- CLOSE- ABORT- FLAG PI C S9(8) SYNC COW VALUE +0.
*
* DEFI NE THE PARAMETERS SPECI FI C TO THE EMESSAGE FUNCTI ON
*
FileTek, Inc. Callable Interface Programmer’s Guide 6-3

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

01 SML- EMSG BUFFER Pl C X(132) VALUE SPACES' .
01 SML- EMSG BUFFER- LENGTH Pl C S9(8) COMP SYNC VALUE +132.
01 SML- EMSG MSG LENGTH Pl C S9(8) COMP SYNC VALUE +0.
*
* THE PARAMETERS FOR OPEN- SEQ AND OPEN- VRAM ARE NOW DEFI NED
* IN THE FOLLOW NG MANNER:
* 1) DEFI NE THOSE PARAMETERS COMMON TO BOTH OPEN FUNCTI ONS
* 2) DEFI NE THOSE PARAVETERS SPECI FI C TO EACH FUNCTI ON
*
*
* COMMON PARAMETERS USED BY BOTH OPEN- SEQ AND OPEN- VRAM
*
01 SML- XFRLI NK- EVBGFLAG Pl C S9(8) COMP SYNC VALUE +1.
01 SMi-FI LE- MODE PI C X(6) VALUE SPACES.
01 SML- FI LE- PASSWORDS,
05 F- READ- PWD PIC X(8) VALUE SPACES.
05 F-WRI TE- PWD PIC X(8) VALUE SPACES.
* NOTE: THE DELETE PASSWORD |'S NOT USED BY OPEN-VRAM
05 F- DELETE- PWD PIC X(8) VALUE SPACES.
01 SMi- GROUP- NAME PIC X(8) VALUE SPACES.
01 SML- GROUP- PASSVORDS.
05 G READ- PWD PIC X(8) VALUE SPACES.
05 G WRI TE- PWD PIC X(8) VALUE SPACES.
* NOTE: THE DELETE PASSWORD |'S NOT USED BY OPEN-VRAM
05 G DELETE- PWD PIC X(8) VALUE SPACES.
*
* DEFI NE THE FI LE MODE CHARACTER STRINGS USED FOR OPENS.
*
01 SMi- MODE- APPEND PIC X(6) VALUE ' APPEND .
01 SMi- MODE- READ PIC X(6) VALUE ' READ .
01 SMi- MODE-WRI TE PIC X(6) VALUE 'WRITE .
*
* PARAMETERS SPECI FI C TO OPEN- SEQ
*
01 SMi-FI LE- VERSI ON Pl C S9(8) COMP SYNC VALUE +0.
*
* THE STORHOUSE FI LENAME |'S SPECI FIED ON THE "// SMINVFIL" DD STATEMENT I N
THE JCL
*
01 SMi- NONVRAM FI LENAMVE PI C X(56) VALUE ' DD=SMLNVFI L' .
*
* SPECI FY BLANKS FOR THE FILE LOCATI ON (VOLUNE AND FI LE SETS)
* TO USE THE DEFAULTS
01 SMi-FI LE- LOCATI ON.
05 SML- VOLUME- SET PIC X(8) VALUE SPACES.
05 SML- FI LE- SET PIC X(8) VALUE SPACES.

6-4 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

* DEFI NE THE FI LE ATTRI BUTE LI ST USED BY THE OPEN- SEQ FUNCTI ON

01 SML- NONVRAM FI LE- ATTRI BUTES.

* THERE ARE 8 ITEMS IN TH S LI ST

05 FATTR-LI ST-SI ZE PIC S9(8) COW SYNC VALUE +8.
* THE FI LE SI ZE MUST BE SPECI FI ED AND | S CALCULATED AS FOLLOWE:
* 100 80-BYTE RECORDS I N THE HOST FI LE = 8000 BYTES
* A 5% OVERHEAD | S ADDED, THUS FI LESI ZE = 8400

05 FATTR-FI LE- SI ZE PIC S9(8) COW SYNC VALUE +8400.
* THE RECORD LENGTH IS A MAXI MUM OF 80 BYTES

05 FATTR- MAX- RECORD- LEN PIC S9(8) COW SYNC VALUE +80.
* THE STORHOUSE FI LE IS TO BE TRANSPORTABLE ACROSS HOST SYSTEMS

05 FATTR- TRANSPORT- FL PIC S9(8) COW SYNC VALUE +1.
* THE FILE IS TO BE STORED I N STORHOUSE | N ASCI | FORNAT

05 FATTR- DATA- XLATE- FL PIC S9(8) COW SYNC VALUE +1.
* THE FILE I'S FI XED RECORD FORNVAT

05 FATTR- FI XED- RECORD- FL PI C S9(8) COW SYNC VALUE +1.
* THE FI LE DOES NOT' CONTAI N ANSI CONTRCOL CHARACTERS

05 FATTR- CC- ANSI - FL PIC S9(8) COW SYNC VALUE +0.
* THE FI LE DOES NOT CONTAI N MACHI NE CONTROL CHARACTERS

05 FATTR- CC- MACH- FL PIC S9(8) COW SYNC VALUE +0.
* A CRCSS MEMORY BUFFER SI ZE OF 64K | S TO BE USED

05 FATTR- BLOCK- SI ZE PIC S9(8) COW SYNC VALUE +65536.
*
* DEFI NE THE FI LE OPTIONS LI ST USED BY THE OPEN- SEQ FUNCTI ON

01 SML- NONVRAM FI LE- CPTI ONS.

* THERE ARE 8 ITEMS IN TH S LI ST

05 FOPTS- LI ST-SI ZE PIC S9(8) COW SYNC VALUE +8.
* LOCK THE FI LE ON WRI TE

05 FOPTS- LOCK PIC S9(8) COW SYNC VALUE +1.
* IF THE FILE I S LOCKED WHEN THI S PROGRAM ATTEMPTS ACCESS,
* DO NOT WAI T FOR THE LOCK TO BE RELEASED. | NSTEAD,
* TERM NATE PROCESSI NG

05 FOPTS-WAIT PI C S9(8) COW SYNC VALUE +0.
* SPECI FY / ATF=2

05 FOPTS- ATF PI C S9(8) COW SYNC VALUE +2.

FileTek, Inc. Callable Interface Programmer’s Guide

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

* SPECI FY THE DEFAULT EDC
05 FOPTS- EDC PI C S9(8) COW SYNC VALUE +0.
* SPECI FY THE MAXI MUM VERSION LIM T VALUE
05 FOPTS-LIMT PIC S9(8) COW SYNC VALUE +128.
* CREATE A NEW VERSI ON OF THE FI LE BY SPECI FYI NG THAT THI S
* IS NOT A NEW FI LE
05 FOPTS- NEW PIC S9(8) COW SYNC VALUE +0.
* UNLOCK THE FI LE AFTER WRI TI NG
05 FOPTS- UNLOCK PIC S9(8) COW SYNC VALUE +1.
* SPECI FY / VTF=NEXT
05 FOPTS- VTF PI C S9(8) COW SYNC VALUE +2.
*
* PARAMETERS SPECI FI C TO THE OPEN- VRAM FUNCTI ON
*
01 SML- FI LE- REVI SI ON PIC S9(8) COW SYNC VALUE +0.
* THE STORHOUSE FI LENAME |'S SPECI FI ED ON THE "// SMLVFI L" DD
* STATEMENT I N THE JCL
01 SML- VRAM: FI LENAME PI C X(56) VALUE ' DD=SMLVFI L' .
* THE VRAM FI LE W LL BE PROCESSED BY RECORD NUMBER AND KEY
01 SML- OPEN- METHOD PI C X(24) VALUE ' RECORD, KEYED .
*
* DEFI NE THE VRAM FI LE ATTRI BUTE LI ST

01 SML- VRAM FI LE- ATTRI BUTES.

* THERE ARE 8 I TEMS I N A FULL- LENGTH ATTRI BUTE LI ST. TH S PROGRAM
* DOES NOT USE THE VERSI ON OR THE CHECKPO NT Fl ELDS, SO THEY ARE
* OM TTED.

05 LI ST-SIZE PIC S9(8) COW SYNC VALUE +6.
* THE MAXI MUM RECORD LENGTH | S 80

05 MAX- RCD- LENGTH PIC S9(8) COW SYNC VALUE +80.
* THE LAST PHYSI CAL RECORD NUMBER IS RETURNED HERE BY CPEN

05 LAST- P- REC- NUM PIC S9(8) COW SYNC VALUE +0.
* THE LAST LOG CAL RECORD NUMBER | S RETURNED HERE BY OPEN

05 LAST- L- REC- NUM PI C S9(8) COW SYNC VALUE +0.
* THE CURRENT REVI SION OF THE FI LE

05 FI LE- REVI SI ON- NUMBER PI C S9(8) COW SYNC VALUE +0.
* THE FI LE TYPE | S RETURNED HERE

05 FILE-TYPE PIC S9(8) COW SYNC VALUE +0.

6-6 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

* A CRCSS MEMORY BUFFER SI ZE OF 64K | S TO BE USED
05 BLOCK- SI ZE PIC S9(8) COW SYNC VALUE +65536.

THE PARAMETERS FOR THE READS AND WRI TES ARE NOW DEFI NED
IN THE FOLLOWN NG MANNER:

1) DEFI NE THOSE PARAMETERS COWMMON TO ALL FUNCTI ONS

2) DEFI NE THOSE PARAMETERS SPECI FI C TO EACH FUNCTI ON

E R R I

PARAMETERS USED FOR ALL READ AND WRI TE COPERATI ONS

* ALL DATA |'S READ | NTO OR WRI TTEN FROM TH S AREA
01 SML-FI LE- BUFFER.
05 SML-FI LE- KEY PIC 9(9).
05 SML-FI LE- DATA PIC X(71).
* THE BUFFER | S 80 BYTES | N LENGTH
01 SML-FI LE- BUFFER- LENGTH PIC S9(8) COVP SYNC VALUE +80.
* THE RECORD LENGTH (SPECI FI ED FOR WRI TE, RETURNED BY READ)
01 SML- RECORD- LENGTH PIC S9(8) COVP SYNC VALUE +80.
* THE RECORD NUMBER JUST WRI TTEN (RETURNED BY VIR TE)
01 SML- RECORD- NUVBER PI C S9(8) COVP SYNC.
*
* PARAVETERS SPECI FI C TO THE VRAM READ FUNCTI ONS
*
01 SML- RECORD- KEY PIC 9(9).
01 SML-KEY- NAME PI C X(56) VALUE ' SOCI AL- SECURI TY- NUVBER .
01 SML-KEY- LENGTH PIC S9(8) COVP SYNC VALUE +9.
01 SML- RELATI VE- RECORD PIC S9(8) COVP SYNC VALUE +0.
*
* M SCELLANEOUS STORAGE AREAS
*
01 COVP- WORK- AREAS COVP SYNC.
05 HOST- FI LE- ECF PI C S9(8).
05 | PIC S9(8) VALUE +0.
05 K PIC S9(8) VALUE +0.
01 KEY- TABLE PIC 9(9) OCCURS 4.

01 PRI NT- MESSAGES.
05 ERROR- RETURNED- FROM SM

10 FILLER PIC X(13) VALUE ' SML FUNCTI ON .

10 ERROR- SM FUNCTI ON Pl C X(16).

10 FILLER PIC X(19) VALUE ' FAILED...RETURN =".
10 ERROR- SM RETURN PIC Z(4).

PROCEDURE DI VI SI ON.

I NI TI AL- PROCESSI NG

FileTek, Inc. Callable Interface Programmer’s Guide

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

OPEN QUTPUT PRI NT-FI LE.
MOVE SPACES TO PRI NT- RECORD.

MAI N- PROCESSI NG,

* CONNECT TO STORHOUSE.
PERFORM 100- CONNECT- TO- SM THRU 100- EXI T.

* TRANSFER THE HOST FILE TO A NONVRAM STORHOUSE FI LE.
PERFORM 200- TRANSFER- NOVRAM FI LE THRU 200- EXI T.

* RETRI EVE PRINT ALL RECORDS FROM THE NEWY CREATED STORHOUSE FI LE.
PERFORM 300- RETRI EVE- NOVRAM FI LE THRU 300- EXI T.

* TRANSFER THE HOST FILE TO A VRAM STORHOUSE FI LE.
PERFORM 400- TRANSFER- VRAM FI LE THRU 400- EXI T.

* READ AND PRI NT RELATI VE RECORDS 2, 4, 6, AND 8.
PERFORM 500- PROCESS- RELATI VE- RECORDS THRU 500- EXI T.

* READ-KEYED AND PRI NT RECORDS 2, 4, 6, AND 8;
* READ- NEXT- KEY AND PRI NT RECORDS 3, 5, 7, AND 9.

PERFORM 600- PROCESS- KEYED- RECORDS THRU 600- EXI T.
* DI SCONNECT FROM STORHOUSE.
PERFORM 700- DI SCONNECT THRU 700- EXI T.
FI NAL- PROCESSI NG

CLOSE PRI NT- FI LE.
GOBACK.

100- CONNECT- TO- SM

* CONNECT TO STORHOUSE.

CALL ' LSMCALL' USI NG SML- FUNCTI ON- CONNECT
SML- CONNECT- TOKEN
SML- RETURN- CODE
SML- CMVDLI NK- EMBSGFLAG
SML- ACCOUNT
SML- PASSWORD
SML- LI BRARY- | D
SML- SUBSYSTEM | D.

*

* USE THE EMESSAGE FUNCTI ON TO RETRI EVE ANY STORHOUSE MESSAGES.

*

6-8 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

* %k Ok *

COBOL Sample Program

PERFORM 1500- RETRI EVE- CMDLI NK- EMSGS THRU 1500- EXI T.

I NSURE A SUCCESSFUL CONNECT TO STORHOUSE. TERM NATE PROCESSI NG
| F THE CONNECT FAI LED.

I F SML- RETURN- CODE EQUAL ZERO NEXT SENTENCE
ELSE
MOVE SML- FUNCTI ON- CONNECT TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100-EXI T
PERFORM FI NAL- PROCESSI NG,
100-EXIT.
EXIT.
200- TRANSFER- NONVRAM FI LE.

THI'S ROUTI NE TRANSFERS A HOST FI LE TO STORHOUSE. THE STORHOUSE FI LE
I S CREATED I N TRANSPORTABLE, ASCI| FORVAT.

OPEN THE HOST FI LE
OPEN | NPUT HOST- FI LE.

SET THE STORHOUSE FI LE OPTI ONS TO LOCK AT OPEN, UNLOCK AT CLOSE.
MOVE +1 TO FOPTS-LOCK FOPTS- UNLOCK.

SET THE STORHOUSE FI LE MODE TO WRI TE.
MOVE SML- MODE-VWRI TE TO SML- FI LE- MODE.

OPEN THE STORHOUSE FILE. | F THE OPEN FAILS, ALL PROCESSI NG | S
TERM NATED BY THE 1000- OPEN- NONVRAM ROUTI NE.

PERFORM 1000- CPEN- NONVRAM THRU 1000- EXI T.
READ THE HOST FILE, AND WRI TE TO STORHOUSE
MOVE +0 TO HOST- FI LE- EOF.

PERFORM 210- READ-WRI TE THRU 210-EXIT
UNTI L HOST- FI LE- EOF NOT' EQUAL ZERO.

CLOSE THE HOST FI LE AND THE STORHOUSE FI LE.
CLOSE HOST- FI LE

PERFORM 1300- CLOSE- SM FI LE THRU 1300- EXI T.

TRANSFER | S COVPLETE.

200-EXIT.
EXIT.

FileTek, Inc. Callable Interface Programmer’s Guide 6-9

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

210- READ- WRI TE.
READ A RECORD FROM THE HOST FI LE.

READ HOST- FI LE | NTO SML- FI LE- BUFFER
AT END MOVE +1 TO HOST- FI LE- ECF.

WRI TE THE RECORD TO STORHOUSE. | F THE WRITE FAI LS, ALL PROCESSI NG

IS TERM NATED BY THE 1200- WRI TE- TO- SM ROUTI NE.

| F HOST- FI LE- ECF EQUAL ZERO
PERFORM 1200- WRI TE- TO- SM THRU 1200- EXI T.

210-EXIT.
EXIT.
300- RETRI EVE- NONVRAM FI LE.

THI'S ROUTI NE RETRI EVES AND PRI NTS EACH RECORD FROM STORHOUSE
NONVRAM FI LE JUST CREATED.

SET THE STORHOUSE FI LE OPTI ONS FOR NO LOCK.
MOVE +0 TO FOPTS- LOCK.
SET THE STORHOUSE FI LE MODE TO READ.

MOVE SML- MODE- READ TO SML- FI LE- MODE.

OPEN THE STORHOUSE FILE. | F THE OPEN FAILS, ALL PROCESSI NG | S

TERM NATED BY THE 1000- OPEN- NONVRAM ROUTI NE.
PERFORM 1000- CPEN- NONVRAM THRU 1000- EXI T.
READ THE STORHOUSE FI LE UNTIL END CF FILE.

PERFORM 310- READ- SM THRU 310-EXI T
UNTI L SML- RETURN- CODE NOT EQUAL ZERO.

CLCSE THE STORHOUSE FI LE.
PERFORM 1300- CLOSE- SM FI LE THRU 1300- EXI T.
RETRI EVAL | S COVMPLETE.

300-EXIT.
EXIT.

310- READ- SM
READ A RECORD FROM STORHOUSE AND PRI NT THE RECORD.
CALL 'LSMCALL' USI NG SML- FUNCTI ON- READ
SML- OPEN- TOKEN

SML- RETURN- CODE
SML- FI LE- BUFFER

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

SML- FI LE- BUFFER- LENGTH
SML- RECORD- LENGTH.

* SML- RETURN- CODE = 5650, THEN END- OF- FI LE WAS ENCOUNTERED.
* ANY OTHER NON- ZERO RETURN |'S AN ERROR CONDI TI ON.
I F SML- RETURN- CODE NOT EQUAL ZERO
| F SML- RETURN- CCDE NOT EQUAL +5650
MOVE SML- FUNCTI ON- READ TO ERROR- SM- FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100-EXI T
PERFORM 1600- RETRI EVE- XFRLI NK- EM5GS THRU 1600- EXI T
ELSE
NEXT SENTENCE
ELSE
PERFORM 2200- PRI NT- SM RECORD THRU 2200- EXI T.

310-EXIT.
EXIT.

400- TRANSFER- VRAM FI LE.
* TH' S ROUTI NE TRANSFERS A HOST FI LE TO A STORHOUSE VRAM FI LE.
* OPEN THE HOST FI LE
OPEN | NPUT HOST- FI LE.
* SET THE STORHOUSE FI LE MODE TO APPEND.
MOVE SML- MODE- APPEND TO SML- FI LE- MODE.

* OPEN THE STORHOUSE FILE. | F THE OPEN FAILS, ALL PROCESSI NG | S
* TERM NATED BY THE 1100- OPEN- VRAM ROUTI NE.

PERFORM 1100- CPEN- VRAM THRU 1100- EXI T.
* READ THE HOST FILE, AND WRI TE TO STORHOUSE
MOVE +0 TO HOST- FI LE- EOF.

PERFORM 410- READ-WRI TE THRU 410-EXIT
UNTI L HOST- FI LE- EOF NOT' EQUAL ZERQO.

* CLOSE THE HOST FILE AND THE STORHOUSE FI LE.
CLOSE HOST- FI LE.

PERFORM 1300- CLOSE- SM FI LE THRU 1300- EXI T.

* TRANSFER | S COVPLETE.

400- EXI'T.
EXIT

410- READ- \RI TE.

FileTek, Inc. Callable Interface Programmer’s Guide 6-11

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

* READ A RECORD FROM THE HOST FI LE.

READ HOST- FI LE | NTO SML- FI LE- BUFFER
AT END MOVE +1 TO HOST- FI LE- ECF.

* WRITE THE RECORD TO STORHOUSE. |F THE WRITE FAILS, ALL PROCESSI NG
* |'S TERM NATED BY THE 1200- WRI TE- TO- SM ROUTI NE.

| F HOST- FI LE- EOF EQUAL ZERO
PERFORM 1200- WRI TE- TO- SM THRU 1200- EXI T.

410-EXIT.
EXIT.

500- PROCESS- RELATI VE- RECORDS.

THI'S ROUTI NE W LL:

OPEN THE STORHOUSE VRAM FI LE JUST CREATED FOR READ PROCESSI NG
READ BY RELATI VE RECORD NUMBER AND PRI NT RECORDS 2, 4, 6, 8
SAVE THE KEYS FOR THESE RECORDS FOR SUBSEQUENT READ- KEYED
PROCESSI NG

E O I

* OPEN THE VRAM FI LE FOR READ PROCESSI NG
MOVE SM MODE- READ TO SML- FI LE- MODE.
PERFORM 1100- CPEN- VRAM THRU 1100- EXI T.
* READ AND PRI NT RECORDS 2, 4, 6, AND 8. ALSO SAVE THElI R KEYS.

PERFORM 510- READ- PRI NT THRU 510-EXIT
VARYI NG SML- RELATI VE- RECORD FROM +2 BY +2
UNTI L SML- RELATI VE- RECORD > +8.

* RELATI VE RECORD PROCESSI NG COVPLETE.

500-EXIT.
EXIT.

510- READ- AND- PRI NT.

CALL 'LSMCALL' USI NG SML- FUNCTI ON- READ- RECORD
SML- OPEN- TOKEN
SML- RETURN- CODE
SML- FI LE- BUFFER
SML- FI LE- BUFFER- LENGTH
SML- RECCRD- LENGTH
SML- RELATI VE- RECORD.

* | F THE RETURN CODE FROM THE READ- RECORD |'S NOT O,
* FORMAT AN ERROR MESSAGE, AND RETRI EVE AND PRI NT ANY
* STORHOUSE PROVI DED EMESSAGES.

I F SML- RETURN- CODE NOT EQUAL ZERO
MOVE SML- FUNCTI ON- READ- RECORD TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100-EXI T

6-12 Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

E I I

COBOL Sample Program

PERFORM 1600- RETRI EVE- XFRLI NK- EM5GS THRU 1600- EXI T
OTHERW SE, PRI NT THE RECORD JUST READ AND SAVE | TS KEY.

ELSE
PERFORM 2200- PRI NT- SM RECORD THRU 2200- EXI' T
ADD +1 TO |
MOVE SML- Fl LE- KEY TO KEY- TABLE(I) .

510-EXIT.
EXIT.

600- PROCESS- KEYED- RECORDS.

THI'S ROUTI NE W LL:
READ THE STORHOUSE VRAM FI LE BY KEY, USING THE KEYS SAVED BY THE PREVI QUS
RELATI VE RECORD PROCESSI NG, READ- NEXT- KEY FOR THE | NTERVENI NG RECCORDS,
PRI NT ALL RECORDS READ, AND CLOSE THE VRAM FI LE.

PERFORM 610- READ- KEYED THRU 610-EXI T
VARYI NG K FROM +1 BY +1 UNTIL K > I.

CLOSE THE VRAM FI LE.
PERFORM 1300- CLOSE- SM FI LE THRU 1300- EXI T.

KEYED PROCESSI NG COVPLETE.

600- EXIT.
EXIT.

610- READ- KEYED.
READ THE STORHOUSE VRAM FI LE BY KEY. KEYS WERE STCORED | N KEY- TABLE.
MOVE KEY- TABLE(1) TO SML- RECORD- KEY.

CALL 'LSMCALL' USI NG SML- FUNCTI ON- READ- KEYED
SML- OPEN- TOKEN
SML- RETURN- CODE
SML- FI LE- BUFFER
SML- FI LE- BUFFER- LENGTH
SML- RECORD- LENGTH
SML- KEY- NAME
SML- RECCRD- KEY
SML- KEY- LENGTH
SML- RELATI VE- RECORD.

| F THE RETURN CODE FROM THE READ- KEYED | S NOT 0, FORVAT AN ERROR MESSAGE
AND RETRI EVE AND PRI NT ANY STORHOUSE PROVI DED EMESSACES.

I F SML- RETURN- CODE NOT EQUAL ZERO
MOVE SML- FUNCTI ON- READ- KEYED TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100- EXI' T
PERFORM 1600- RETRI EVE- XFRLI NK- EM5GS THRU 1600- EXI T

| F THE RETURN CCDE FROM THE READ- KEYED WAS 0,

FileTek, Inc. Callable Interface Programmer’s Guide 6-13

*

*

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

PRI NT THE RECORD JUST READ
ELSE
PERFORM 2200- PRI NT- SM RECORD THRU 2200- EXI T.
NOW EXECUTE A READ- NEXT- KEY FUNCTI ON

CALL ' LSMCALL' USI NG SML- FUNCTI ON- READ- NEXT- KEY
SML- OPEN- TOKEN
SML- RETURN- CODE
SML- FI LE- BUFFER
SML- FI LE- BUFFER- LENGTH
SML- RECORD- LENGTH
SML- RELATI VE- RECORD.

I F THE RETURN CODE FROM THE READ- NEXT-KEY IS NOT 0, FORMAT AN ERRCR
MESSAGE, AND RETRI EVE AND PRI NT ANY STORHOUSE PROVI DED EMESSAGES.

| F SML- RETURN- CODE NOT EQUAL ZERO
MOVE SML- FUNCTI ON- READ- NEXT- KEY TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100-EXI T
PERFORM 1600- RETRI EVE- XFRLI NK- EM5GS THRU 1600- EXI T
OTHERW SE, PRI NT THE RECORD JUST READ.

ELSE
PERFORM 2200- PRI NT- SM RECORD THRU 2200- EXI T.

610-EXIT.
EXIT.

700- DI SCONNECT.

*
* DI SCONNECT FROM STORHOUSE.
*
* NOTE:
*
* SINCE THE CONNECT FUNCTI ON SET THE EMSG FLAG TO 1, TH' S ROUTINE W LL
* CALL THE EMSG FUNCTI ON TO ALLOW THE STORHOUSE | NTERFACE MODULES TO PERFORM
* STORAGE CLEANUP.
*
CALL ' LSMCALL' USI NG SML- FUNCTI ON- DI SCONNECT
SML- CONNECT- TOKEN
SML- RETURN- CODE.
PERFORM 1500- RETRI EVE- CVDLI NK- EMSGS THRU 1500- EXI T.
700- EXIT.
EXIT.
1000- OPEN- NONVRAM
*
6-14 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
COBOL Sample Program

* OPEN THE STORHOUSE NONVRAM FI LE.
*
CALL 'LSMCALL' USI NG SML- FUNCTI ON- OPEN- SEQ

SML- CONNECT- TOKEN
SML- RETURN- CODE
SML- XFRLI NK- EMSGFLAG
SML- OPEN- TOKEN
SML- FI LE- MODE
SML- NONVRAM FI LENAMVE
SML- FI LE- VERSI ON
SML- FI LE- PASSWORDS
SML- GRCUP- NAME
SML- GRCUP- PASSWORDS
SML- FI LE- LOCATI ON
SML- NONVRAM: FI LE- ATTRI BUTES
SML- NONVRAM: FI LE- OPTI ONS.

CHECK FOR A SUCCESSFUL OPEN. | F THE OPEN FAI LED, DI SCONNECT
FROM STORHOUSE AND TERM NATE PROCESSI NG

NOTE: DI SCONNECT PROCESSI NG W LL RETRI EVE ANY STORHOUSE EMESSAGES.

E O I B

| F SML- RETURN- CODE EQUAL ZERO NEXT SENTENCE
ELSE
MOVE SML- FUNCTI ON- OPEN- SEQ TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100- EXI' T
PERFORM 700- DI SCONNECT THRU 700- EXI'T
PERFORM FI NAL- PROCESSI NG.

1000-EXI T.
EXIT.

1100- OPEN- VRAM

*

* OPEN THE STORHOUSE VRAM FI LE.
*
CALL ' LSMCALL' USI NG SML- FUNCTI ON- OPEN- VRAM

SML- CONNECT- TOKEN
SML- RETURN- CODE
SML- XFRLI NK- EVBGFLAG
SML- OPEN- TOKEN
SML- FI LE- MODE
SML- OPEN- METHOD
SML- VRAM FI LENAVE
SML- FI LE- REVI SI ON
SML- FI LE- PASSWORDS
SML- GROUP- NANVE
SML- GROUP- PASSWORDS
SML- RELATI VE- RECORD
SML- VRAM FI LE- ATTRI BUTES.

CHECK FOR A SUCCESSFUL OPEN. | F THE OPEN FAI LED, DI SCONNECT
FROM STORHOUSE AND TERM NATE PROCESSI NG

E I 3

FileTek, Inc. Callable Interface Programmer’s Guide 6-15

E R I R

E I T R T

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

NOTE: DI SCONNECT PROCESSI NG W LL RETRI EVE ANY STORHOUSE EMESSAGES.

I F SML- RETURN- CODE EQUAL ZERO NEXT SENTENCE
ELSE
MOVE SML- FUNCTI ON- OPEN- VRAM TO ERROR- SM- FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100- EXI' T
PERFORM 700- DI SCONNECT THRU 700- EXI' T
PERFORM FI NAL- PROCESSI NG,

1100-EXI T.
EXIT.

1200- WRI TE- TO- SM

THI'S ROUTINE WLL USE STORHOUSE WRI TE FUNCTI ON TO TRANSFER
RECORDS TO A STORHOUSE FI LE.

CALL 'LSMCALL' USI NG SML- FUNCTI ON- WRI TE
SML- OPEN- TOKEN
SML- RETURN- CODE
SML- FI LE- BUFFER
SML- FI LE- BUFFER- LENGTH
SML- RECORD- NUMBER.

CHECK FOR A SUCCESSFUL WRITE. I F IT FAILED, CLCSE THE FI LE
W TH THE ABORT FLAG SET TO 1, DI SCONNECT FROM STORHOUSE, AND
END ALL PROCESSI NG

NOTE: CLOSE PROCESSI NG W LL RETRI EVE ANY EMESSAGES.

| F SML- RETURN- CODE EQUAL ZERO NEXT SENTENCE
ELSE

MOVE SML- FUNCTI ON-WRI TE TO ERROR- SM FUNCTI ON
PERFORM 2100- PRI NT- SM ERROR THRU 2100-EXI T
MOVE +1 TO SML- CLOSE- ABORT- FLAG
PERFORM 1300- CLOSE- SM FI LE THRU 1300-EXIT
PERFORM 700- DI SCONNECT THRU 700- EXI'T
PERFORM FI NAL- PROCESSI NG.

1200-EXI T.
EXIT.
1300- CLOSE- SM FI LE.
CLOSE THE STORHOUSE FI LE.
NOTE:

SI NCE THE OPEN FUNCTI ON SET THE EMSG FLAG TO 1, THI S ROUTI NE WLL CALL

EMSG TO ALLOW THE STORHOUSE | NTERFACE MODULES TO PERFORM STORAGE CLEANUP.

CALL ' LSMCALL' USI NG SML- FUNCTI ON- CLOSE

6-16

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

* %k F F

* % 3k X %

SML- OPEN- TOKEN
SML- RETURN- CODE
SML- CLCSE- ABORT- FLAG
PERFORM 1600- RETRI EVE- XFRLI NK- EM5GS THRU 1600- EXI T.
1300-EXIT.
EXIT.

1500- RETRI EVE- CMDLI NK- EMSGS.

COBOL Sample Program

THI'S ROUTI NE WLL EXTRACT ALL MESSAGES RETURNED FROM STORHOUSE
AT THE COVMAND LI NK (SESSI ON) LEVEL. EACH RETURNED MESSAGE | S THEN

PRI NTED.
MOVE ZERO TO SML- EMSG- RETURN- CODE.
PERFORM 1510- CALL- EMSG THRU 1510-EXIT
UNTI L SML- EM5G- RETURN- CODE NOT' EQUAL ZEROQ.

1500-EXI T.
EXIT.

1510- CALL- EMSG

USE THE EMESSAGE FUNCTI ON TO RETRI EVE ANY STORHOUSE MESSAGES.

CALL 'LSMCALL' USI NG SML- FUNCTI ON- EMSG
SML- CONNECT- TOKEN
SML- EMSG- RETURN- CODE
SML- EMSG- BUFFER
SML- EMSG- BUFFER- LENGTH
SML- EMSG- M5G- LENGTH.

NOW PRI NT THE RETRI EVED MESSAGE (I F EMSG RETURN CCDE IS 0).

| F SML- EM5G- RETURN- CODE EQUAL ZERO
PERFORM 2000- PRI NT- EMSG THRU 2000- EXI T.

1510-EXI T.
EXIT.

1600- RETRI EVE- XFRLI NK- EMSGS.
THI'S ROUTI NE WLL EXTRACT ALL MESSAGES RETURNED FROM

STORHOUSE AT THE TRANSFER LI NK (DATA) LEVEL.
EACH RETURNED MESSAGE | S THEN PRI NTED.

MOVE ZERO TO SML- EMSG- RETURN- CODE.
PERFORM 1610- CALL- EMSG THRU 1610-EXIT
UNTI L SML- EM5G- RETURN- CODE NOT' EQUAL ZEROQ.

1600-EXI T.
EXIT.

1610- CALL- EMSG

FileTek, Inc. Callable Interface Programmer’s Guide

6-17

FileTek Confidential and Proprietary

Sample Program

COBOL Sample Program

* USE THE EMESSAGE FUNCTI ON TO RETRI EVE ANY STORHOUSE MESSAGES.

CALL 'LSMCALL' USI NG SML- FUNCTI ON- EMSG
SML- OPEN- TOKEN
SML- EMSG- RETURN- CODE
SML- EMSG- BUFFER
SML- EMSG- BUFFER- LENGTH
SML- EMSG- M5G- LENGTH.

* NOW PRI NT THE RETRI EVED MESSACE (I F EMSG RETURN CODE IS 0).

| F SML- EM5G- RETURN- CODE EQUAL ZERO
PERFORM 2000- PRI NT- EMSG THRU 2000- EXI T.

1610-EXI T.
EXIT.

2000- PRI NT- EMSG.
* TH'S ROUTI NE PRI NTS STORHOUSE EMESSAGES.

MOVE SML- EMSG BUFFER TO PRI NT- RECORD- DATA.
MOVE ' 0' TO PRI NT- RECORD- CC.

VRI TE PRI NT- RECORD.

MOVE SPACES TO PRI NT- RECORD.

2000- EXIT.
EXIT.

2100- PRI NT- SM ERRCR.
* TH'S ROUTI NE PRI NTS AN ERRCR MESSAGE | F A STORHOUSE FUNCTI ON FAI LS

MOVE SML- RETURN- CODE TO ERROR- SM RETURN.

MOVE ERRCR- RETURNED- FROM SM TO PRI NT- RECORD- DATA.
MOVE ' 0" TO PRI NT- RECORD- CC.

VRI TE PRI NT- RECCORD.

MOVE SPACES TO PRI NT- RECORD.

2100-EXIT.
EXIT.

2200- PRI NT- SM- RECORD.

* TH'S ROUTI NE PRI NTS A RECORD READ FROM STORHOUSE
MOVE SML- FI LE- BUFFER TO PRI NT- RECORD- DATA.
MOVE ' ' TO PRI NT- RECORD- CC.
VRI TE PRI NT- RECORD.
MOVE SPACES TO PRI NT- RECORD.

2200-EXIT.
EXIT.

6-18 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

A

Pass-Through Functions

Pass-through functions allow application programs direct access to StorHouse
capabilities by sending and receiving StorHouse ASCII messages. In this mode,
messages are passed directly from StorHouse to the application program without any
manipulation by the StorHouse Subsystem. This mode is intended primarily for use
by FileTek-provided host utility software, such as the (TSO) Interactive Interface.

To use these functions, the application program must have access to message
structure definitions that are generally not distributed. The C language
implementation is available by special order only.

Installations can limit the use of pass-through functions to authorized programs.

The four pass-through functions are:

PTOPEN
PTWRTOSM
PTRDFRSM
CONFIG

These functions are described in the following sections.

FileTek, Inc. Callable Interface Programmer’s Guide A-1

FileTek Confidential and Proprietary

A Pass-Through Functions
PTOPEN

PTOPEN

PTOPEN establishes a data transfer link between the user program and StorHouse
and sets the direction of the data flow. This function is used only for transfers of
complete files.

PTOPEN requires StorHouse standard features.

Statement Format for C

/*

*Data Areas..

*/

char *ctoken ; /* C-Token returned by CONNECT */
char *otoken ; /* O Token, set by PTOPEN */

long returncd ; /* Return-code */

long nsgflag ; /* Messages Flag */

long direct[11] ; /* File Info list */

char sysid[8] ; /* Host-1d for XP for Data Link */
char 1ink[8] ; /* Link-1d for Data Link */

char vcptopn[16] ; [/* For function nane */

char node[6] ; /* Open Mde string */

char file_nane[56];
char group_nane[8];
struct
{
char vol umeset _nane[8] ;
char fileset nane[8];
}file_location;

| ongLSMCALL() ;

/*
*Setup data areas prior to PTOPEN cal
*/
strncpy(vcptopn, "PTOPEN ", (sizeof vcptopn)) ;
strncpy(node, "READ ", (sizeof node)) ;
msgflag = 1 ;/* Return Messages*/
/*
* "sysid," "link" nust be set up fromdata received from

* the Storage Machine. Mst of the direct list nust al so
* be set fromdata received fromthe Storage Machine; only
* the first and last entries are shown here.

*/

direct[0] =10 ;/* Ten entries in list */
direct[10] =0 ;/* Default buffering */

/*

A-2 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Pass-Through Functions A
PTOPEN

* The file name, group nanme, and file |l ocation information
* nmust be set fromthe M VGASGE M VPASG nessage

* "hs" structure nenbers. This setup is not shown here.
*/
/*

*PTOPEN Cal |

*/

LSMCALL(vcptopn, &ctoken, &returncd, &nsgflag,

&ot oken, node, file_nane, group_nane,

& ile_location, sysid, link, direct) ;
if (returncd! =0)
/*
*Error Handling
*/

Parameter Overview

CTOKEN The session identifier returned by CONNECT.
RETURNCD Final status from the requested operation; see “Return Codes.”

MSGFLAG An integer set to zero or non-zero. If non-zero, MSGFLAG indicates that the caller
requires text messages from all session errors, including PTOPEN/CLOSE function
errors. If set to zero, messages may not be retrievable if the session has terminated.

OTOKEN A variable set by PTOPEN to the file identifier. The application program should not
manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the OTOKEN parameter to other function calls for this file.

MODE A 6-byte character string that identifies the file reference mode. Valid modes are
READ and WRITE.

FILE_NAME A 56-byte character string that contains the StorHouse file name. This name is only
used to identify the file in SMF records.

GROUP_NAME An 8-byte character string that contains the group identifier. This field is only used to
identify the file in SMF records.

FILE_LOCATION An array of two 8-character strings that contain the volume set and file set names.
These fields are only used to identify the file in SMF records.

SYSID An 8-byte character string that provides the network identifier for the StorHouse
system being used. This information must be extracted from the MIVxFILE message
by the caller (x is P or G).

FileTek, Inc. Callable Interface Programmer’s Guide A-3

FileTek Confidential and Proprietary

A Pass-Through Functions
PTOPEN

LINK

DIRECT

Any Non-Zero Value

An 8-byte character string that identifies the network OFFER name. This
information must be extracted from the MIVXFILE message by the caller.

An array of variables that supply file characteristics that are kept in the StorHouse
directory entry for the file. The caller must supply these values for both read and
write operations. This information is used by the StorHouse Subsystem to assemble
and disassemble data frames.

Return Codes

The data link session was not established.

Detailed Function Description

PTOPEN directs the StorHouse Subsystem to establish a data link to StorHouse over
the network. The Subsystem manages the data link and exchanges blocks (frames)
with StorHouse. The transfer between the Subsystem and the user program is in
records, which may be any arbitrary unit of data that the user chooses.

The caller is responsible for initiating the transfer request to StorHouse and
processing the MIVXASG and MIVXFILE (x is P or G) messages from StorHouse. The
caller must have sent the MIVXASG response message to StorHouse. Network link
and file characteristics information in these messages are supplied to the Subsystem
through parameter values passed to PTOPEN. PTOPEN completes as soon as the
network data link is established. Standard sequential read and write can then be used
to transfer records. CLOSE should be called after all data has been transferred.

Notes

* Only one data transfer can be active at a time when PTOPEN is used.

¢ A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

PTOPEN must be considered a session-related function.

* Ifafile is opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

* Files transferred using PTOPEN can only be processed sequentially.

A-4

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Pass-Through Functions A
PTWRTOSM

PTWRTOSM

PTWRTOSM sends an ASCII message to StorHouse.

PTWRTOSM requires StorHouse standard features.

Statement Format for C

/*

*Data Areas. ..

*/

char *ctoken ; /* C-Token returned by CONNECT */
long returncd ; /* Return-code */

long snsglen ; /* Message length */

char ptwtosni{16] ; /* For Function nane */
char snessage[768] ;/* Message text string */

long LSMCALL() ;

/*

* Setup data areas prior to PTWRTOSM cal |

*/

strncpy(ptwtosm "PTWRTOSM ", (sizeof ptwtosnm) ;
snmegl en = xXxxx ; /* Set to actual msg | ength*/

/*

* PTWRTOSM Cal |

*/

LSMCALL(ptwtosm &ctoken, & eturncd, snmessage, &snsglen);
if (returncd '=0)
/*

*Error Handling
*/

Parameter Overview

CTOKEN The session identifier returned by CONNECT.
RETURNCD Final status from the requested operation; see “Return Codes.”
MESSAGE The buffer containing the message to be sent to StorHouse.

SMSGLEN The length of the message in the MESSAGE buffer.

FileTek, Inc. Callable Interface Programmer’s Guide A-5

FileTek Confidential and Proprietary

A Pass-Through Functions
PTWRTOSM

Any Non-Zero Value

Return Codes

PTWRTOSM was not processed by StorHouse.

Detailed Function Description

PTWRTOSM (WRite-TO-Storage-Machine) allows the application program to send a
StorHouse ASCII message (MIZxxx structure) to StorHouse. The actual code used in
the message must be EBCDIC; translation is performed by the Subsystem or network
so that the message received by StorHouse is in ASCIIL.

This function completes as soon as the Subsystem has queued the message for
delivery to StorHouse. To receive response messages from StorHouse, PTRDFRSM
must be used. (Refer to the function description section for PTRDFRSM.)

Notes

¢ The maximum length required to retrieve a response is 768 bytes. Any message
longer than this is rejected.

* This function is essentially an immediate operation and therefore has no
asynchronous form (ASPTWRTOSM).

* The formats of the messages are available as special order information. Ask your
system administrator to contact your FileTek customer support representative.

A-6

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Pass-Through Functions A
PTRDFRSM

PTRDFRSM

PTRDFRSM queues a request to receive the next ASCII message (structure) sent to
this session by StorHouse.

PTRDFRSM requires StorHouse standard features.

Statement Format for C

/*

* Data Areas...

*/

char *ctoken ; /* C-Token returned by CONNECT */
long returncd ; /* Return-code */

long reshbufsz ; /* Message length */

long ecb ; Event Control Block (I1BMMWS) */

*
*
* For Function nane */
*

char ptrdfrsni16] ; /
/* Message input string */

char resbuf[772] ;

long LSMCALL() ;

/*

*Setup data areas prior to PTWRTOSM cal |

*/

strncpy(ptrdfrsm "PTRDFRSM ", (sizeof ptrdfrsm) ;
resbufsz = 772 ; /* Set to area size*/

/*

* PTRDFRSM Cal |

*/

LSMCALL(ptrdfrsm &ctoken, &returncd,
resbuff, & esbufsz, &ecb) ;

if (returncd '=0)
/*

*Error Handling
*/

Parameter Overview

CTOKEN The session identifier returned by CONNECT.

RETURNCD Final status from the requested operation; see “Return Codes.”

FileTek, Inc. Callable Interface Programmer’s Guide A-7

FileTek Confidential and Proprietary

A Pass-Through Functions
PTRDFRSM

RESBUFF

RESBUFSZ

ECB

Any Non-Zero Value

The buffer into which the message from StorHouse is copied. The first four bytes of
this area are the actual length of the message. The message follows at the fifth byte.

The size of the RESBUFF buffer.

The Event Control Block that is POSTed when a message has been copied to
RESBUFE

Return Codes

PTRDFRSM was not processed by the Subsystem.

Detailed Function Description

PTRDFRSM (ReaD-FRom-Storage-Machine) allows the application program to
receive an ASCII message from StorHouse. The code used in the message is EBCDIC.
Translation from ASCII is performed by the Subsystem or network prior to delivery of
the message to the caller’s buffer.

This function completes as soon as the Subsystem has queued the request. The ECB
supplied is POSTed when the message has been copied. The caller should not modify
or reference the buffer area until after this POST.

Notes

* The maximum length required to retrieve a response is 772 bytes. The longest
message is 768 bytes. The first four bytes are required for the length. PTRDFRSM
will fail if a smaller buffer is supplied. However, a larger buffer can be supplied.

* PTRDFRSM is essentially an immediate operation. There is no asynchronous
form (ASPTRDFRSM). Also, because the function completes immediately,
ABORT cannot be used to cancel this operation. If the session is signed-off while
a read request is still active, the request is canceled, and the caller can free the
buffer area as soon as DISCONNECT completes.

* The formats of the messages are available as special order information. Ask your
system administrator to contact your FileTek customer support representative.

A-8

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Pass-Through Functions A
CONFIG

CONFIG

CONFIG allows retrieval of the configuration parameters used by the StorHouse
Subsystem.

CONFIG requires StorHouse standard features.

Statement Format for C

/*
* Data Areas..
*/
char *ctoken;/* C-Token returned by CONNECT */
l ong returncd; /* Return-code */
char config[16]; /* For Function nane */

char conval [1024]; [/* Configuration Table area */
long LSMCALL() ;
/*
*Setup data areas prior to CONFIG call
*/
strncpy(config, "CONFIG ", (sizeof config)) ;
/*
* CONFI G Cal |
*/
LSMCALL(config, &ctoken, &returncd, conval) ;
if (returncd '=0)
/*
*Error Handling
*/

Parameter Overview

CTOKEN The session identifier returned by CONNECT.
RETURNCD Final status from the requested operation; see “Return Codes.”

CONVAL The buffer into which the configuration structure is copied.

FileTek, Inc. Callable Interface Programmer’s Guide A-9

FileTek Confidential and Proprietary

A Pass-Through Functions
CONFIG

Return Codes

Any Non-Zero Value ~ CONFIG was not processed by the StorHouse Subsystem.

Detailed Function Description

CONFIG copies the StorHouse Subsystem host configuration parameters to a caller-
defined area.

Note

The format of the configuration area is available in the form of a C language
“typedef” statement. This is special order information. Ask your system administrator
to contact your FileTek customer support representative.

A-10 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

B

ALC Macro Definition

This appendix provides documentation for accessing the Callable Interface from
programs coded in IBM Assembler language. The assumed operating system
environment is MVS, either SP1.3 or SP2.X.

This appendix is divided into two sections. The first section documents the
Assembler MACRO LSMCALL, which facilitates construction of parameter lists and
calling sequences. The second section provides an example of a specific call, both
with the MACRO and with the standard assembler CALL statement.

LSMCALL — Call the Callable Interface Program

LSMCALL builds the parameter list required for a call to the LSMCALL program,
which is the single entry point for all function requests to the StorHouse Callable
Interface. LSMCALL also generates the instructions to set up register 1 (pointer to the
parameter list) and register 15 (LSMCALL entry point address) and to issue the
branch to LSMCALL.

FileTek, Inc. Callable Interface Programmer’s Guide B-1

FileTek Confidential and Proprietary

ALC Macro Definition

LSMCALL — Call the Callable Interface Program

The three forms of the LSMCALL macro instruction (standard, list, and execute) are
written as follows in Table B-1.

Table B-1: LSMCALL Macro Instruction

name symbol. Begin name in column 1.

b One or more blanks must precede LSIMCALL
LSMCALL

b One or more blanks must follow LSMCALL
function any valid function code, see Chapter 5, “Callable

Interface Functions.”

,CTOKEN=c-token x-token: RX-type address, or
,OTOKEN=0-token register (2) - (12)
,RC=return-code addr return-code addr: RX-type address,

or register (2) - (12)

,TYPE=SYNC DEFAULT: TYPE=SYNC
,TYPE=ASYNC

Additional keyword operand requirements are dictated by the value of the function
parameter. For information about these requirements, refer to Chapter 5, “Callable
Interface Functions.”

,keyword=value addr value addr: RX-type address, or register (2) - (12)

additional keyword/value entries

MF=L ctrl prog: RX-type address, or
MF=(E,ctrl prog) register (2) - (12)
MF=S DEFAULT: MF=S

B-2 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

function

CTOKEN=c-token

OTOKEN=0-token

RC=return-code
addr

TYPE
TYPE=SYNC
TYPE=ASYNC

MF

MF=S

MF=L
MF=(E,ctrl addr)

ALC Macro Definition
LSMCALL — Call the Callable Interface Program

Required Parameters

The first three parameters are required for all uses of LSMCALL. These parameters
are:

¢ Function code
e C-TOKEN or O-TOKEN
¢ Return code.

These parameters are described below.

Specifies an identifier that is one of the function names documented in Chapter 5,
“Callable Interface Functions.” The identifier is a string written in uppercase (but

including any characters). For example, the function value to open a VRAM file is

OPEN-VRAM.

Specifies the location of a fullword to be used as the connect token. CONNECT
places the C-TOKEN value in this fullword; all other session-type calls require the
address of a fullword containing the value returned by CONNECT.

Specifies the location of a fullword to be used as the open token. OPEN-SEQ, OPEN-
VRAM, or PTOPEN places the O-TOKEN value in this fullword; all other data
transfer-type calls require the address of a fullword containing the value returned by
OPEN.

Specifies the location of a fullword to be used to receive the return code from the
requested function.

Optional Parameters

Specifies that the function is to be performed synchronously (TYPE=SYNC) with
control returned to the caller only when the operation has been completed or that the
function is to be performed asynchronously (TYPE=ASYNC) with control returned to
the caller as soon as the request is queued. (See Chapter 5, “Callable Interface
Functions.”)

TYPE is used for all function codes but can assume its default value. Before coding
TYPE=ASYNC, check the function description in Chapter 5 to ensure that the
particular function supports asynchronous requests. Note that the macro builds the
function name string with AS prefixed, so the function parameter should not include
the leading AS designation.

Specifies the type of parameter list to be generated by this execution of the macro.
* MF=S builds a non-reentrant parameter list in-line.

* MF=L defines the data area to be used as a parameter list by the execute (MF=E)
form of the macro.

FileTek, Inc.

Callable Interface Programmer’s Guide B-3

FileTek Confidential and Proprietary

ALC Macro Definition
LSMCALL — Call the Callable Interface Program

ABORTFL=xfer-
abort-flag addr

ACCT=account
addr

ACCTPW=
password add

ATTRIBS=file-attrib
addr

BUFFER=Dbuffer
addr

BUFFERL=buffer-
size addr

CHECKPOINT=
checkpoint addr

CHKPT=checkpoint
addr

CMND=command-
string addr

CMNDL=string-
length addr

* MF=E builds a re-entrant parameter list using the data area built by the list
(MF=L) form of the macro. The name of the area built by the list form of the
macro must be specified as the second subparameter of this operand. If MF=L is
coded, any parameters specified are ignored, and all required parameters must be
specified on the MF=E form of the macro.

The Macro Form parameter allows standard in-line call and parameter list
generation (which is not re-entrant) or allows remote parameter list generation to
build re-entrant parameter lists. MF can be used for all functions.

Remaining Keywords

The remaining keywords are listed in alphabetical order below. The specific
keyword/value specifications required for a function call can be determined from the
function definition in Chapter 5, “Callable Interface Functions.”

Specifies the location of a fullword whose contents are used to indicate whether the
file transfer associated with the CLOSE is to be aborted. The caller must preset that
fullword to zero for a normal CLOSE or to any non-zero value to indicate a transfer-
abort condition.

Specifies the location of a 12-byte character string containing the StorHouse account
identifier for the session to be connected.

Specifies the location of a 32-byte character string containing the password associated
with the StorHouse account identifier.

Specifies the location of an array of fullwords that specify the attributes for the file
being opened.

Specifies the location of the data buffer to be used in a StorHouse data transfer
operation.

Specifies the location of a fullword that contains the length in bytes of the data buffer
specified by the BUFFER operand.

Specifies the location of a fullword that contains the checkpoint number where
OPEN-VRAM will restart the file append operation.

Specifies the location of a fullword to receive the checkpoint number.

Specifies the location of a character string, a maximum of 255 bytes long, containing
a StorHouse command or a response to a StorHouse Prompt and Read, to be
executed by SM-CMD-INTE

Specifies the location of a fullword containing the length of the data in the command
buffer identified by the CMND=operand.

B-4

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

ECBA-=return-ecb-
addr

FILE=file-name
addr

FILEPW=file-
passwords addr

GROUP=group-
name addr

GROUPPW=group-
passwords addr

KEY=index-name
addr

KEYL=key-length
addr

KEYV=key-value
addr

METHOD=access-
method addr

MODE=mode addr

MSGFLAG=
message-flag addr

MSGL=returned-
message-length
addr

OPTS=command-
options addr (when
using function:
OPEN)

ALC Macro Definition
LSMCALL — Call the Callable Interface Program

Specifies the location of a fullword to receive the address of the Event Control Block
(ECB) returned by ECBADDR.

Specifies the location of a 56-byte character string that contains the StorHouse file
name.

Specifies the location of an array containing three (OPEN or OPEN-SEQ), or two
(OPEN-VRAM) 8-byte entries, where each entry contains a read, write, or delete
password for the file specified by the FILE operand.

Specifies the location of an 8-byte character string that contains the StorHouse group
name.

Specifies the location of a array containing three (OPEN or OPEN-SEQ), or two
(OPEN-VRAM) 8-byte entries, where each entry contains a read, write, or delete
password for the group specified by the GROUP operand.

Specifies the location of the 56-byte character string that contains the name of the
key index to be used.

Specifies the location of a fullword that contains the length of the key value specified
by the KEY operand.

Specifies the location of a character string that contains the value of the key to be
used for the record search. The length of the key value is given by the KEYL operand
(the maximum length is 254 bytes).

Specifies the location of a 24-byte character string that contains the processing
method specification for the data transfer operation being opened.

Specifies the location of a 6-byte character string that contains the data transfer mode
specification.

Specifies the location of a fullword. The contents of that fullword are used to indicate
whether messages will be retrieved (using EMSG) following a CLOSE or an OPEN
that returns a failure code. The caller must preset that fullword to zero if messages
need not be retained after CLOSE/abnormal OPEN or to any non-zero value to
indicate that messages must be retained for subsequent retrieval.

Specifies the location of a fullword to receive the length of the message returned by
EMSG.

Specifies the location of a 255-byte character string that contains options to be
supplied to OPEN.

FileTek, Inc.

Callable Interface Programmer’s Guide B-5

FileTek Confidential and Proprietary

ALC Macro Definition
Assembly Language Standard Call

OPTSL=command-
opt-length addr
(when using
function: OPEN)

OPTS=file-options
array addr (when
using function:
OPEN-SEQ)

RCHKPT=
checkpoint-num
addr

RECORDL=return-
rec-len addr

RECORDN-=rel-rec-
num addr

REVISION=revision
addr

SMID=sm-identifier
addr

SSN=subsystem-
identifier addr

VERSION=version
addr

Specifies the location of a fullword that contains the length of the string specified by
the OPTS operand.

Specifies the location of an array of 32-bit integers providing file options
corresponding with modifiers available for the StorHouse GET and PUT file
operations.

Specifies the location of a fullword that contains the number of the checkpoint at
which the restart operation should begin.

Specifies the location of a fullword to receive the length of the record placed in the
buffer specified by the BUFFER operand.

Specifies the location of a fullword that contains the relative record number for the
requested record.

Specifies the location of a fullword that contains the revision number of the file
version.

Specifies the location of a 6-byte character string that contains the StorHouse
identifier.

Specifies the location of a 4-byte character string that contains the StorHouse
Subsystem name.

Specifies the location of a fullword that contains the version number of the file
identified by the FILE operand.

Assembly Language Standard Call

Note the following when using the standard CALL macro to build the calling
sequence for the LSMCALL routine or when writing open code to accomplish this
call:

e Parameter list entries are always an address, never a value.

* The parameter list address must be passed in register 1.

* The parameter list is an array of fullwords.

* The areas addressed by the addresses in the parameter list are either character
strings or fullword integers.

B-6

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

ALC Macro Definition
Assembly Language Standard Call

e The last fullword in the parameter does not have to be flagged (by setting the
high-order bit) but can be, if desired.

* The entry point address for LSMCALL must be in register 15.
* The return address must be in register 14.

Because the Interface is usually called from high-level languages that generate
parameter lists and calling sequences that always conform to the above, the contents
of register 1 and the parameter list are not checked to see if they contain reasonable
addresses. If errors are made in these areas, the usual result will be an SOC4 ABEND.

Example: CALL Macro

The following example in Table B-2 shows the CALL macro and data areas for OPEN-
VRAM. The file is opened for append processing with keyed records. Note that the
file name, group name, and passwords are explicitly coded. Usually, these values are
set from information supplied to the program.

Table B-2: CALL Macro

CALL LSMCALL, (OPENVRAM CTOKEN, RETURNCD, X
MSGFLAG, OTOKEN, MODE, METHOD, FI LE, X
REVI SI ON, FI LEPWS, GROUP, GROUPWS, X
RELREC. ATTRI B) , VL
The data areas for the CALL macro are:
*
* DATA AREAS. . .
*
OPENVRAM DC CL16" OPEN- VRAM
CTOKEN DS F BU LT BY CONNECT
RETURNCD DS F RETURNED VALUE
MSGFLAG DC F 1 GET MESSAGES
OTOKEN DS F RETURNED VALUE
MODE DC CL6' APPEND
VETHOD DC CL24" SEQUENTI AL, KEYED
REVI SI ON DC F 0 USI NG CURRENT REVI SI ON
FI LEPWS DC CL8' READ- PW
DC CL8' VWRI TE- PW
GROUP DC cLg' ' DEFAULT GROUP
GROUPPW\S DC cLg' '
DC CL8' '
RELREC DC F 0 DON T- CARE FOR WRI TE
ATTRI B DC F' 8 El GHT ENTRIES I N LI ST
DS F RETURNED MAXI MUM RECORD LENGTH
DS F RETURNED LAST PHYSI CAL RECORD NUM

FileTek, Inc.

Callable Interface Programmer’s Guide

B-7

FileTek Confidential and Proprietary

ALC Macro Definition
Assembly Language Standard Call

DS F RETURNED LAST LOQd CAL RECORD NUM
DS F RETURNED FI LE REVI SI ON NUVBER

DS F RETURNED FI LE TYPE

DC F 1 NO XM BLOCKI NG

DC F' 0 USI NG CURRENT VERSI ON

DC F' 0 USI NG NO CHECKPO NT NUMBER

Example: LSMCALL Macro

The LSMCALL macro can be used instead of the standard CALL macro. The data
areas used above remain the same (except OPEN-VRAM, which is not required). Table
B-3 shows the executable code.

Table B-3: LSMCALL Macro

LSMCALL Macro

LSMCALL OPEN- VRAM CTOKEN=CTOKEN, RC=RETURNCD,
M5GFLAG=MSGFLAG, OTOKEN=OTOKEN,
MODE=MCDE, METHOD=METHOD,
FI LE=FI LE, REVI SI ON=REVI SI ON,
FI LEPWEFI LEPWS, GROUP=GROUP,
GROUPPW=GROUPPWS, RECORDN=REL REC,
ATTRI BS=ATTRI B, MF=S

XX XX X X

The LSMCALL macro can be used to obtain a help listing of the parameters that are
required for each function. You can do this by coding 'LSMCALL HELP".

B-8 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

C

Checkpoint/Restart and Programming
Guidelines

Appendix C contains additional technical information about programming with the
Callable Interface. Information is presented in two sections:

* Checkpoint/Restart
* Programming Guidelines.

The intent of these sections is to provide additional examples and programming tips.

Checkpoint/Restart

CHECKPOINT can only be issued during VRAM, MODE=APPEND data transfer
operations. A successful CHECKPOINT guarantees that all data written up to the
time of the checkpoint has been received and processed by StorHouse.

Only the current (most recent) revision of a file version, either accessible or software
disabled, can be opened at a checkpoint. Opening a file at a checkpoint is referred to
as a restart.

Examples

This section contains four examples that use OPEN-VRAM and CHECKPOINT. The
examples assume that the current version of the VRAM file DATAFILE has three
revisions. Revisions 1 and 2 contain no checkpoints. Revision 3 contains three
checkpoints, which are referenced here as checkpoints a, b, and c.

FileTek, Inc.

Callable Interface Programmer’s Guide C-1

FileTek Confidential and Proprietary

C Checkpoint/Restart and Programming Guidelines

Checkpoint/Restart

Note

Actual checkpoints are binary numbers, not alphanumeric characters. The caller
should keep track of checkpoint numbers and make no assumptions about their
value.) Refer to Table C-1.

Table C-1: DATAFILE Revisions

Revision Number Checkpoint Open
1 None OPEN-VRAM, any MODE
2 None OPEN-VRAM, any MODE
3 a,b,c OPEN-VRAM, any MODE or
OPEN-VRAM,
MODE=APPEND at any
checkpoint

Revisions 1 and 2 can be opened in any MODE. Revision 3 can be opened without
supplying a checkpoint in any MODE or in MODE=APPEND at checkpoint a, b, or c.

Example 1

In Example 1, the caller opens Revision 3 shown above with MODE=APPEND at
checkpoint a and issues CHECKPOINT and CLOSE. The resulting revisions and their

checkpoints are:
Revision Number Checkpoint

OPEN-VRAM 1 None
MODE=APPEND

CHECKPOINT 2 None

CLOSE 3 a,d

Checkpoints b and c in the original revision 3 are no longer accessible. The last
checkpoint in the current revision 3 is checkpoint d.

Example 2

In Example 2, the caller opens revision 3, generated in Example 1, with
MODE=UPDATE and issues CHANGE, DELETE, and CLOSE. The resulting

revisions are:
Revision Number Checkpoint

OPEN-VRAM 1 None
MODE=UPDATE

CHANGE 2 None

C-2

Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines

C

DELETE

CLOSE

Checkpoint/Restart

Revision Number Checkpoint
3 None
4 None

There are now four revisions. Any previous checkpoints are no longer accessible.

Checkpoints are only accessible in the current revision.

Example 3

In Example 3, the caller opens revision 3, generated in Example 2, using
MODE=APPEND and issues WRITE, CHECKPOINT, WRITE, CHECKPOINT, and
ABORT. The resulting revisions are:

OPEN-VRAM
MODE=APPEND

WRITE
CHECKPOINT

WRITE
CHECKPOINT

ABORT

Revision Number Checkpoint
1 None
2 None
3 None
4 None
5 a, b (software disabled)

There are now five revisions. Revision 5 has two checkpoints, a and b, and is marked
as software disabled because of the ABORT.

If the caller opens revision 5 in MODE=APPEND and supplies a checkpoint of 0 or
no checkpoint number, StorHouse returns a status code of 2630 and the last
checkpoint number, in this case checkpoint b.

Example 4

In Example 4, the caller opens revision 4 (from Example 3) with MODE=APPEND

and issues WRITE and CLOSE. The resulting revisions are:

OPEN-VRAM
MODE=APPEND

WRITE

CLOSE

Revision Number Checkpoint

1 None
2 None
3 None

FileTek, Inc.

Callable Interface Programmer’s Guide

C-3

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines

Programming Guidelines

Revision Number Checkpoint

4 None

5 None

In this example, the user opened an older, accessible revision of the file to 70/l back the
current revision, which was software disabled. A new revision 5 containing the
appended data now supersedes the software disabled revision 5 from Example 3.

Programming Guidelines

The guidelines in this section apply to programs that use:
« OPEN-SEQ

* OPEN-VRAM with the StorHouse system parameter VRAM_FILE_OPEN set to
true, and any mode and access method

¢ OPEN-VRAM with VRAM_FILE_OPEN set to false, a mode of READ, and an
access method of SEQUENTIAL

¢ OPEN-VRAM with VRAM_FILE_OPEN set to false and a mode of APPEND or
UPDATE

¢ CREATE-OPEN.
A program using one or more of the types of access listed above will never run to

completion if the program attempts to have open at the same time files that require
use of the same resource.

Defining Resources

Resources include:

* Optical volumes (for write)
* Optical disk drives (ODU)
* Transfer Manager processes.

The system parameter XFR_COUNT limits the number of Transfer Manager
processes.

Cc-4 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines C

Programming Guidelines

The following situations require use of the same resource:

* Attempting to have files open on more level L volumes than available level L
drives

* Attempting to have open for write two or more files that are on the same optical
volume

* Attempting to have open more files than the value of XFR_COUNT.

Examples

The two examples in Table C-2 illustrate what can happen when open statements
require the use of the same resource. Both examples assume that:

* There are two available optical disk drives.
* All files reside on different optical disks.

* Files are opened using OPEN-SEQ with a mode of READ or OPEN-VRAM with a
mode of READ and an access method of SEQUENTIAL:

Table C-2: Example of Open Statements Requiring the Same Resource

Example 1 Example 2

OPEN FILE1 OPEN FILE1
READ FILE1 OPEN FILE2
CLOSE FILE1 OPEN FILE3
OPEN FILE2 READ FILE1
READ FILE2 READ FILE2
CLOSE FILE2 READ FILE3
OPEN FILE3 CLOSE FILE1
READ FILE3 CLOSE FILE2
CLOSE FILE3 CLOSE FILE3

Example 1 executes successfully because an ODU is always available to satisfy each
OPEN-SEQ request. Because the close statement for each file releases an ODU, there
are no conflicts for shared resources.

In contrast, Example 2 will not run to completion. It attempts to have three level L
files open at the same time when there are only two available optical disk drives.

Example 2 will wait indefinitely for an available ODU to satisfy the OPEN FILE3
request. In Example 2, the optical drive is the resource causing the problem.

FileTek, Inc. Callable Interface Programmer’s Guide C-5

FileTek Confidential and Proprietary

C Checkpoint/Restart and Programming Guidelines

Programming Guidelines

User Guidelines

Applications and files should be set up to avoid resource conflicts.
* Do not plan to write to files that are in the same volume set at the same time.

* If you must read files concurrently, ensure that there are enough optical drives
configured in the system to handle the read requests. If there are enough drives,
understand that your application may not run if a drive goes down.

* To prevent problems resulting from an insufficient number of Transfer Manager
processes, use the interactive SHOW SYSTEM command to display the value of
XFR_COUNT. If more files must be open at the same time than the value of
XFR_COUNT, refer the problem to your system administrator.

Permanent Fixes

The following suggestions are permanent fixes to a resource conflict involving optical
drives. They should not be used as a temporary solution for a resource conflict caused
by a drive that goes down.

* To prevent problems resulting from an insufficient number of optical drives
when level L files that must be open at the same time reside on different optical
volumes, verify that there are at least as many optical drives available as level L
files. If there are not enough available optical drives, RELOCATE, or move, some
of the level L files to a level F file set.

Note RELOCATE is a permanent move that deletes the source. Do not RELOCATE to
level F unless you are willing to lose your original level L copy.

* To prevent problems resulting from writing to files residing on the same level L
volume, ensure that all level L files that must be open for write at the same time
are in different volume sets. If files belong to the same volume set(s):

¢ RELOCATE one or more files to a different volume set(s).

* Write one or more files to the performance buffer rather than directly to a
level L volume set. In other words, do not use VIF=DIRECT.

C-6 Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Index

A

ABORT general usage function
C-TOKEN parameter 5-70
description 5-71
O-TOKEN parameter 5-70
overview 5-70
R-CODE parameter 5-70
return codes 5-70

ABORTFL keyword B-4

access privilege 2-2
ACCESS-METHOD parameter 5-27
account 2-1

account identification code (AID) 2-2
ACCOUNT parameter 5-7

account password 2-2

ACCT keyword B-4

ACCTPW keyword B-4

AID (account identification code) 2-2
ALC (assembly language) 1-1

ASCII

character stream 2-6
characters, printable 2-3

assembly language (ALC) 1-1
Assembly Language standard call B-6

asynchronous form for functions 5-4

ATTRIBS keyword B-4

B

binary file data representation 2-6
BUFFER keyword B-4

BUFFER parameter
CHANGE data transfer control function 5-56
READ data transfer control function 5-38
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function

5-47

READ-RECORD data transfer control function 5-42
READ-SEQ data transfer control function 5-40
WRITE-KEY data transfer control function 5-51

BUFFERL keyword B-4

BUFFER-SIZE parameter
READ data transfer control function 5-38
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function
5-47
READ-RECORD data transfer control function 5-42
READ-SEQ data transfer control function 5-40

C

C language 1-1
CALL macro, example B-7

Callable Interface entry points
LSMCALL 5-1
LSMCICS 5-1

Callable Interface for StorHouse
function 1-1
function hierarchy 1-2
languages invoked from 1-1

FileTek, Inc.

Callable Interface Programmer’s Guide Index-1

FileTek Confidential and Proprietary

. =

operating environment 1-1

CHANGE data transfer control function
BUFFER parameter 5-56
description 5-57
O-TOKEN parameter 5-56
overview 5-56
R-CODE parameter 5-56
RECORD-LENGTH parameter 5-56
return codes 5-57

character strings, requirements 4-1

CHECK general usage function
C-TOKEN parameter 5-64
description 5-65
O-TOKEN parameter 5-64
overview 5-64
R-CODE parameter 5-64
return codes 5-64

CHECKPOINT file operation function
description 5-33
O-TOKEN parameter 5-32
overview 1-3, 5-32
R-CODE parameter 5-32
return codes 5-33
RETURN-CKPT-NUM parameter 5-32

CHECKPOINT keyword B-4

checkpoint/restart
description C-1
example C-2, C-3

CHKPT keyword B-4
CICS

Interface programs 5-2
restrictions 5-3

CLOSE file operation function
description 5-35
O-TOKEN parameter 5-34
overview 1-3, 5-34
R-CODE parameter 5-34
return codes 5-35
XFER-ABORT-FLAG parameter 5-34

CMND keyword B-4
CMNDL keyword B-4
COBOL

function statement format 5-5
language 1-1

command privilege, StorHouse 2-3

CONFIG pass-through function

CONVAL parameter A-9
CTOKEN parameter A-9
description A-10
overview A-9

return codes A-10

CONNECT session control function

ACCOUNT parameter 5-7

C-TOKEN parameter 5-6

description 5-7

MESSAGE-FLAG parameter 5-7

overview 1-3, 5-6

PASSWORD parameter 5-7

R-CODE parameter 5-6

return codes 5-7

SM-IDENTIFIER parameter 5-7
SUBSYSTEM-IDENTIFIER parameter 5-7

CONVAL parameter A-9
CR-BUF parameter 5-60
CREATE-OPEN file operation function

C-TOKEN parameter 5-21

description 5-24

FILE-ATTRIB parameter 5-22
FILE-LOCATION parameter 5-22
FILE-NAME parameter 5-21
FILE-PASSWORD parameter 5-21
GROUP-NAME parameter 5-22
GROUP-PASSWORD parameter 5-22
MESSAGE-FLAG parameter 5-21
MODEL-FILE-NAME parameter 5-22
O-TOKEN parameter 5-21

overview 1-3, 5-20

programming guidelines C-4

R-CODE parameter 5-21

return codes 5-24

CR-LEN parameter 5-60
C-TOKEN parameter

ABORT general usage function 5-70
CHECK general usage function 5-64
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DISCONNECT session control function 5-9
ECBADDR general usage function 5-66
EMSG general usage function 5-68
OPEN-SEQ file operation function 5-14

Index-2

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

OPEN-VRAM file operation function 5-27
SM-CMD-INTF StorHouse command submission
function 5-60

CTOKEN parameter
CONFIG pass-through function A-9
LSMCALL Assembler MACRO B-3
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

current record position
key 3-2
sequential 3-2

D

data transfer control functions
CHANGE 5-56
DELETE 5-54
READ 5-38
READ-KEYED 5-44
READ-NEXT-KEY 5-47
READ-RECORD 5-42
READ-SEQ 5-40
WRITE 5-49
WRITE-KEY 5-51

data transfer link identifier 2-1
default access group 2-2
default access rights 2-2

definitions
account 2-1
account identification code (AID) 2-2
account password 2-2
asynchronous form for functions 5-4
default access group 2-2
default access rights 2-2
entry sequence 3-1
file 2-3
file access group 2-4
file name 2-3
file passwords 2-5
file revision 2-6
file version 2-5
group passwords 2-4
key sequence 3-1
return code 4-2
synchronous form for functions 5-4

E

DELETE data transfer control function

description 5-55
O-TOKEN parameter 5-54
overview 5-54

R-CODE parameter 5-54
return codes 5-54

DIRECT parameter A-4
DISCONNECT session control function

C-TOKEN parameter 5-9
description 5-10

overview 1-3, 5-9
R-CODE parameter 5-9

return codes 5-9

ECB parameter A-8
ECBA keyword B-5
ECBADDR general usage function

C-TOKEN parameter 5-66
description 5-67
O-TOKEN parameter 5-66
overview 5-66

R-CODE parameter 5-66
return codes 5-67

= .

RETURN-ECB-ADDR parameter 5-66

EMSG general usage function

C-TOKEN parameter 5-68
description 5-69
MESSAGE-BUFFER parameter 5-68

MESSAGE-BUFFER-SIZE parameter 5-69

O-TOKEN parameter 5-68
overview 5-68

R-CODE parameter 5-68
return codes 5-69

RETURNED-MESSAGE-LEN parameter 5-69

entry points for Callable Interface

LSMCALL 5-1
LSMCICS 5-1

entry sequenced records 3-1
error handling 5-3

examples

CALL macro B-7
checkpoint/restart C-2, C-3

FileTek, Inc. Callable Interface Programmer’s Guide

Index-3

FileTek Confidential and Proprietary

. =

LSMCALL macro B-8

externally specified parameters, requirements 4-1

F

file 2-3
file access group 2-4

file data representations
ASCII character stream 2-6
binary 2-6

FILE keyword B-5
file name 2-3

file operation functions
CHECKPOINT 1-3, 5-32
CLOSE 1-3, 5-34
CREATE-OPEN 1-3, 5-20
OPEN-SEQ 1-3, 5-13
OPEN-VRAM 1-3, 5-26

file passwords 2-5

file revision 2-6

file version 2-5
FILE_LOCATION parameter A-3
FILE_NAME parameter A-3

FILE-ATTRIB parameter
CREATE-OPEN file operation function 5-22
elements 5-15, 5-23, 5-28
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

FILE-LOCATION parameter
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15

FILE-NAME parameter
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27

FILE-OPTIONS parameter
elements 5-17
OPEN-SEQ file operation function 5-16

FILE-PASSWORD parameter 5-21

FILE-PASSWORDS parameter
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

FILEPW keyword B-5

forms for functions
asynchronous 5-4
synchronous 5-4

FORTRAN language 1-1
function parameter B-3
function statement format for COBOL 5-5

functions
data transfer control 1-3, 5-37
file operation 1-3, 5-11
general usage 5-63
session control 1-2, 5-5
StorHouse command 1-4
StorHouse command submission 5-58

G

general usage functions
ABORT 5-70
CHECK 5-64
ECBADDR 5-66
EMSG 5-68

GROUP keyword B-5
group passwords 2-4
GROUP_NAME parameter A-3

GROUP-NAME parameter
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

GROUP-PASSWORD parameter 5-22

GROUP-PASSWORDS parameter
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

GROUPPW keyword B-5

indicative text messages 4-2

Index-4 Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

K

KEY
keyword B-5
parameter 5-52

key record position 3-2
key sequenced records 3-1
KEYL keyword B-5
KEY-LENGTH parameter

READ-KEYED data transfer control function 5-45

WRITE-KEY data transfer control function 5-52
KEY-NAME parameter 5-45
KEYV keyword B-5
KEY-VALUE parameter 5-45

keywords
ABORTFL B-4
ACCT B-4
ACCTPW B-4
ATTRIBS B-4
BUFFER B-4
BUFFERL B-4
CHECKPOINT B-4
CHKPT B-4
CMND B-4
CMNDL B-4
ECBA B-5
FILE B-5
FILEPW B-5
GROUP B-5
GROUPPW B-5
KEY B-5
KEYL B-5
KEYV B-5
METHOD B-5
MODE B-5
MSGFLAG B-5
MSGL B-5
OPTS (command) B-5
OPTS (file) B-6
OPTSL B-6
RCHKPT B-6
RECORDL B-6
RECORDN B-6
REVISION B-6
SMID B-6

= .

SSN B-6
VERSION B-6

L

link identifiers
data transfer 2-1
session 2-1

LINK parameter A-4

LSMCALL
function, Callable Interface entry point 5-1
macro, example B-8

LSMCALL Assembler MACRO
ABORTFL keyword B-4
ACCT keyword B-4
ACCTPW keyword B-4
ATTRIBS keyword B-4
BUFFER keyword B-4
BUFFERL keyword B-4
CHECKPOINT keyword B-4
CHKPT keyword B-4
CMND keyword B-4
CMNDL keyword B-4
CTOKEN parameter B-3
description B-1
ECBA keyword B-5
FILE keyword B-5
FILEPW keyword B-5
function parameter B-3
GROUP keyword B-5
GROUPPW keyword B-5
KEY keyword B-5
KEYL keyword B-5
KEYV keyword B-5
METHOD keyword B-5
MF parameter B-3
MODE keyword B-5
MSGFLAG keyword B-5
MSGL keyword B-5
OPTS keyword (command) B-5
OPTS keyword (file) B-6
OPTSL keyword B-6
OTOKEN parameter B-3
RC parameter B-3
RCHKPT keyword B-6
RECORDL keyword B-6
RECORDN keyword B-6

FileTek, Inc. Callable Interface Programmer’s Guide Index-5

FileTek Confidential and Proprietary

. =

REVISION keyword B-6
SMID keyword B-6

SSN keyword B-6

TYPE parameter B-3
VERSION keyword B-6

LSMCICS function, Callable Interface entry point 5-1

M

MESSAGE parameter A-5
MESSAGE-BUFFER parameter 5-68
MESSAGE-BUFFER-SIZE parameter 5-69

MESSAGE-FLAG parameter
CONNECT session control function 5-7
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27

METHOD keyword B-5
MF parameter B-3
MODE keyword B-5

MODE parameter
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
PTOPEN pass-through function A-3

MODEL-FILE-NAME parameter 5-22

MSGFLAG
keyword B-5
parameter A-3

MSGL keyword B-5

multitasking in sessions 1-4

MVS/SP environment for Callable Interface 1-1
MVS/XA environment for Callable Interface 1-1

O

OPEN file operation function (obsolete) 5-12

OPEN-SEQ file operation function
C-TOKEN parameter 5-14
description 5-18
FILE-ATTRIB parameter 5-15
FILE-LOCATION parameter 5-15

FILE-NAME parameter 5-15
FILE-OPTIONS parameter 5-16
FILE-PASSWORDS parameter 5-15
GROUP-NAME parameter 5-15
GROUP-PASSWORDS parameter 5-15
MESSAGE-FLAG parameter 5-14
MODE parameter 5-14

O-TOKEN parameter 5-14
overview 1-3, 5-13

programming guidelines C-4
R-CODE parameter 5-14

return codes 5-17

VERSION parameter 5-15

OPEN-VRAM file operation function
ACCESS-METHOD parameter 5-27
C-TOKEN parameter 5-27
description 5-30
FILE-ATTRIB parameter 5-28
FILE-NAME parameter 5-27
FILE-PASSWORDS parameter 5-28
GROUP-NAME parameter 5-28
GROUP-PASSWORDS parameter 5-28
MESSAGE-FLAG parameter 5-27
MODE parameter 5-27
O-TOKEN parameter 5-27
overview 1-3, 5-26
programming guidelines C-4
R-CODE parameter 5-27
REL-REC-NUM parameter 5-28
return codes 5-29
REVISION parameter 5-27

OPTS keyword (command) B-5
OPTS keyword (file) B-6
OPTSL keyword B-6

O-TOKEN parameter
ABORT general usage function 5-70
BUFFER darta transfer control function 5-49
CHANGE data transfer control function 5-56
CHECK general usage function 5-64
CHECKPOINT file operation function 5-32
CLOSE file operation function 5-34
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-54
ECBADDR general usage function 5-66
EMSG general usage function 5-68
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27

Index-6 Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

R-CODE data transfer control function 5-49

READ data transfer control function 5-38

READ-KEYED data transfer control function 5-44

READ-NEXT-KEY data transfer control function
5-47

READ-RECORD data transfer control function 5-42

READ-SEQ data transfer control function 5-40

RECORD-LENGTH data transfer control function
5-49

RETURN-REC-NUM data transfer control function
5-50

WRITE data transfer control function 5-49

WRITE-KEY data transfer control function 5-51

OTOKEN parameter

LSMCALL Assembler MACRO B-3
PTOPEN pass-through function A-3

parameter values, specified by

character strings 4-1
JCL statements 4-1

parameters

ACCESS-METHOD 5-27
ACCOUNT 5-7
BUFFER
CHANGE data transfer control function 5-56
READ data transfer control function 5-38
READ-KEYED data transfer control function
5-45
READ-NEXT-KEY data transfer control
function 5-47
READ-RECORD data transfer control function
5-42
READ-SEQ data transfer control function 5-40
WRITE data transfer control function 5-49
WRITE-KEY data transfer control function
5-51
BUFFER-SIZE
READ data transfer control function 5-38
READ-KEYED data transfer control function
5-45
READ-NEXT-KEY data transfer control
function 5-47
READ-RECORD data transfer control function
5-42
READ-SEQ data transfer control function 5-40

= .

CONVAL A-9

CR-BUF 5-60

CR-LEN 5-60

C-TOKEN
ABORT general usage function 5-70
CHECK general usage function 5-64
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DISCONNECT session control function 5-9
ECBADDR general usage function 5-66
EMSG general usage function 5-68
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
SM-CMD-INTF StorHouse command

submission function 5-60

CTOKEN
CONFIG pass-through function A-9
LSMCALL parameter B-3
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

DIRECT A-4

ECB A-8

FILE_LOCATION A-3

FILE_NAME A-3

FILE-ATTRIB
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

FILE-LOCATION
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15

FILE-NAME
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27

FILE-OPTIONS 5-16

FILE-PASSWORD 5-21

FILE-PASSWORDS
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

function B-3

GROUP_NAME A-3

GROUP-NAME
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28

GROUP-PASSWORD 5-22

FileTek, Inc.

Callable Interface Programmer’s Guide Index-7

FileTek Confidential and Proprietary

. =

GROUP-PASSWORDS
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-28
KEY 5-52
KEY-LENGTH
READ-KEYED data transfer control function
5-45
WRITE-KEY data transfer control function
5-52
KEY-NAME 5-45
KEY-VALUE 5-45
LINK A-4
MESSAGE
PTOPEN pass-through function A-3
PTWRTOSM pass-through function A-5
MESSAGE-BUFFER 5-68
MESSAGE-BUFFER-SIZE 5-69
MESSAGE-FLAG
CONNECT session control function 5-7
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
MF B-3
MODE
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
PTOPEN pass-through function A-3
MODEL-FILE-NAME 5-22
O-TOKEN
ABORT general usage function 5-70
CHANGE data transfer control function 5-56
CHECK general usage function 5-64
CHECKPOINT file operation function 5-32
CLOSE file operation function 5-34
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-54
ECBADDR general usage function 5-66
EMSG general usage function 5-68
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
READ data transfer control function 5-38
READ-KEYED data transfer control function
5-44
READ-NEXT-KEY data transfer control
function 5-47
READ-RECORD data transfer control function
5-42
READ-SEQ data transfer control function 5-40
WRITE data transfer control function 5-49

WRITE-KEY data transfer control function
5-51
OTOKEN A-3, B-3
PASSWORD 5-7
RC B-3
R-CODE
ABORT general usage function 5-70
CHANGE data transfer control function 5-56
CHECK general usage function 5-64
CHECKPOINT file operation function 5-32
CLOSE file operation function 5-34
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-54
DISCONNECT session control function 5-9
ECBADDR general usage function 5-66
EMSG general usage function 5-68
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-27
READ data transfer control function 5-38
READ-KEYED data transfer control function
5-44
READ-NEXT-KEY data transfer control
function 5-47
READ-RECORD data transfer control function
5-42
READ-SEQ data transfer control function 5-40
SM-CMD-INTF StorHouse command
submission function 5-60
WRITE data transfer control function 5-49
WRITE-KEY data transfer control function
5-51
RECORD-LENGTH
CHANGE data transfer control function 5-56
WRITE data transfer control function 5-49
WRITE-KEY data transfer control function
5-52
REL-REC-NUM
OPEN-VRAM file operation function 5-28
READ-RECORD data transfer control function
5-43
RESBUFF A-8
RESBUFSZ A-8
RESP-BUFFER 5-60
RESP-BUFSIZE 5-60
RESP-INFO 5-60
RETURNCD
CONFIG pass-through function A-9
PTOPEN pass-through function A-3

Index-8

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5
RETURN-CKPT-NUM 5-32
RETURN-ECB-ADDR 5-66
RETURNED-MESSAGE-LEN 5-69
RETURN-REC-LEN
READ data transfer control function 5-38
READ-KEYED data transfer control function
5-45
READ-NEXT-KEY data transfer control
function 5-48
READ-RECORD data transfer control function
5-43
READ-SEQ data transfer control function 5-41
RETURN-REC-NUM
READ-KEYED data transfer control function
5-45
READ-NEXT-KEY data transfer control
function 5-48
READ-SEQ data transfer control function 5-41
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function
5-52
REVISION 5-27
SM-IDENTIFIER 5-7
SMSGLEN A-5
SUBSYSTEM-IDENTIFIER 5-7
SYSID A-3
TYPE B-3
VERSION 5-15
XFER-ABORT-FLAG 5-34

pass-through functions
CONFIG A-9
description A-1
PTOPEN A-2
PTRDFRSM A-7
PTWRTOSM A-5

PASSWORD parameter 5-7

passwords, StorHouse
file 2-5
group 2-4

PL/1 language 1-1
printable ASCII characters 2-3

privileges, StorHouse
access 2-2
command 2-3

= .

programming guidelines
CREATE-OPEN C-4
OPEN-SEQ C-4
OPEN-VRAM C-4

programs for CICS Interface 5-2

PTOPEN pass-through function
CTOKEN parameter A-3
description A-4
DIRECT parameter A-4
FILE_LOCATION parameter A-3
FILE_NAME parameter A-3
GROUP_NAME parameter A-3
LINK parameter A-4
MODE parameter A-3
MSGFLAG parameter A-3
OTOKEN parameter A-3
overview A-2
return codes A-4
RETURNCD parameter A-3
SYSID parameter A-3

PTRDFRSM pass-through function
CTOKEN parameter A-7
description A-8
ECB parameter A-8
overview A-7
RESBUFF parameter A-8
RESBUFSZ parameter A-8
return codes A-8

RETURNCD parameter A-7

PTWRTOSM pass-through function
CTOKEN parameter A-5
description A-6
MESSAGE parameter A-5
overview A-5
return codes A-6
RETURNCD parameter A-5
SMSGLEN parameter A-5

R

RC parameter B-3
RCHKPT keyword B-6

R-CODE parameter
ABORT general usage function 5-70
CHANGE data transfer control function 5-56
CHECK general usage function 5-64

FileTek, Inc.

Callable Interface Programmer’s Guide

Index-9

FileTek Confidential and Proprietary

. =

CHECKPOINT file operation function 5-32

CLOSE file operation function 5-34

CONNECT session control function 5-6

CREATE-OPEN file operation function 5-21

DELETE data transfer control function 5-54

DISCONNECT session control function 5-9

ECBADDR general usage function 5-66

EMSG general usage function 5-68

OPEN-SEQ file operation function 5-14

OPEN-VRAM file operation function 5-27

READ data transfer control function 5-38

READ-KEYED data transfer control function 5-44

READ-NEXT-KEY data transfer control function
5-47

READ-RECORD data transfer control function 5-42

READ-SEQ data transfer control function 5-40

SM-CMD-INTF StorHouse command submission
function 5-60

WRITE-KEY data transfer control function 5-51

READ data transfer control function
BUFFER parameter 5-38
BUFFER-SIZE parameter 5-38
description 5-39
O-TOKEN parameter 5-38
overview 5-38
R-CODE parameter 5-38
return codes 5-39
RETURN-REC-LEN parameter 5-38

read functions for VRAM files
READ-KEYED 3-2
READ-NEXT-KEY 3-2
READ-RECORD 3-2
READ-SEQ 3-2

READ-KEYED data transfer control function
BUFFER parameter 5-45
BUFFER-SIZE parameter 5-45
description 5-45
KEY-LENGTH parameter 5-45
KEY-NAME parameter 5-45
KEY-VALUE parameter 5-45
O-TOKEN parameter 5-44
overview 5-44
R-CODE parameter 5-44
return codes 5-45
RETURN-REC-LEN parameter 5-45
RETURN-REC-NUM parameter 5-45

READ-KEYED read function 3-2

READ-NEXT-KEY data transfer control function
BUFFER parameter 5-47
BUFFER-SIZE parameter 5-47
description 5-48
O-TOKEN parameter 5-47
overview 5-47
R-CODE parameter 5-47
return codes 5-48
RETURN-REC-LEN parameter 5-48
RETURN-REC-NUM parameter 5-48

READ-NEXT-KEY read function 3-2

READ-RECORD data transfer control function
BUFFER parameter 5-42
BUFFER-SIZE parameter 5-42
description 5-43
O-TOKEN parameter 5-42
overview 5-42
R-CODE parameter 5-42
REL-REC-NUM parameter 5-43
return codes 5-43
RETURN-REC-LEN parameter 5-43

READ-RECORD read function 3-2

READ-SEQ data transfer control function
BUFFER parameter 5-40
BUFFER-SIZE parameter 5-40
description 5-41
O-TOKEN parameter 5-40
overview 5-40
R-CODE parameter 5-40
return codes 5-41
RETURN-REC-LEN parameter 5-41
RETURN-REC-NUM parameter 5-41

READ-SEQ read function 3-2

record sequencing
by entry 3-1
by key 3-1
example 3-2

RECORDL keyword B-6

RECORD-LENGTH parameter
CHANGE data transfer control function 5-56
WRITE-KEY data transfer control function 5-52

RECORDN keyword B-6

REL-REC-NUM parameter
OPEN-VRAM file operation function 5-28
READ-RECORD data transfer control function 5-43

Index-10

Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

RESBUFF parameter A-8

RESBUFSZ parameter A-8

resource conflicts with optical drives C-6
RESP-BUFFER parameter 5-60
RESP-BUFSIZE parameter 5-60

RESP-INFO parameter
elements 5-60
SM-CMD-INTF StorHouse command submission
function 5-60

return code, definition 4-2

return codes

ABORT general usage function 5-70

CHANGE data transfer control function 5-57

CHECK general usage function 5-64

CHECKPOINT file operation function 5-33

CLOSE file operation function 5-35

CONFIG pass-through function A-10

CONNECT session control function 5-7

CREATE-OPEN file operation function 5-24

DELETE data transfer control function 5-54

DISCONNECT session control function 5-9

ECBADDR general usage function 5-67

EMSG general usage function 5-69

OPEN-SEQ file operation function 5-17

OPEN-VRAM file operation function 5-29

PTOPEN pass-through function A-4

PTRDFRSM pass-through function A-8

PTWRTOSM pass-through function A-6

READ data transfer control function 5-39

READ-KEYED data transfer control function 5-45

READ-NEXT-KEY data transfer control function
5-48

READ-RECORD data transfer control function 5-43

READ-SEQ data transfer control function 5-41

SM-CMD-INTF StorHouse command submission
function 5-61

WRITE data transfer control function 5-50

WRITE-KEY data transfer control function 5-52

RETURNCD parameter
CONFIG pass-through function A-9
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

RETURN-CKPT-NUM parameter 5-32

Index .
RETURN-ECB-ADDR parameter 5-66

RETURNED-MESSAGE-LEN parameter 5-69

RETURN-REC-LEN parameter
READ data transfer control function 5-38
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function
5-48
READ-RECORD data transfer control function 5-43
READ-SEQ data transfer control function 5-41

RETURN-REC-NUM parameter
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function
5-48
READ-SEQ data transfer control function 5-41
WRITE-KEY data transfer control function 5-52

REVISION
keyword B-6
parameter 5-27

S

sequential record position 3-2

session control functions
CONNECT 1-3, 5-6
DISCONNECT 1-3, 5-9

session link identifier 2-1
sessions and multitasking 1-4

SM-CMD-INTF StorHouse command submission
function

CR-BUF parameter 5-60
CR-LEN parameter 5-60
C-TOKEN parameter 5-60
description 5-61
overview 5-59
R-CODE parameter 5-60
RESP-BUFFER parameter 5-60
RESP-BUFSIZE parameter 5-60
RESP-INFO parameter 5-60

return codes 5-61
SMID keyword B-6
SM-IDENTTIFIER parameter 5-7
SMSGLEN parameter A-5
SSN keyword B-6

FileTek, Inc.

Callable Interface Programmer’s Guide

Index-11

FileTek Confidential and Proprietary

. =

StorHouse
account 2-1

overview 5-49

R-CODE parameter 5-49

account identification code (AID) 2-2 RECORD-LENGTH parameter 5-49

account password 2-2
default access group 2-2
default access rights 2-2
file 2-3

file access group 2-4
file name 2-3

file passwords 2-5

file revision 2-6

file version 2-5

group passwords 2-4
privileges 2-2

StorHouse Callable Interface
function 1-1
function hierarchy 1-2
languages invoked from 1-1
operating environment 1-1

return codes 5-50
RETURN-REC-NUM parameter 5-50

WRITE-KEY data transfer control function
BUFFER parameter 5-51
description 5-52
KEY parameter 5-52
KEY-LENGTH parameter 5-52
O-TOKEN parameter 5-51
overview 5-51
R-CODE parameter 5-51
RECORD-LENGTH parameter 5-52
return codes 5-52
RETURN-REC-NUM parameter 5-52

X

StorHouse command submission function,

SM-CMD-INTF 5-59

XFER-ABORT-FLAG parameter 5-34

SUBSYSTEM-IDENTIFIER parameter 5-7

synchronous form for functions 5-4

SYSID parameter A-3

T

Task Control Block (TCB) 1-4
text messages 4-2

TYPE parameter B-3

V

VERSION
keyword B-6
parameter 5-15

W

WRITE data transfer control function
BUFFER parameter 5-49
description 5-50
O-TOKEN parameter 5-49

Index-12

Callable Interface Programmer’s Guide

FileTek, Inc.

	Online Guide
	Contents
	Figures
	Tables
	Welcome
	Purpose of This Document
	Intended Audience
	Contents
	Related Documentation
	Notational Conventions

	Chapter 1: Introduction
	Operating Environment
	Callable Interface Function Hierarchy
	Session Control Functions
	File Operation Functions
	Data Transfer Control Functions
	StorHouse Command Functions

	Notes on Multitasking

	Chapter 2: StorHouse Parameters and Data Descriptions
	Session and Data Transfer Link Identifiers
	StorHouse Accounts
	Account Identification Code
	Account Password
	Default Access Groups and Rights
	StorHouse Privileges

	StorHouse Files and File Access Groups
	StorHouse File Names
	File Access Groups
	Group and File Access Passwords
	Group Passwords
	File Passwords

	File Versions
	File Revisions
	File Data Representation
	Directory Information

	Chapter 3: File Positioning
	Record Sequencing
	Entry Sequence
	Key Sequence

	Current Record Position
	Read Functions and Current Record Position
	Record Sequencing Example

	Chapter 4: Control Structures
	Parameter Values
	Character Strings
	Externally Specified Parameters

	Return Codes
	Indicative Text Messages

	Chapter 5: Callable Interface Functions
	Callable Interface Entry Point Names
	Special Considerations for CICS Programmers
	Defining the CICS Interface Programs
	Error Handling
	Restrictions

	Synchronous and Asynchronous Functions
	Synchronous Form
	Asynchronous Form

	Function Statement Format
	Session Control Functions
	CONNECT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	DISCONNECT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	File Operation Functions
	OPEN
	OPEN-SEQ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CREATE-OPEN
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	OPEN-VRAM
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CHECKPOINT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CLOSE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Data Transfer Control Functions
	READ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-SEQ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-RECORD
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-KEYED
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-NEXT-KEY
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	WRITE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	WRITE-KEY
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	DELETE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	CHANGE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	StorHouse Command Submission
	SM-CMD-INTF
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	General Usage Functions
	CHECK
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	ECBADDR
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	EMSG
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	ABORT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Chapter 6: Sample Program
	COBOL Sample Program

	Appendix A: Pass-Through Functions
	PTOPEN
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	PTWRTOSM
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	PTRDFRSM
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	CONFIG
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note

	Appendix B: ALC Macro Definition
	LSMCALL – Call the Callable Interface Program
	Required Parameters
	Optional Parameters
	Remaining Keywords

	Assembly Language Standard Call
	Example: CALL Macro
	Example: LSMCALL Macro

	Appendix C: Checkpoint/Restart and Programming Guidelines
	Checkpoint/Restart
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Programming Guidelines
	Defining Resources
	Examples
	User Guidelines
	Permanent Fixes

	Index

