FileTek MVS Data
Loader Utility Manual

StorHouse/RM Release 3.2

Publication Number
900109 Rev. K

April 17, 2002

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1996-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900109 Rev. K

NOTE: U.S. GOVERNMENT USERS
Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
or the Commercial Computer Software - Restricted Rights clause at 48
CFR 52.227-19, as applicable. Unpublished-rights reserved under the
copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

FileTek Proprietary and Confidential

FileTek

Contents

WEICOME oo e Xiil
StorHouse family Of ProdUCEScoceieiiiiie e Xiii
SEOTHOUSE/SIM ...t Xiii

STOTHOUSE/RIM ..ottt Xiv

(0 gl 0] IO | T PSS Xiv

Purpose of this dOCUMENTcoiiiiee e Xiv

INEENAEA QUAIENCE ...vvveeieiie ettt sresra s e nae e s XV

L0101 1] 0| T OSSP P PP PP PP XV

CONVENTIONS ..ttt bbbttt ettt ettt nn s XVi

FOr more iNfFOrMAtIONc.ooiiiiiie e et Xvi

FOr QUICK TETEIEINCE ..ottt Xvii

Chapter 1: INtroduCtioncooeeiiiiiiiiieeie e 1-1
LOAAING FRATUIES ...ttt sttt ettt e e seeseeeneeae e 1-1

Client and server data I0aderscccviveieiiiiieeiee e 1-3

The data 1080 PrOCESS ...ecveiveieiiecteceee et ettt resre e nes 1-4

What you need to load data and iNAEXEScevveveiieieie i 1-6

213 10] (- [0 To 1o SRR 1-7

L0ads and SEOMENTSooeieiiiiieie ettt ettt eseestesneeseeseesneeneas 1-8

FileTek MVS Data Loader Utility Manual iii

FileTek Proprietary and Confidential

. Contents

SEOMENT SIZE ©.vviviiie ettt s et sreere e e besreane e 1-10
SegmENt rePlaCeMENTcoccveiiee e 1-11
SEUMENT MEBITE ..ttt et e et e e st e e s te e e sraeesnaeesreeeas 1-11
L0ads and SUDSPACESeoueeeiieiiiiee ettt 1-11
Default selection Of SUDSPACESccocviiriiriiiiiieee e 1-12
When there is one subspace for all component typesccocevvvvrvrennnn. 1-13

When there is one subspace for each component typeccccevevvevernnnne. 1-13

When there are multiple subspaces for each component type 1-13

When indexes or LOB columns are assigned to multiple user tablespaces .1-15
Explicit selection of SUDSPACEScevereeieiiie e 1-16
When 10ading 0Ne SEGMENTcooiiiiiiiiiiiie s 1-16

When loading multiple SegmMentsccovevieiieieie e 1-17

When there are multiple indexes of the same typecccccvvvvvvevevcvinnne. 1-19

When indexes are assigned to different user tablespacescccccvvernnnne 1-21
ROtation amMOoNg SUDSPACESc.ueieeeerireieeieie ettt 1-24
When there are multiple subspaces for each component type 1-25

When component types share a SUDSPACEccvevverereiierienieniesieie e 1-26

When indexes or LOB columns are assigned to different user tablespaces .1-28

L0AAS AN INTEXESeuveveriiiiesieieierie ettt 1-31
Load ParalleliSMccuviiecei e 1-31
Loading different tables in 0ne 10adcccooeiieiiiiie i 1-32
Loading multiple segments of a table in one loadcccoocviiiieiniiiiiies 1-33
Loading multiple segments of multiple tables in one loadccccooeiviinenns 1-33
Loading different tables in multiple 10adscccocovviiiiieiiieie e 1-33
Loading the same table in multiple 10adscccovevveieiiii i 1-34
Loading multiple segments of multiple tables in multiple loads 1-34
Querying a table while it’s being loadedcccooiiiiiieiie e 1-35
Locking dUuring I08ASoveiuiiiiiiiee e 1-35
I an OPEration failS ..o 1-35
ChECKPOINTS ...ttt re s reens 1-36
RESTAM ... 1-37
ADOIT L e et sae e 1-37
System table UPAALESoov i 1-38
Metadata updates for a data load Operationcccceoeverevriieeiniene e 1-38

iv FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Contents .

Metadata updates for a replace OpPerationcccovveveieviiiieive s 1-38
Metadata updates for an index load Operationc.ccoceveviiienienieenenieseenes 1-39
Metadata updates for a merge OPerationcccceveveveeveeveeresie e 1-39
Temporary VRAM file NAMESooi i 1-39
Chapter 2: Installationccooooviiiiiii e 2-1
INSEAIALION OVEIVIBWovviiecieciicie ettt nee e 2-1
Software fUNCtion identifierccccovvii i 2-1
SYSTEM FEQUITEMENTS ..veviiiieiecie ettt sttt b e et nre e 2-2
Files on the distribution tapecccvvveiieiii i 2-2
INSEAllAtioN PrOCEAUIEoiviiieeiece et 2-3
Step 1: Load the SAMPLES datasetccoveveieeiniere e 2-3
Step 2: Allocate required datasetscocvereiriinireisise s 2-4
Step 3: Customize SMP/E JCL ProCceAUIEccccveveieveseseeiesesie e 2-5
Step 4: INitialize SMP/E CSI ..ot 2-5
Step 5: Execute SMP/E RECEIVE ..o 2-6
Step 6: Execute SMP/E APPLY ..ot 2-6
Step 7: Execute SMP/E ACCEPT ..ot 2-6
Step 8: Build the checkpoint datasetcoeoviirireiiiiienceee e 2-6
Chapter 3: Input dataceiiiiiiiiiiie e 3-1
What's an iNPUt dataSet?cceviiieiiiieie et nre s 3-1
What are input data records and data fields?c.ccocveveieiiiiieiiice e 3-1
How should you create a host input dataset?cccecvviervieeviee v 3-1
What record fOrmats Can YOU USE?cceeruererieierersieeieeie e sieereenee e e seeseeseeaneens 3-2
Are there any considerations for using the host input dataset?cc.cocevereinnnnne 3-2
Where do you specify which input dataset you're USiNg?ccccocvvvvevevienveinerieneneens 3-2
What's the difference between a column and a field in an input data record? 3-3
What's the difference between a logical record and a physical record? 3-4

FileTek MVS Data Loader Utility Manual v

FileTek Proprietary and Confidential

. Contents

Are there any considerations for VAR-type data?cccccocvviviieieiieie s 3-5
How do you 10ad LOB data?ccccceeiueeiiiiiiiie st se e s 3-5
What's delimited data?ccooveeiiieiie e 3-6
Terminated datacccveieiiece e 3-7
o (010 [- OO PR 3-7

Are blank characters 10aded? ... 3-7
Chapter 4. SYSSQL datasetccccceiiiiieeiiiiiiiii e 4-1
AbouUt the SYSSQL datasetcccovveiriiiiiiieeie ettt ettt srae b 4-1
Character Set 0f SYSSOLvviiiiiiie et 4-1
SYSSQL QUIRIINES ..ottt 4-2
StAteMENt FOPMALSoiieie e re e s 4-3
FOrmat CONVENTIONSoiviiiicie ettt sbe e sre et 4-3
SQL AABNTITIETS ..vivviiviiciii ettt s b be b e ere e 4-4
LOAD DATA ettt st be et re e 4-5
LOAD INDEX ..ottt sttt st st ta et sbesre e ne s 4-8
MERGE ... ettt 4-9
Loading data already 0n StOrHOUSEocoiiiieieie et 4-9
Format Of INFILE CIAUSE ...cveoviiieiie ettt 4-10
EXample INFILE CIAUSEScccvevveiieiieeiecieie s se ettt 4-11

To load data from a previous load operationccccceevevevevieiieevesesiene 4-11

To load data from any other VRAM filecccooveiveivein e, 4-12

To load data from multiple VRAM fileScccooiriiiiiiiiiiceeee e 4-13

To load discarded reCOIASccivveiieeiiieiiee et 4-13

To load data from a host input dataset and collect discarded records 4-14
Collecting discarded records in a discard filecccoceviiviveiiviiiiiee e 4-14
Format of DISCARDFILE ClaUSEcccoveveiiiieeeiee s 4-16
Example DISCARDFILE CIAUSEcccueiieiieieeieese e 4-16
Limiting the number of discarded recordsocooveieieicenieeieeee e 4-17
Format of DISCARDS CIAUSEcoiviiiiiieiic ettt ee e 4-17
Example DISCARDS CIAUSEcceiviiiiiiirieisicsieseeese e 4-17

vi FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Contents .

Specifying the character set of the input datacccooevvveviiiniinccc e, 4-18
Format of CHARACTERSET ClaUSEcccoiiiieiiieieeiee e 4-19
Example CHARACTERSET ClaUSEcccocveiriieiiese e 4-19

Concatenating a fixed number of physical records into a logical record 4-19
Format of CONCATENATE CIaUSEeovvvieiieiiiie et se st 4-20
Example CONCATENATE CIaUSEcovviiiiiiiiiiisieeeseseee e 4-20

Combining a varied number of physical records into a logical record 4-21
Format of CONTINUEIF CIAUSEcooiiiiiiiiiiiee e 4-21
Example CONTINUEIF ClAUSESccuveivveieeieeie et 4-23

To combine the current physical record with the next onec........ 4-23
To combine the next physical record with the previous onec..c.o..... 4-24
To use the last non-blank data column as the comparison value 4-25
To specify the starting column number of a continuation field 4-26
To specify starting and ending column numbers of a continuation field ...4-27
To use a character string as a comparison Valuecccccovcvvvrieeienenennnns 4-28
To use a hex string as a comparison Valueccccooceiceivenenrseeieenenens 4-28
To use blank characters as a comparison ValUecccovvvreneiinneniennns 4-29
To use a not equal comparison OPEratorcccvveveieerieveseseeeese s 4-30

Preserving BIANKSccoiiiiiicieseie e 4-30
Format of PRESERVE BLANKS ClaUSEccceoeiiiiiieiiiiseeiee e 4-31
Example PRESERVE BLANKS ClaUSEcooviiiiiiieie e 4-31

Rotating among SUDSPACESooveieiierieriesieeiee e sie et ene e e 4-32
Format of SUBSPACE ROTATE ClaUSEccoveverierirsieeieeie e siesieeeeie e seeaneas 4-34
Example SUBSPACE ROTATE ClAUSESc.ccvevviierieiiesiectieie e siesie e 4-34

To rotate among subspaces in a user tablespaceccccevvvvvveierieieieenn, 4-34
To rotate among subspaces in multiple user tablespacescccceevvviverenns 4-35

Identifying the user table t0 10adccoovieieii e 4-38
Format of INTO TABLE ClAUSEcceoiiieiiiieiieeieie e 4-39
Example INTO TABLE CIAUSEScoveiiiiiiiiiieiiisieeese e 4-39

To use the fully qualified table NaMecccccoviviieiice e 4-39
TO OMIit the OWNEI NAIME ..o 4-40
To use a symbolic variable to substitute an owner name, table name, or both ..
4-40

Choosing Which rows t0 1080ccoiiiiieie e 4-42

FileTek MVS Data Loader Utility Manual vii

FileTek Proprietary and Confidential

. Contents

Format of WHEN ClaUSEcoiiriiiiiiierieseee e 4-43
EXample WHEN ClaUSESevieiiieiieiii i see st se et ste et ee e ene e 4-45
To specify the starting column number of the selection criteria 4-45
To specify starting and ending column numbers of the selection criteria ...4-45
To use a column name to identify the selection criteriac.ccovvienne. 4-46
To use a field name to identify the selection criteriac.ccoceovvvvviennne. 4-47
To use a character string as selection Criteriacocoovvvvevveveviesiecieese s 4-48
To use a hexadecimal string as selection criteriacccocevvevievierinernenn. 4-48
TOLESE BIANKS .. 4-49
To test multiple values (USING AND)oocoiiriiiieeeeee e 4-49
To test one value or another (USING OR)ccooveiriiiineinne e 4-49

To test one value or another and multiple values (using OR and AND) ...4-50

Generating field_specs, identifying NULL flags, specifying default delimiters and other

OETAUIES ..ottt e e eas 4-50
Guidelines for specifying a default delimiterccoooovvivieieic i 4-52
Format of FIELDS CIAUSEeovveieieieeeee st 4-53
EXample FIELDS CAUSEScoviiiiiiiiierieieeses et 4-55

To describe data fields terminated with a characterccoceevvninennn. 4-55
To describe data fields terminated by a blankccccceveveiiiiicienciene, 4-56
To describe data fields enclosed by the same delimiterc.ccccooeveennenee. 4-56
To describe data fields enclosed by different delimitersccccocevvrnenne. 4-57
To describe data fields that are both terminated and enclosed 4-57
To generate CHAR field_SPECSorveiiiriiriieieeseee s 4-58
To identify NULL flags in input data recordscccocevvvivivevenesesnnnn 4-58
To load NULL values for empty data fieldscccccoeveviviiiiicicieie, 4-58

Loading missing data fields with NUll valuesccccoovviiiiiic e 4-59
Format of TRAILING NULLCOLS ClauSEcccvevuerveiiieeiiieneeeee e 4-60
Example TRAILING NULLCOLS ClaUSEcooceieieeiinienreeereesiesiesee e 4-60

L0ading ONe OF MOTE SEYMENTScviviriireisteriesieese st 4-61
Format of SAME and DIFFERENT SEGMENT Clausesccccoocerrireniennns 4-62
Example SAME and DIFFERENT SEGMENT Clausescccccoevvveeerenienne. 4-62

To load multiple segments of the same user tablecccccevveiveiivennnn. 4-62
To load multiple segments of different user tablesccocevcvvieiernnnne. 4-63

NAMING @ SEOMENTeiieiii ettt e ere e e nee e e 4-64

Format of SEGMENT ClAUSEc.ccvvvviieieieie e 4-64

viii FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Contents .

Example SEGMENT CIAUSESccvveviiviiiiiieeiese ettt 4-65
To use the load ID as the Segment tagccccvvevevieevieenieeie e 4-65
To assign different segment tags for multiple segments of the same user table ..

4-65
REPIACING @ SEGMENT ...ttt 4-66
Format of REPLACE SEGMENT ClaUSEcccveviierieiesieeieeie e se e 4-67
Example REPLACE SEGMENT ClaUSEcccovivviieiieiesieeteeiesie e sie et 4-68
SeleCtiNg SUDSPACESviieviieieiiieiee s sie st te e ste e e e st te e te e e e e e e e e nree 4-68
Format of SUBSPACE numMDer Clausecccooiiiiiieiiniee e 4-69
Example SUBSPACE NUMDET CIAUSESeoveieeieiiieeie e 4-70
To select subspaces when loading 0ne Segmentcccocvveveiniienciiennns 4-70
To select subspaces when loading multiple segmentsccccovevveiveiennnn, 4-71
To select subspaces in multiple user tablespacescccoevevveveviesiveieiiennens 4-72
Describing data fIeldscoveiiiiecie e 4-74
FOrmat of fIeld_SPECeeveeeeiee e 4-75
Providing a field NAMEooiie e 4-77
Providing a CoOIUMN NAMEooviiiiiiieie e 4-77
Loading a record number into a COIUMNccccoveiiiiiiiiee e 4-78
Generating a sequence Of VAIUEScocveiveiiieie e 4-78
Loading the current date into a ColuMNcccovviiiiiici e 4-79
Loading a constant value into a CoOIUMNccocooiiiiiiiiiie e 4-79
Specifying the position of a data fieldcooeriiiiii 4-80
Specifying the data tYPec.cviiiiiiiiiiee e 4-83
ConVerting data tYPES ...voovviveececie e 4-98
Calculating the length of a data fieldcccoovvvieiiiiii e, 4-99
Specifying a character set for an individual data fieldc.ccccoeevenene. 4-102
Specifying a delimiter for an individual data fieldc.cccocoovviierrnnne. 4-103
Specifying a BLOB or CLOB data typecccccevererieniiereiene e 4-104
Loading a column with a nUIl ValUecccoeiiiiiiiicc e 4-105
Setting a column to the default valuecccoooveiiiiie 4-106
Using multiple into_table_SPECScocveveiiiiiiiicces e 4-107
Creating multiple logical records from one physical recordccccccevvevnenen. 4-107
Using the same input dataset to load multiple user tablesc..ccoccevrenne. 4-108
Example LOAD DATA StAtEMENTScceoieeieeieiee e e 4-109

FileTek MVS Data Loader Utility Manual ix

FileTek Proprietary and Confidential

. Contents

Example 1: Loading all records into one user tablec..ccocevviveciciennae 4-111
Example 2: Combining a fixed number of records and loading some of them into
ONE USEN TADIE ..o s 4-112
Example 3: Loading delimited data into multiple user tablesc.c...... 4-113
Example 4: Combining a variable number of records and loading null values 4-114
Example 5: Loading SMALLINT, DECIMAL, and VARCHAR data 4-116
Example 6: Using relative positioning to load delimited data into multiple user tables
4-118
Example 7: Using multiple selection Criteriacocevvvvvivevivevivciecnie v, 4-123
Example 8: Replacing segments without 10adingccccoveviviviinicicieenns 4-125
Example 9: Including SQL statements in the SYSSQL datasetcccce.... 4-126
Example 10: Selecting subspaces for each component typecc.cccccevevirnene 4-126
Example 11: Loading LOB data fields using a default field list and NULLFLAGS .
4-129
Loading a deferred INAEXcccooeeieie e s 4-131
Format of LOAD INDEX Statementcccocvvieveieieiieiee e 4-132
Example LOAD INDEX StatemMentsccocovereererienienineseseneeesesie e 4-134
Merging segments of a tablecocviveie i 4-134
Format of MERGE StatemMentcccooviiriiiinieienesese e 4-135
Example MERGE Statementscccoviveieeiieeie et see e 4-137
Chapter 5: Control statementscceeviiiiiiiiiin e 5-1
About loader coNtrol StALEMENTScccoiiiieire e 5-1
StatemeNt COMPONENTSeiiiiiie i 5-2
COMMANG VEID ..ottt st sre e eneas 5-2
KeyWOrd/ValU PAIFSccecveireiieieiiece ettt ene 5-2
General control statement SyNtaX FUIEScceveveiiiicicic e, 5-4
LOAD et ettt et r e et nes 5-5
SIMIDIEF ...ttt ettt n et e 5-10

x FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Contents .

Chapter 6: RUNTIME ..o 6-1
Preparing to run the ULHILYcoocviiiecc e 6-1
TYPES OF OPEIALIONS ...ttt ettt eesne e 6-2
EXEC STALEIMENT ..ottt ettt st st et sbeenbeenteas 6-3
DD STATEIMENTS ...eieiiieitieeitee ettt st sae et b e e sab e e sabeesbeeebeesbeeareeas 6-4
RETUMN COUES ...ttt ettt b ettt 6-5
SUbMITLING @N OPEIALIONveeiveeciecce e reas 6-6
Restarting an OPEratioNcccoiiiiereie ettt seeeneeneas 6-8
ADOIING @N OPEIATION ...t enes 6-10

APPENIX A MESSAQJES ..vuuiiiiiiiiiiiie e eeeie e e e e e e eeenean A-1

Index

FileTek MVS Data Loader Utility Manual xi

FileTek Proprietary and Confidential

. Contents

xii FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

FileTek

Welcome

The FileTek® MVS Data Loader utility is a tool for loading database data from an
MVS host into user tables on StorHouse®.

StorHouse family of products

StorHouse is the FileTek enterprise-wide solution for managing the capture,
storage, movement, and access of gigabytes to petabytes of relational and non-
relational detail data. StorHouse technology combines industry-leading, scalable
storage devices and Open System processors with specialized storage
management and relational database management system (RDBMS) software
components.

StorHouse/SM

StorHouse/SM, the storage management component, controls a hierarchy of
storage devices composed of cache, redundant array of independent disk (RAID),
erasable and write-once-read-many (WORM) optical disk jukeboxes, and
automated tape libraries. StorHouse/SM is also responsible for automating
critical system management tasks, like data migration, backup, and recovery.

FileTek MVS Data Loader Utility Manual xiii

FileTek Proprietary and Confidential

Welcome
Purpose of this document

StorHouse/RM

StorHouse/RM, the FileTek RDBMS component, works in conjunction with
StorHouse/SM to store and access relational data. StorHouse/RM provides row-
level SQL access to high volumes of detail data on any layer in the StorHouse
storage hierarchy, including tape. SQL access is available from different platforms
through a variety of industry-standard protocols. StorHouse/RM runs on Sun™
Solaris™ and Hewlett-Packard HP-UX platforms.

Control Center

StorHouse Control Center (CC) is the FileTek Windows®-based network
computing system for providing administrative control of the StorHouse family
of products. Control Center works with StorHouse/SM release 4.2 and higher
and consists of one or more Control Center servers that communicate with
Control Center clients over a TCP/IP network. The Control Center server, which
runs on Windows NT, XP Pro, and 2000 platforms, provides network
connectivity to StorHouse. The Control Center clients, which run on Windows
95, 98, 2000, XP Pro, and NT platforms, consist of one or more graphical user
interface (GUI) modules for performing StorHouse system and database
administration tasks, configuring and managing Control Center servers, and
analyzing and monitoring StorHouse activity and performance.

Purpose of this document

The FileTek MVS Data Loader Utility Manual describes how to install and run
the FileTek MVS Data Loader utility. It also explains how to set up the LOAD
DATA statement, SYSIN control statements, and execution Job Control Language
(JCL) necessary to load data into StorHouse user tables.

xiv FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Welcome
Intended audience

Intended audience

Contents

The FileTek MVS Data Loader Utility Manual is intended for whomever is
responsible for managing, scheduling, and/or running the FileTek MVS Data
Loader utility at your organization. This manual assumes that you understand
Structured Query Language (SQL), JCL, StorHouse fundamentals, and MVS
concepts and facilities. It also assumes that you know how to install software with
the 1IBM® System Modification Program Extended (SMP/E).

This document is organized as follows:

= Chapter 1, “Introduction,” describes the features and functions of the FileTek
MVS Data Loader utility.

= Chapter 2, “Installation,” explains how to install the FileTek MVS Data
Loader utility with the IBM System Modification Program Extended
(SMP/E).

= Chapter 3, “Input data,” answers questions about input datasets and input
data records.

= Chapter 4, “SYSSQL dataset,” describes the SQL-like statement that
identifies the user table to be loaded and describes the data type and structure
of the input data.

= Chapter 5, “Control statements,” describes the SYSIN control statements that
supply runtime information to the FileTek MVS Data Loader utility.

= Chapter 6, “Runtime,” defines how to set up execution JCL for different types
of loading operations.

FileTek MVS Data Loader Utility Manual xv

FileTek Proprietary and Confidential

Welcome
Conventions

= Appendix A, “Messages,” lists the FileTek MVS Data Loader utility error,
warning, and informational messages.

Conventions

This book uses the following notational conventions:

Convention Meaning

Courier font JCL and control statements
Italics New terms, emphasized text, variables, and titles
Helvetica font LOAD DATA formats and examples

lowercase Helvetica font Message text variables

v Procedures

See page 4-3 for format conventions of the LOAD DATA statement.

For more information

The following publications contain information related to the FileTek MVS Data
Loader utility.

= To learn the basics of StorHouse/RM, refer to StorHouse/RM Concepts,
publication number 900132.

= To perform StorHouse database administration tasks like creating user tables
and indexes, managing accounts and privileges, and defining user tablespaces,
refer to the StorHouse Database Administration Guide, publication number
900108.

xvi FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Welcome
For quick reference

= For explanations of StorHouse return codes you may receive in message
listings, refer to the StorHouse Messages and Codes Manual, publication
number 900032.

= To learn the concepts, structures, and functions of StorHouse, refer to the
StorHouse Concepts and Facilities Manual, publication number 900026.

= To learn how to unload data from StorHouse user tables by using FTP, refer to
the FileTek FTP Data Unloader Manual, publication number 900137.

For quick reference

This manual contains comprehensive descriptions of LOAD DATA, LOAD
INDEX, and MERGE statements. Refer to the quick reference card that
accompanies this manual for just the syntax of the LOAD DATA statement.

FileTek MVS Data Loader Utility Manual xvii

FileTek Proprietary and Confidential

Welcome
For quick reference

xviii FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

1

Introduction

This chapter introduces the FileTek MVS Data Loader utility. It describes:

= Loading features

= Client and server data loaders
= The data load process

= What you need to load data and indexes
= What to do before loading

= Loads and segments

= Loads and subspaces

= Loads and indexes

= Load parallelism

= Locking during loads

= Checkpoints, restart, abort

= System table updates

= VRAM file names

Loading features

The FileTek MVS Data Loader utility is a bulk data loading system designed to
load large volumes of data from your host computer (the client) into StorHouse
user tables on StorHouse (the server). Those user tables can be empty or they can
contain data from a previous load operation. You also use the FileTek MVS Data
Loader utility to load deferred indexes and to merge existing segments. Key
features of the FileTek MVS Data Loader utility are as follows.

FileTek MVS Data Loader Utility Manual 1-1

FileTek Proprietary and Confidential

l Introduction
Loading features

Parallelism. StorHouse segmentation technology and read-only databases
enable you to load the same table in parallel. You can also query and load the
same table at the same time. See “Loads and segments” on page 1-8 for
information about segmentation. See “Load parallelism” on page 1-31 for ways
to load in parallel.

Multiple record formats. The FileTek MVS Data Loader utility accepts input
data in fixed-length, variable-length, and large object (LOB) type formats. See
Chapter 3 for considerations about input data.

Data type conversion. The FileTek MVS Data Loader utility supports a wide
range of input data types. Compatible input data types are automatically
converted to the data types of the user table. For example, you can load input
data defined as INTEGER EXTERNAL into a column of a user table defined as
CHARACTER, INTEGER, SMALLINT, or VARCHAR. See “Converting data
types” on page 4-98 for the supported conversions.

Compatibility. The load information that you supply is similar and compatible
with the load information accepted by DB20 and Oracle® load utilities. The
FileTek MVS Data Loader utility accepts DB2 and Oracle and clauses that are not
part of the StorHouse syntax but ignores those that do not apply to StorHouse.

Exception processing. You can collect discarded records that don’t meet your
load criteria and then load those discarded records as required. See “Collecting
discarded records in a discard file” on page 4-14 for more information about
exception processing.

Error reporting. Messages are captured in runtime and error listings to help you
monitor the progress and status of load operations. Appendix A contains a list
and explanation of messages.

Restart capability. You can restart an operation from the point of failure. You
can also abort a load and then start from the beginning. See “If an operation
fails” on page 1-35 for more information about restart options.

1-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Client and

Introduction 1
Client and server data loaders

SQL tool. You can use the FileTek MVS Data Loader utility to submit
StorHouse SQL statements. For example, before you load data you can create the
user table and indexes by issuing CREATE TABLE and CREATE INDEX
statements. Each SQL statement is committed when it completes. The SELECT
statement is the only SQL statement you cannot submit with the FileTek MVS
Data Loader utility. See page 4-126 for an example.

server data loaders

Loading StorHouse user table data is a two-phase process that requires two
FileTek programs:

= The client data loader, which you install and run on your host computer,
prepares your data for loading and transfers it to StorHouse. This phase of a
load operation is called the copy phase. You supply runtime parameters to the
client data loader.

= The server data loader, which runs on StorHouse, performs any data
conversions, loads your data into StorHouse user tables, and builds and stores
any indexes for those user tables. This phase of a load operation is called the
load phase.

The client and server data loaders use the channel connection to achieve
maximum data transfer rates.

Client Server
client ! ! server
data , data

@Iﬂ:{ﬂjﬂ loader | ESCON ' loader

FileTek MVS Data Loader Utility Manual 1-3

FileTek Proprietary and Confidential

l Introduction

The data load process

The FileTek MVS Data Loader utility is the FileTek-supplied client data loader. It
is an MVS batch program that performs the following functions:

= Reads input datasets and builds a data stream consisting of control
information and your user data

= Writes the data stream to a temporary Virtual Record Access Manager
(VRAM™) file on StorHouse

= Issues StorHouse Command Language commands that instruct the server
data loader to begin loading data from the temporary VRAM file to your
StorHouse user tables and to update the metadata when the load completes

= Returns operation status information and messages

= Provides a restart capability at both the copy and load phases of a load
operation

The data load process

The process of loading data with the FileTek MVS Data Loader utility is as
follows:

» Prepare the input and submit the job

At your host, prepare the following:

« A SYSREC sequential dataset with the input data you're loading. You can specify
multiple input datasets by concatenating them to the SYSREC DD statement.

= A SYSSQL dataset with a LOAD DATA statement. This statement identifies the user
table and describes the data you're loading.

= A SYSIN (or instream) dataset with a LOAD and SMDEF control statement. These
control statements supply runtime parameters.

1-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1

The data load process

» Build the data stream

After you submit the job, the client data loader builds a data stream, which is a
sequence of four variable-length record types:

» Environment definition (built by the client data loader)

= SQL and LOAD DATA statements (from the SYSSQL dataset)

« Data delimiter (provided by the client data loader)

= Your data (from the SYSREC dataset)

Data records begin immediately after the delimiter record and end at physical end-of-
file. The environment definition specifies defaults for all character coding so that the
server data loader can correctly interpret the remainder of the data stream.

Copy the data stream to a StorHouse VRAM file

The client data loader then copies the data stream to a temporary VRAM file on
StorHouse. You can keep the VRAM file after the load completes or request the client
data loader to delete it. If a load fails, the VRAM file is always kept to allow a
subsequent restart.

Invoke the server data loader

After writing the temporary VRAM file to StorHouse, the client data loader activates
the server data loader by constructing and submitting a StorHouse Command
Language EXECUTE STH_LOAD command. It builds the command based on
internally generated parameters as well as those that you supply on the JCL EXEC
PARM and SYSIN.

Execute the load

The server data loader parses and reads the LOAD DATA statement, and a StorHouse
engine checks your StorHouse account privileges and obtains the metadata to store
the table data and indexes. The server data loader then loads the StorHouse user
table(s) and builds and stores the indexes. When the load completes successfully, a
StorHouse engine updates the metadata.

FileTek MVS Data Loader Utility Manual 1-5

FileTek Proprietary and Confidential

l Introduction
What you need to load data and indexes

What you need to load data and indexes

In addition to the FileTek MVS Data Loader utility client software, you need a
StorHouse account 1D and password to access StorHouse. You provide the account
ID and password on the LOAD control statement in the SYSIN dataset. The
StorHouse account ID must have the following StorHouse privileges to load
data, load indexes, and merge segments.

= Database component privilege:
— INSERT privilege for the user table(s) you're loading
= Access privileges:

— SQLCOMMAND
— SQLEXECUTE

» Command privileges:

- ATF

— DELETE

- GET

- PUT

- RECORD

- SETGROUP
- VTF

If you submit StorHouse SQL statements with the FileTek MVS Data Loader
utility, the account ID must have the appropriate privilege for the statement. For
example, to submit CREATE TABLE and CREATE INDEX statements, an
account 1D must have the DBA or RESOURCE database privilege.

Refer to the StorHouse Database Administration Guide for more information
about database component and access privileges. Refer to the StorHouse
Command Language Reference Manual for more information about command
privileges.

1-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Before loading

Before loading

The StorHouse system or database administrator must complete specific tasks
before loading. The following table lists these tasks and who is typically
responsible for performing them.

StorHouse task Command/Statement Person responsible
Create the StorHouse signon CREATE ACCOUNT StorHouse system
account used by the FileTek administrator

MVS Data Loader utility. This
account must have the access
and command privileges
listed on page 1-6.

Create the volume sets and CREATE VSET StorHouse system
file sets for the VRAM files, CREATE FSET administrator
discard files, user tables, and

indexes, if needed.

Create the user tablespace CREATE TABLE SPACE StorHouse database
associated with the user table administrator

to be loaded.

Create the user table to be CREATE TABLE StorHouse database
loaded. administrator
Create indexes for the user CREATE INDEX StorHouse database
table. An administrator can administrator

create deferred indexes after
the table is loaded.

Grant INSERT privilege tothe ~ GRANT StorHouse database
StorHouse signon account ID administrator

for the user table to be

loaded.

Create discard files to collect CREATE FILE StorHouse system
discarded records that do not administrator

meet selection criteria. This
file is a VRAM file.

FileTek MVS Data Loader Utility Manual 1-7

FileTek Proprietary and Confidential

l Introduction
Loads and segments

Loads and segments

When the server data loader “loads” a user table and “stores” an index, it actually
writes the table data and index entries to files on the StorHouse storage hierarchy.
This set of files is called a segment. When you load data into a table for the first
time, the server data loader creates a segment on StorHouse. When you load
more data into that user table, the server data loader creates another segment.
Each load into a table creates a segment.

Each segment consists of:

= One table data file

= One index file for each value index

= One index file for each hash index

= One or more LOB subsegment files for LOB columns

A range index applies to all segments of the user table. Depending on the actual
size or by user request, a LOB value may be stored in the table data file, or
multiple LOB values in different columns may be stored in the same LOB
subsegment file, or LOB values for the same column may be stored in multiple
LOB subsegment files. An in-line LOB is a LOB value stored in the table data file.
An out-of-line LOB is a LOB value stored in a LOB subsegment file. Refer to the
StorHouse Database Administration Guide for more information about LOB
storage options.

For example, suppose a user table consists of one value index, one hash index,

and one LOB column. Assume you loaded data into the table in January,
February, and March. After the March load, the table consists of three segments.

1-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Each segment contains one table data file, one value index file, one hash index

file, and one LOB subsegment file.

Segment 1
(January)

Segment 2
(February)

Segment 3
(March)

By default, the server data loader creates one segment for each load. You also have

Loads and segments

User table

Table Index 1 Index 2 LOB

data Value index Hash index column

Table Value index Hash index LOB subsegment
data file file file file

Table Value index Hash index LOB subsegment
data file file file file

Table Value index Hash index LOB subsegment
data file file file file

the option of creating multiple segments during one load. For example, in

FileTek MVS Data Loader Utility Manual 1-9

FileTek Proprietary and Confidential

l Introduction

Loads and segments

January you could create two segments, in February you could create one
segment, and in March you could create two segments.

User table
Table Index 1 Index 2 LOB
data Value index Hash index column
Segment 1 Tablg Valug index Hash index LOB sul_)segment
(Jan. 1-15) data file file file file
Segment 2 Table Value index Hash index LOB subsegment
N o 56_31) data file file file file
Segment 3 Tablg Valug index Hash index LOB sul_)segment
(Feb. 1-29) data file file file file
Segment 4 Table Value index Hash index LOB subsegment
(Mar. 1-15) data file file file file
Segment 5 Table Value index Hash index LOB subsegment
g
(Mar. 16-31) data file file file file

Segment size

The maximum size of a table data file is approximately 100 GB. If your input
data exceeds 100 GB, you must do one of the following:

= Load the data into multiple segments, ensuring that each segment does not

exceed the maximum size. See page 4-60 for more information about loading
data into multiple segments during one load.

1-10 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1
Loads and subspaces

= Split the data into multiple data files and run multiple loads. Each load writes
to a different segment.

Segment replacement

You can replace an existing segment. Replacing a segment invalidates the
segments files, making them inaccessible. A replaced segment continues to reside
on StorHouse and the segment files are system-managed according to the user
tablespace parameters. You can delete and remove a replaced segment or re-
validate it later if users need to access it. The range index entries for a replaced
segment remain in the system tables.

Segment merge

You can merge existing segments of a table with the FileTek MVS Data Loader
utility. A merge, or coalesce, operation consolidates selected segments into one
segment or more segments depending on your merge criteria. You perform a
merge operation separately from a load operation. See “Merging segments of a
table” on page 4-134 for more information about performing a merge operation.

Loads and subspaces

A user tablespace consists of one or more subspaces that specify where and how
segments are stored on StorHouse. When creating a user table, you assign it to a
user tablespace. If the user table contains LOB columns, you can assign those
LOB columns to the same user tablespace as the table or to different user
tablespaces. And when creating an index for a user table, you can assign it to the
same user tablespace as the table or to a different user tablespace. You can even
assign different indexes of a table to different user tablespaces.

When you load data, the server data loader determines the user tablespace(s) and
can store each component in a default subspace. The data loader uses the value of

FileTek MVS Data Loader Utility Manual 1-11

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

the OBJECT_TYPE parameter (specified on a CREATE TABLE SPACE or ALTER
TABLE SPACE statement) to determine the type of component allowed in a
subspace. The OBJECT_TYPE values are:

= Blank for all components
= T for table data

= H for hash indexes

=V for value indexes

= L for LOB data

You can also explicitly select subspaces or rotate among subspaces that are valid
for a component type. This section describes default selection, explicit selection,
and rotation of subspaces. Refer to the StorHouse Database Administration Guide
for more information about user tablespaces and subspaces.

Note: LOB subspaces and tablespaces are not used for in-line LOBs. The server
data loader uses the table data subspace and the user table tablespace for LOB
values that fit within a row.

Default selection of subspaces

A default subspace is the lowest-numbered subspace that allows a component
type. If you do not explicitly select subspaces or request rotation during a load,
the data loader selects the default. This section describes the default selection of
subspaces when:

= There is one subspace for all component types

= There is one subspace for each component type

= There are multiple subspaces for each component type

= Indexes or LOB columns are assigned to multiple user tablespaces

1-12 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

When there is one subspace for all component types

When a user tablespace contains one subspace for all component types, and the
user table, indexes and LOB columns are assigned to the same user tablespace, the
data loader automatically selects that subspace during a load.

Table data file User tablespace

Hash index files Subspace 1
Load

Value index files OBJECT_TYPE blank

LOB subsegment files

When there is one subspace for each component type

When a user tablespace contains one subspace for each component type, and the
user table, indexes, and LOB columns are assigned to the same user tablespace,
the data loader automatically selects the appropriate subspace for each
component type.

User tablespace

Subspace 1
OBJECT_TYPE T

Table data file —»

Load —|

Subspace 2

Hash index files —p> OBJECT TYPE H

Subspace 3
OBJECT_TYPE V

Value index files —»

Subspace 4

L LOB subsegment files—p OBJECT TYPE L

When there are multiple subspaces for each component
type

When a user tablespace contains multiple subspaces for the same component
type or multiple subspaces with no component type restrictions (OBJECT_TYPE
is blank), and the user table, indexes, and LOB columns are assigned to the same

FileTek MVS Data Loader Utility Manual 1-13

FileTek Proprietary and Confidential

l Introduction

Loads and subspaces

user tablespace, the data loader automatically selects the lowest-numbered
subspace for the component type.

User tablespace

Subspace 1

—— Table data file ——» OBJECT TYPE T

Load —

Subspace 2
OBJECT_TYPE T

Subspace 3

—— Hash index files —> OBJECT_TYPE H

Subspace 4

Value index files —p OBJECT TYPE V

Subspace 5
OBJECT_TYPE V

Subspace 6

L LOB subsegment files—p
g OBJECT_TYPE L

Subspace 7
OBJECT_TYPE L

In this example, the data loader selects:

= Subspace 1 for the table data file (because it’s the lowest-numbered subspace
that allows table data)

= Subspace 3 for hash index files (because it’s the only subspace that allows hash
indexes)

= Subspace 4 for value index files (because it’s the lowest-numbered subspace
that allows value indexes)

= Subspace 6 for LOB subsegment files (because it’s the lowest-numbered
subspace that allows LOB data)

1-14 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

The data loader does not use subspaces 2, 5, and 7 unless you explicitly select
them.

When indexes or LOB columns are assigned to multiple
user tablespaces

When any indexes or LOB columns for a user table are assigned to different user
tablespaces, the data loader automatically selects the lowest-numbered subspace
in the appropriate user tablespace for the component type. For instance, assume a
user table has one hash index, one value index, and one LOB column. The user
table is assigned to user tablespace 1, the hash index is assigned to user tablespace
2, the value index is assigned to user tablespace 3, and the LOB column is
assigned to user tablespace 4. In the following example, the data loader selects
subspace 1 as the default for each component type in each user tablespace.

User tablespace 1

Subspace 1
OBJECT_TYPE T

Table data file ———»

Load —|

Subspace 2
OBJECT_TYPE T

User tablespace 2

Subspace 1
OBJECT_TYPE H

Hash index files —>

User tablespace 3

Subspace 1
OBJECT_TYPE V

Value index files —»

Subspace 2
OBJECT_TYPE V

User tablespace 4

Subspace 1
OBJECT_TYPE L

L LOB subsegment files—p

FileTek MVS Data Loader Utility Manual 1-15

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

Explicit selection of subspaces

If a user tablespace contains multiple subspaces for the same component type and
you want to use a subspace other than the default, you can explicitly select that
subspace during a data load, index load, or merge operation. You can select a
subspace for each component type. This section describes explicit selection when:

= Loading one segment

= Loading multiple segments

= There are multiple indexes of the same type

= Indexes are assigned to different user tablespaces

You include a SUBSPACE number clause on a LOAD DATA, LOAD INDEX, or
MERGE statement to select subspaces. See “Selecting subspaces” on page 4-68 for
the format, examples, and more information about this clause. This section also
contains examples.

When loading one segment

When loading one segment into a user tablespace with multiple subspaces for
component types, you can select a subspace for each component type. For
example, assume the user table has one hash index, one value index, and two
LOB columns assigned to the same user tablespace as the table. You're loading
one segment into a user tablespace that contains two subspaces for each
component type. Remember that if you don't explicitly select subspaces, the data
loader automatically selects the subspace with the lowest subspace number for the
applicable component type.

1-16 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

In the following example, to use subspace 2 for the table data, subspace 4 for the
hash index, subspace 6 for the value index, and subspace 8 for the LOB data, you
must explicitly select those subspaces for each component type.

User tablespace

Subspace 1
OBJECT_TYPE T

— Table data file ———p| Subspace 2

OBJECT_TYPE T
Load ——
INTO TABLE MYTABLE Subspace 3
TABLE SUBSPACE 2 OBJECT_TYPE H
HASH SUBSPACE 4
VALUE SUBSPACE 6
.) Subspace 4
LOB SUBSPACE 8 Hash index file —> OBJECT TYPE H
Subspace 5
OBJECT_TYPE V
. . Subspace 6
— Value index file —> OBJECT TYPE V
Subspace 7
OBJECT_TYPE L
LOB subsegment file, column 1 Subspace 8

~ LOB subsegment file, column ¥ OBJECT_TYPE L

When loading multiple segments

When loading multiple segments into a user tablespace with multiple subspaces
for component types, you can select the same subspaces for all segments or
different subspaces for each segment.

For example, assume a user table has one hash index, one value index, and one

LOB column assigned to the same user tablespace as the table. You're loading two
segments into a user tablespace that contains two subspaces for each component
type. You can select the same subspace for each segment and component type, for
instance, subspace 2 for both table data files, subspace 4 for both hash index files,

FileTek MVS Data Loader Utility Manual 1-17

FileTek Proprietary and Confidential

l Introduction

Loads and subspaces

subspace 5 for both value index files, and subspace 8 for both LOB subsegment

files.

Table data file, segment 1

Table data file, segment 2

Load
INTO TABLE MYTABLE
TABLE SUBSPACE 2
HASH SUBSPACE 4
VALUE SUBSPACE 5
LOB SUBSPACE 8

INTO TABLE MYTABLE
DIFFERENT SEGMENT
TABLE SUBSPACE 2
HASH SUBSPACE 4
VALUE SUBSPACE 5
LOB SUBSPACE 8

1-18 FileTek MVS Data Loader Utility Manual

Hash index file, segment 1
Hash index file, segment 2

Value index file, segment 1
Value index file, segment 2

LOB subsegment file, segment 1
LOB subsegment file, segment 2

User tablespace

Subspace 1
OBJECT_TYPE T

Subspace 2
OBJECT_TYPE T

Subspace 3
OBJECT_TYPE H

Subspace 4
OBJECT_TYPE H

Subspace 5
OBJECT_TYPE V

Subspace 6
OBJECT_TYPE V

Subspace 7
OBJECT_TYPE L

Subspace 8
OBJECT_TYPE L

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

Or you can select different subspaces for each segment and component type.

Load

User tablespace

—— Table data file, segment 1——p

Subspace 1
OBJECT_TYPE T

INTO TABLE MYTABLE
TABLE SUBSPACE 1
HASH SUBSPACE 3
VALUE SUBSPACE 5
LOB SUBSPACE 7

INTO TABLE MYTABLE
DIFFERENT SEGMENT
TABLE SUBSPACE 2
HASH SUBSPACE 4
VALUE SUBSPACE 6
LOB SUBSPACE 8

— Table data file, segment 2————|

Subspace 2
OBJECT_TYPE T

—— Hash index file, segment 1 ———p|

Subspace 3
OBJECT_TYPE H

—— Hash index file, segment 2———p,

Subspace 4
OBJECT_TYPE H

— Value index file, segment 1——

Subspace 5
OBJECT_TYPE V

L Value index file, segment2

Subspace 6
OBJECT_TYPE V

— LOB subsegment file, segment 1—p»

Subspace 7
OBJECT_TYPE L

L LOB subsegment file, segment 2—p|

Subspace 8
OBJECT_TYPE L

When there are multiple indexes of the same type

Remember that for each hash index and each value index on a user table, there’s
one hash index file and one value index file for each table data file. So if you're

FileTek MVS Data Loader Utility Manual

1-19

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

loading two segments, and the user table has two hash indexes, then a load
creates four hash index files (two files in each segment).

User table
Table Index 1 Index 2
data Hash index Hash index
Segment 1 Tab_Ie Has_h index Has_h index
data file 1 file 1 file 1
S t2 Table Hash index Hash index
egmen data file 2 file 2 file 2

When you select subspaces for indexes, all same-type (hash or value) index files
that correspond to the same segment use the same subspace. For example, assume
you're loading two segments. The user table has two hash indexes and two value
indexes assigned to the same user tablespace as the table. For the first segment,
you could select subspace 3 for both hash index files and subspace 5 for both

1-20 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

value index files. For the second segment, you could select subspace 4 for both
hash index files and subspace 6 for both value index files.

User tablespace

Subspace 1

— Table data file, segment 1——p| OBJECT TYPE T

Load
INTO TABLE MYTABLE
TABLE SUBSPACE 1
HASH SUBSPACE 3
VALUE SUBSPACE 5 Hash index 1 file, segment 1 Subspace 3

| Hash index 2 file, segment 1 ’ OBJECT_TYPE H

Subspace 2

— Table data file, segment 2—— OBJECT TYPE T

INTO TABLE MYTABLE Hash index 1 file, segment 2
DIFFERENT SEGMENT
TABLE SUBSPACE 2
HASH SUBSPACE 4
VALUE SUBSPACE 6 | Value index 1 file, segment 1__ | Subspace 5

Value index 2 file, segment 1 OBJECT_TYPE V

| Subspace 4
Hash index 2 file, segment 2 ' OBJECT_TYPE H

Value index 1 file, segment 2 Subspace 6
~ Value index 2 file, segment 2 I OBJECT_TYPE V

You don't select subspaces for certain indexes (like hash index 1 or value index 2).
You select subspaces for component types (like hash indexes or value indexes). All
hash index files that correspond to the same segment use the same subspace. All
value index files that correspond to the same segment use the same subspace.

When indexes are assigned to different user tablespaces

You can select a specific subspace for different component types, even when
same-type indexes are assigned to different user tablespaces. The subspace
number, however, must exist in all applicable user tablespaces and each subspace
must allow that component type. For example, assume you're loading a user table
with two hash indexes and two value indexes. The user table is assigned to user
tablespace 1, the first hash index is assigned to user tablespace 2, the second hash

FileTek MVS Data Loader Utility Manual 1-21

1

Introduction

FileTek Proprietary and Confidential

Loads and subspaces

index is assigned to user tablespace 3, and both value indexes are assigned to user

tablespace 4.

User table

User tablespace 1

Hash index 1

User tablespace 2

Hash index 2

User tablespace 3

Value index 1
Value index 2

User tablespace 4

Subspace 1
OBJECT_TYPE T

Subspace 1
OBJECT_TYPE H

Subspace 1
OBJECT_TYPE H

Subspace 1
OBJECT_TYPE V

Subspace 2
OBJECT_TYPE T

Subspace 2
OBJECT_TYPE H

Subspace 2
OBJECT_TYPE H

Subspace 2
OBJECT_TYPE V

Subspace 3
OBJECT_TYPE H

Subspace 3
OBJECT_TYPE V

Notice that user tablespace 2 contains two subspaces for hash indexes and user
tablespace 3 contains three subspaces for hash indexes. In this case, you cannot
select subspace 3 for hash indexes because user tablespace 2 does not contain a

subspace 3.

1-22 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

You can also select a specific subspace for all component types. For instance, you
can simply select subspace 2. The data loader then uses subspace 2 in each user
tablespace.

User tablespace 1

Subspace 1
OBJECT_TYPE T

Subspace 2

— Table data file, segment 1 .
OBJECT_TYPE T

Load
INTO TABLE MYTABLE
SUBSPACE 2

User tablespace 2

Subspace 1
OBJECT_TYPE H

Subspace 2

— Hash index 1 file, segment 1 OBJECT TYPE H

User tablespace 3

Subspace 1
OBJECT_TYPE H

Subspace 2

| Hash index 2 file, segment 1), OBIECT TYPE H

Subspace 3
OBJECT_TYPE H

User tablespace 4

Subspace 1
OBJECT_TYPE V

Subspace 2
OBJECT_TYPE V

L Value index 1 file, segment 1.y,
Value index 2 file, segment 1

Subspace 3
OBJECT_TYPE V

FileTek MVS Data Loader Utility Manual 1-23

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

Rotation among subspaces

If you're loading multiple segments into a user tablespace with multiple subspaces
for component types, you can rotate among the applicable subspaces. You can
also rotate among subspaces for index load and merge operations. Rotation
occurs independently for each component type. That is:

= For the table data file in the first segment, the data loader starts with the
lowest-numbered subspace that allows table data and then uses the next
subspace that allows table data for the next segment.

= For hash index files in the first segment, the data loader starts with the lowest-
numbered subspace that allows hash indexes and then uses the next subspace
that allows hash indexes for the next segment.

= For value index files and LOB subsegment files, the same rotation occurs.

This section describes rotation when:

= There are multiple subspaces for each component type
= Component types share a subspace
= Indexes or LOB columns are assigned to different user tablespaces

You include a SUBSPACE ROTATE clause in a LOAD DATA, LOAD INDEX, or

MERGE statement to rotate among subspaces. See “Rotating among subspaces”
on page 4-33 for more information and additional examples.

1-24 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

When there are multiple subspaces for each component

type

A user tablespace must contain multiple subspaces for rotation to occur. For

Loads and subspaces

example, assume a user table has one hash index, one value index, and one LOB
column assigned to the same user tablespace as the table. The user tablespace
contains two subspaces for each component type. You're loading two segments
and request to rotate among subspaces. The data loader rotates among subspaces

as follows:

—— Table data file, segment 1——p
Load —
—— Table data file, segment 2 ———»

—— Hash index file, segment 1 ——»

—— Hash index file, segment 2 ——»

Value index file, segment 1 ——p

L Value index file, segment2

L LOB subsegment file, segment 1—p

L LOB subsegment file, segment 2-p

FileTek MVS Data Loader Utility Manual

User tablespace

Subspace 1
OBJECT_TYPE T

Subspace 2
OBJECT_TYPE T

Subspace 3
OBJECT_TYPE H

Subspace 4
OBJECT_TYPE H

Subspace 5
OBJECT_TYPE V

Subspace 6
OBJECT_TYPE V

Subspace 7
OBJECT_TYPE L

Subspace 8
OBJECT_TYPE L

1-25

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

In this example, the data loader uses:

= Subspace 1 for the table data file in segment 1 (because it’s the lowest-
numbered subspace that allows table data)

= Subspace 2 for the table data file in segment 2 (because it’s the next subspace
that allows table data)

= Subspace 3 for the hash index file in segment 1 (because it’s the lowest-
numbered subspace that allows hash indexes)

= Subspace 4 for the hash index file in segment 2 (because it’s the next subspace
that allows hash indexes)

= Subspace 5 for the value index file in segment 1 (because it’s the lowest-
numbered subspace that allows value indexes)

= Subspace 6 for the value index file in segment 2 (because it’s the next subspace
that allows value indexes)

= Subspace 7 for the LOB subsegment file in segment 1 (because it’s the lowest-
numbered subspace that allows LOB data)

= Subspace 8 for the LOB subsegment file in segment 2 (because it’s the next
subspace that allows LOB data)

If you were loading a third segment, the data loader would use subspace 1 for the
table data file, subspace 3 for the hash index file, subspace 5 for the value index
file, and subspace 7 for the LOB subsegment file.

When component types share a subspace

A user tablespace does not have to contain a subspace for each component type.
You can also define subspaces that allow all components types (OBJECT_TYPE is
blank). For instance, assume a user tablespace contains three subspaces: one that
allows all component types, a second for table data files only, and a third for value

1-26 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

index files only. In this example, subspace 1 is the only subspace that allows hash
index files and LOB subsegment files, but it also allows table data files and value
index files.

Assume you're loading two segments and request to rotate among the applicable
subspaces for each component type. The user table has one hash index, one value
index, and one LOB column assigned to the same user tablespace as the table.
The data loader rotates among subspaces as follows:

Table data file, segment 1

Hash index file, segment 1 User tablespace
Value index file, segment 1 Subspace 1
LOB subsegment file, segment 1 OBJECT_TYPE blank

Load —|

Hash index file, segment 2
LOB subsegment file, segment 2

Subspace 2

— Table data file, segment 2 R — OBJECT TYPE T

Subspace 3
OBJECT_TYPE V

L Value index file, segment2 —

In this example, the data loader uses:

= Subspace 1 for the table data file, hash index file, value index file, and LOB
subsegment file for segment 1 (because it’s the lowest-numbered subspace
that’s valid for all component types)

= Subspace 2 for the table data file in segment 2 (because it’s the next subspace
that allows table data)

= Subspace 3 for the value index file in segment 2 (because it’s the next subspace
that allows value indexes)

FileTek MVS Data Loader Utility Manual 1-27

FileTek Proprietary and Confidential

l Introduction

Loads and subspaces

= Subspace 1 for the hash index file and LOB subsegment file in segment 2
(because it’s the only subspace that allows hash indexes and LOB subsegment
files)

When indexes or LOB columns are assigned to different
user tablespaces

When any indexes or LOB columns for a user table are assigned to different user
tablespaces, the data loader rotates among applicable subspaces in the applicable
user tablespaces. For example, assume the user table has two hash indexes, two
value indexes, and two LOB columns. The user table, hash index 1, and value
index 1 are assigned to user tablespace 1; hash index 2, value index 2, and LOB
column 1 are assigned to user tablespace 2; and LOB column 2 is assigned to user
tablespace 3.

User table
Hash index 1
Value index 1

User tablespace 1

Subspace 1
OBJECT_TYPE T

Hash index 2
Value index 2
LOB column 1

User tablespace 2

LOB column 2

User tablespace 3

Subspace 1
OBJECT_TYPE H

Subspace 1
OBJECT_TYPE L

Subspace 2
OBJECT_TYPE T

Subspace 2
OBJECT_TYPE V

Subspace 3
OBJECT_TYPE H

Subspace 2
OBJECT_TYPE L

Subspace 3
OBJECT_TYPE L

Subspace 4
OBJECT_TYPE H

Subspace 5
OBJECT_TYPE V

Subspace 6
OBJECT_TYPE V

1-28 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction

Loads and subspaces

In the following example, the data loader rotates among subspaces in the user

tablespaces as follows:

User tablespace 1

— Table data file, segment 1 —p

Subspace 1
OBJECT_TYPE T

Load —

— Table data file, segment 2 ——|

Subspace 2
OBJECT_TYPE T

— Hash index 1 file, segment 1 ——»

Subspace 3
OBJECT_TYPE H

— Hash index 1 file, segment 2 ——»

Subspace 4
OBJECT_TYPE H

— Value index 1 file, segment 1 ——p

Subspace 5
OBJECT_TYPE V

— Value index 1 file, segment 2 —p

Subspace 6
OBJECT_TYPE V

User tablespace 2

Hash index 2 file, segment 1
| Hash index 2 file, segment 2

Subspace 1
OBJECT_TYPE H

| Value index 2 file, segment 1
Value index 2 file, segment 2

Subspace 2
OBJECT_TYPE V

| LOB column 1 file, segment1___

Subspace 3
OBJECT_TYPE L

LOB column 1 file, segment 2

User tablespace 3

| LOB column 2 file, segment1____,,

Subspace 1
OBJECT_TYPE L

| LOB column 2 file, segment 2

Subspace 2
OBJECT_TYPE L

FileTek MVS Data Loader Utility Manual

1-29

FileTek Proprietary and Confidential

l Introduction
Loads and subspaces

In this example, the data loader uses the following subspaces for table data files:

= Subspace 1 in user tablespace 1 for the table data file in segment 1 (because
it’s the lowest-numbered subspace that allows table data)

= Subspace 2 in user tablespace 1 for the table data file in segment 2 (because
it's the next subspace that allows table data)

The data loader uses the following subspaces for hash index files:
= Subspace 3 in user tablespace 1 for the hash index file of hash index 1 in
segment 1 (because it’s the lowest-numbered subspace that allows hash

indexes)

= Subspace 4 in user tablespace 1 for the hash index file of hash index 1 in
segment 2 (because it’s the next subspace that allows hash indexes)

= Subspace 1 in user tablespace 2 for both hash index files of hash index 2 in
both segments (because it’s the only subspace that allows hash indexes)

The data loader uses the following subspaces for value index files:
= Subspace 5 in user tablespace 1 for the value index file of value index 1 in
segment 1 (because it’s the lowest-numbered subspace that allows value

indexes)

= Subspace 6 in user tablespace 1 for the value index file of value index 1 in
segment 2 (because it’s the next subspace that allows value indexes)

= Subspace 2 in user tablespace 2 for both value index files of value index 2 in
both segments (because it’s the only subspace that allows value indexes)

The data loader uses the following subspaces for LOB subsegment files:

= Subspace 3 in user tablespace 2 for LOB column 1 subsegment files for both
segments (because it’s the only subspace that allows LOB data)

1-30 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1
Loads and indexes

= Subspace 1 in user tablespace 3 for the LOB column 2 subsegment file for
segment 1 (because it’s the lowest-numbered subspace that allows LOB data)

= Subspace 2 in user tablespace 3 for the LOB column 2 subsegment file for
segment 2 (because it’s the next subspace that allows LOB data)

Loads and indexes

You can create indexes before or after a table has been loaded. A deferred index is
an index created after a table has been loaded. You must perform an index load
operation to load a deferred index. This operation is similar to the load process,
except the SYSSQL dataset contains a LOAD INDEX statement that identifies the
indexes and optionally the segments to be loaded. See “Loading a deferred index”
on page 4-131 for more information about performing an index load operation.

Load parallelism

This section illustrates the different ways you can load in parallel. The graphics
on the following pages contain these components:

LOAD INTO TABLE
User LOAD DATA INTO TABLE clause
Aload operation can One LOAD DATA Multiple INTO
load data into one statementis allowed TABLE clauses are
StorHouse ina SYSSQL allowed in a LOAD
database at a time. dataset. DATA statement to

load multiple tables
at a time or multiple
segments of a table.

FileTek MVS Data Loader Utility Manual 1-31

FileTek Proprietary and Confidential

l Introduction

Load parallelism

Three tunable StorHouse system parameters help control parallelism:

LOAD ——— INTO TABLE
SQL_SESSIONS SQL_LDR_MAXLOAD SQL_LDR_MAXINTO
Specifies the Specifies the maximum Specifies the
maximum number number of LOAD DATA maximum number of
of StorHouse statements that can be INTO TABLE clauses
engines that can run processed at a time. in any one LOAD
concurrently for all One engine is required DATA statement. A
users. Requests per statement. load fails when the
beyond the limit are Requests beyond the maximum number of
rejected. limit are queued. The INTO TABLE clauses

SQL_LDR_ENGINES is exceeded.
system parameter has

the same function as
SQL_LDR_MAXLOAD.

If the values differ, the

smaller value is used.

Loading different tables in one load

A user can load different user tables in one load. By default, a load writes to one

segment.
'4 [INTO TABLEA —— SEGMENT 1
\ L@i ____ Loap <
S INTO TABLEB ——— SEGMENT 1

1-32 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1
Load parallelism

Loading multiple segments of atable in one
load

A user can load one or more segments of the same user table in one load.

INTO TABLE A

LOAD <
INTO TABLE A

SEGMENT 1

SEGMENT 2

Loading multiple segments of multiple tables
in one load

A user can load one or more segments of multiple user tables in one load.

INTO TABLEA —— SEGMENT 1

INTO TABLE A —— SEGMENT 2
LOAD

INTO TABLEB ——— SEGMENT 1

INTO TABLE B —— SEGMENT 2

Loading different tables in multiple loads

Multiple users can load different user tables concurrently. By default, a load
writes to one segment.

LOAD 1

INTO TABLE A

SEGMENT 1

LOAD 2 INTO TABLE B SEGMENT 1

FileTek MVS Data Loader Utility Manual 1-33

FileTek Proprietary and Confidential

l Introduction
Load parallelism

Loading the same table in multiple loads

Multiple users can load the same user table concurrently. Each load writes to a
different segment of that user table.

LOAD 1

INTO TABLE A

SEGMENT 1

LOAD 2

INTO TABLE A SEGMENT 2

Loading multiple segments of multiple tables
in multiple loads

Multiple users can load one or more segments of multiple user tables. Each load
writes to a different segment of a table.

INTO TABLE A SEGMENT 1
INTO TABLE B SEGMENT 1
INTO TABLE A SEGMENT 2
INTO TABLE B SEGMENT 2

1-34 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1
Locking during loads

Querying a table while it's being loaded

A user can query existing segments while another user loads new data into that
table. New segments can be accessed after the load completes.

LOAD — INTO TABLE A ——— SEGMENT 2

SELECT FROM TABLE A SEGMENT 1

Locking during loads

A load acquires and releases an exclusive lock on the SYSTABLES system table at
load start and on the SYSSTHSEGMENTS system table at load end. No locks are
held during the middle of a load. A load acquires a shared lock on the user table
during load commit processing to prevent user table changes during this
operation.

If an operation fails

If a data load, index load, or merge operation fails during the copy or load phase,
you can restart it or abort it. Restart is possible through checkpointing. When
loading LOB data, however, restart is not supported. You must abort the load and
start over.

If an operation fails before the copy phase, there’s no checkpoint, so it’s not
possible to restart the operation. More than likely your control statements
(LOAD and SMDEF in the SYSIN dataset) contain errors. After fixing the control
statement errors, simply submit the operation again.

FileTek MVS Data Loader Utility Manual 1-35

FileTek Proprietary and Confidential

l Introduction
If an operation fails

Checkpoints

During the copy phase, the client data loader takes a checkpoint after writing a
certain number of megabytes to the temporary VRAM file. You specify this
number of megabytes on the CHECKPOINT keyword of the LOAD control
statement (see page 5-6). Note the following:

= The client data loader maintains a checkpoint record in a host checkpoint
dataset.

= You initialize this checkpoint dataset on your host during installation (see
page 2-6).

» If you run multiple loads in parallel, you must initialize and use different
checkpoint datasets for each load.

= When a load completes successfully or when you abort a load, the client data
loader resets the checkpoint record in the checkpoint dataset. You can re-use
checkpoint datasets for subsequent loads.

During the load phase, the server data loader takes a checkpoint for each data
extent when it reaches the maximum size. You can specify the maximum data
extent size with the MAX_EXT_SIZE parameter in a subspace. If you omit that
parameter, the server data loader uses a default value of 100 megabytes for LOB
subsegment files and the values of the following StorHouse system parameters:

= SQL_MAX_EXT_DATA for table data files
= SQL_MAX_EXT_HASH for hash index files
= SQL_MAX_EXT_ VAL for value index files

The server data loader maintains checkpoints in checkpoint files on StorHouse.

When a load completes successfully or when you abort a load, the server data
loader deletes the checkpoint files.

1-36 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Introduction 1
If an operation fails

Restart

When you restart a data load, your load continues from the last checkpoint. In
other words, a restart skips completed work and continues with remaining work.

If a load fails during the copy phase, the client data loader begins at the last
checkpoint in the host checkpoint dataset. For instance, if CHECKPOINT=100
and the copy phase failed after transferring 100 megabytes but before transferring
200 megabytes, then the client data loader does not re-copy the first 100
megabytes.

If a load fails during the load phase, the server data loader begins at the last data
extent. For instance, if the server data loader had completed writing two data
extents for a table data file and the load failed while writing the third data extent,
then a restart begins at the third data extent of the table data file.

When you restart an index load or a segment merge operation, the server data
loader aborts the operation and then starts over, restarting after the last
completed segment.

Abort

When you abort a data load, the client and server data loaders remove all
checkpoints for that load. The server data loader also deletes and removes any
partially written segment files on StorHouse. If you want to load the table again,
all work starts at the beginning, just like a new load.

When you abort an index load, the server data loader deletes and removes the last
in-progress segment. Any completed segments have already been committed.

When you abort a segment merge, the server data loader deletes and removes any
partially created result segment. You cannot abort a merge operation that
completed successfully because the server data loader automatically commits each
result segment after creating it.

FileTek MVS Data Loader Utility Manual 1-37

FileTek Proprietary and Confidential

l Introduction
System table updates

System table updates

A StorHouse engine updates metadata during loading operations. The updates
differ depending on the type of operation.

Metadata updates for a data load operation
During a data load, a StorHouse engine:

= Obtains and increments the segment ID in the SYSTABLES system table
= Inserts index entries into applicable range index system tables
= Inserts rows into the SYSSTHFILES system table for each segment file
» Inserts the following into the SYSSTHSEGMENTS system table:
— Table 1D of the user table
— Segment ID of the segment
— Number of logical records in a table data file
— Average number of logical records per page in a table data file
— Date and time the load was committed
— Segment tag

Metadata updates for a replace operation

For replaced, or invalidated, segments, a StorHouse engine inserts the following
into the SYSSTHSEGMENTS system table:

= Flag indicating that the segment was replaced
= Date and time the segment was replaced

1-38 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential
Introduction 1
Temporary VRAM file names

Metadata updates for an index load operation

For an index load operation, a StorHouse engine:

= Inserts rows into the SYSSTHFILES system table for each hash index file and
value index file

= Inserts index entries into applicable range index system tables
= Updates the IDXCOMPRESS column in the SYSINDEXES system table to N

for normal (index complete) only if all index entries for all segments of the
table are created

Metadata updates for a merge operation
For coalesced segments, a StorHouse engine:

» Updates the segment ID and subsegment ID in the SYSSTHFILES system
table for all LOB subsegments

= Performs the same updates as a data load for the result segment

= Performs the same updates as a replace operation for the input segments

Temporary VRAM file names

A temporary VRAM file is used during data load, index load, and merge
operations. The client data loader uses the following format to name the file:

prefix.Ldddddd.Kddddd.Nnnnnn

FileTek MVS Data Loader Utility Manual 1-39

FileTek Proprietary and Confidential

l Introduction
Temporary VRAM file names

where:

= prefix is the file name prefix as specified in the FNPREFIX keyword on the
LOAD control statement (see page 5-7)

= L, K, and N are constants

» ddddddddddd is the load 1D generated by the client data loader, padded with
leading zeros if necessary

= nnnnn is 00000 for the first or only LOAD control statement in a job step,
and one larger for each subsequent LOAD

For example, STHLDR.TEMPF.L003434.K45081.NO0000

= STHLDR.TEMPF is the prefix
= 00343445081 is the load 1D (padded with leading zeros)
= 00000 indicates there was only one LOAD control statement in the job step

1-40 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

2

Installation

This chapter explains the requirements, procedures, and job steps to install the
FileTek MVS Data Loader utility, also called the LDLSLDR utility.

Installation overview

You install the FileTek MVS Data Loader utility with the IBM System
Modification Program Extended (SMP/E).

Note: Because the installation process is designed to use a separate Consolidated
Software Index (CSI), you should not install this product in an SMP/E target or
distribution zone that was used for installing other products.

Software function identifier

The FileTek MVS Data Loader utility software is distributed as an SMP/E
function with a function management ID (FMID) in the format LDLSvrf where:

= L is the user-definable first character SMP/E FMID name.

= DLS s aconstant.

=V is the software version number.

= s the software release number.

» fis the function identifier. Currently only the base function O is defined.

The current version is 1 and the release is 1, so the current FMID is LDLS110.

FileTek MVS Data Loader Utility Manual 2-1

FileTek Proprietary and Confidential

2 Installation
Installation overview

System requ irements
The following are required to run the FileTek MVS Data Loader utility:

= SMP/E
= Auvailable disk space equal to approximately thirteen 3380 cylinders

= FileTek host software base (FMID LSM1700)

Files on the distribution tape

The distribution tape for LDLS110 is a 3480 cartridge, standard label, with a
volume serial number of LDL110. The following table lists the files on the tape.

File Dataset name Contents
1 SMPMCS SMP/E Modification Control Statements
2 LDLS110.F1 LDLS110 SMP/E JCLIN
3 LDLS110.F2 LDLS110 load library
4 SAMPLES Installation assist and sample JCL

Files 1 through 3 are used by the SMP/E installation procedures. File 4 contains
members to assist in the installation process and sample JCL for FileTek MVS
Data Loader utility production execution.

2-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Installation 2
Installation procedure

Installation procedure

Installing the FileTek MVS Data Loader utility is an 8-step procedure:

Load the SAMPLES dataset.

Allocate required datasets.

Customize the SMP/E JCL procedure.
Initialize SMP/E CSlI.

Execute SMP/E RECEIVE.

Execute SMP/E APPLY.

Execute SMP/E ACCEPT.

Build the checkpoint dataset.

NN E

Step 1. Load the SAMPLES dataset

Use the sample JCL that follows to load file 4, SAMPLES. Supply a valid JOB card
and substitute appropriate values for DSN, VOL, and UNIT. The <=== symbol
identifies the JCL lines that require customization.

/ | SAMPLES JOB ... <===
/1 LOAD EXEC PGWEl EBCOPY

/1 SYSPRINT DD SYSQUT=*

/1 SYSUT1 DD DSN=SAMPLES, VOL=SER=LDL110, UNI T=uni t, <===
/1 LABEL=4, DI SP=0OLD

/1 SYSUT2 DD DSN=I dl i ndex. SAMPLES, <===
/1l UNI T=uni t, VOL=SER=vol ser, <===
/1 SPACE=(TRK, (2, 1, 6)), DI SP=(, CATLG DELETE)

/1 SYSUT3 DD UNI T=SYSDA, SPACE=(TRK, (15))

/| SYSUT4 DD UNI T=SYSDA, SPACE=(TRK, (15))

/1 SYSI N DD DUMWY

All subsequent installation steps refer to members in SAMPLES. These members
are listed in the following table. You will use the members marked Install during

FileTek MVS Data Loader Utility Manual 2-3

FileTek Proprietary and Confidential

2 Installation

Installation procedure

installation. You will use the members marked Operations for normal operations
and for administration of the FileTek MVS Data Loader utility after installation.

Member name When used Description

INITCKPT Install Build and initialize the checkpoint dataset
LDRSMPE Install SMP JCL procedure

RUNLOAD Operations Sample execution JCL

SMPACEPT Install SMP processing, ACCEPT step
SMPALLOC Install Dataset allocation

SMPAPPLY Install SMP processing, APPLY step
SMPDDDEF Install SMP processing, ADD DDDEF statements
SMPRECV Install SMP processing, RECEIVE step
SMPUCLIN Install SMP UCLIN procedure

SQLSAMP Operations Sample LOAD DATA statement

Step 2: Allocate required datasets

Edit SAMPLES member SMPALLOC to specify the appropriate dataset high-level
indexes and the dataset units and volumes. The following table shows the
datasets that are allocated and their respective sizes. All datasets except SMPCSI
are allocated by blocks in the amounts shown in the table. The LDLS110 SMP/E
Csl requests an allocation of 4 cylinders of 3380 (or equivalent) disk space.

— Blocks Block
Dataset Description . .
required size
ALDLLOAD Loader distribution zone load library 315 6144
LDLLOAD Loader target zone load library 315 6144
SMPMTS Required SMP/E dataset 7 6160

2-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Installation 2
Installation procedure

Dataset Description F(alchj:(er SBilzoeck
SMPSTS Required SMP/E dataset 7 6160
SMPPTS Required SMP/E dataset 91 6160
SMPSCDS Required SMP/E dataset 56 6160
SMPCSI Required SMP/E dataset 4 cylinders of 3380 (or

equivalent) disk space

Be sure that the requested space is available on the volumes specified in the
SMPALLOC job. Submit this job after completing the updates to SMPALLOC.
This job must finish successfully before you can proceed with Step 4 to initialize
the SMP/E CSI.

Step 3: Customize SMP/E JCL procedure

SAMPLES member LDRSMPE is a JCL procedure used for the LDLS110 SMP/E
install steps. Customize this procedure by replacing substitution parameters with
the values used in SMPALLOC. Then store the procedure in a system PROCLIB
dataset or insert it in the RECEIVE, APPLY, and ACCEPT jobstreams as an
instream PROC.

Step 4: Initialize SMP/E CSI

SAMPLES member SMPUCLIN contains the JCL and UCLIN necessary to
initialize the SMP/E CSI. Edit SMPUCLIN to specify the correct CSI CLUSTER
and ZONE names, TLIB prefix, and dataset high-level index. Submit the job after
completing all updates.

SAMPLES member SMPDDDEF contains SMP/E DDDEF statements for all zones
in the CSI. Edit this member to specify the CSI CLUSTER and ZONE names, the
TLIB unit and volume, and the correct high-level dataset name prefix. This job

facilitates use of the ISPF SMP/E dialogs and is optional. You can use ISPF SMP/E

FileTek MVS Data Loader Utility Manual 2-5

FileTek Proprietary and Confidential

2 Installation
Installation procedure

dialogs instead of the LDRSMPE JCL procedure in batch for the LDLS110
installation.

Step 5: Execute SMP/E RECEIVE

Edit SAMPLES member SMPRECV and submit the updated jobstream to
perform the SMP/E RECEIVE process. This job must complete with a return
code of zero (0).

Step 6: Execute SMP/E APPLY

Edit SAMPLES member SMPAPPLY and submit the updated jobstream to
perform the SMP/E APPLY process. This job must complete with a return code of
zero (0).

Step 7: Execute SMP/E ACCEPT

Edit member SMPACEPT and submit the updated jobstream to perform the
SMP/E ACCEPT process. This job must complete with a return code of zero (0).

Step 8: Build the checkpoint dataset

The FileTek MVS Data Loader utility recovers from an aborted/failed run by
recovering the operation state information from a checkpoint dataset. Each time
you run the utility, it reads the checkpoint dataset and verifies that the state of
the checkpoint record is consistent with the operation requested. That is, if you
restart a load, the checkpoint record must indicate a prior failed or in-progress
run. Similarly, you cannot submit a normal load operation when the checkpoint
record indicates a prior failure. Therefore, normal production use of the utility
requires a checkpoint dataset that contains a valid checkpoint record.

2-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Installation 2
Installation procedure

You can use the sample job INITCKPT to create a valid checkpoint dataset. This
sample job allocates the dataset (one track) and then runs the FileTek MVS Data
Loader utility with PARM="INIT". The INIT job produces a return code of 4,
which indicates that no data loading has taken place. This is to prevent use of this
parameter in production jobs, because an INIT could destroy a valid checkpoint
record and force a complete rerun rather than a restart.

Note: The sample JCL allocates the checkpoint dataset with DISP=OLD. You can

use only one checkpoint dataset for one load job at a time. If you plan to run
several loads concurrently, each load should have its own checkpoint dataset.

FileTek MVS Data Loader Utility Manual 2-7

FileTek Proprietary and Confidential

2 Installation
Installation procedure

2-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

3

Input data

This section answers questions about input datasets and input data records used
for loading data into StorHouse user tables.

What's an input dataset?

An input dataset is a file that contains the input data records you're loading. This
input dataset can reside on your host (disk or tape) or in a VRAM file already on
StorHouse. Input datasets that reside on your host are called host input datasets.

What are input data records and data fields?

Typically, an input data record corresponds to a row in a user table, but it’s
possible that multiple input data records make up one row in a user table. Each
input data record is composed of data fields that often correspond to values in
columns of a user table. The maximum size of an input data record is 32,767
bytes.

How should you create a host input dataset?

How you create a host input dataset is site-specific. For example, one of your
application programs may create it, or you might use a database extractor
product. To StorHouse, how you create a host input dataset doesnt matter. What

FileTek MVS Data Loader Utility Manual 3-1

FileTek Proprietary and Confidential

3 Input data
What record formats can you use?

does matter is that the host input dataset that you use to load data into
StorHouse user tables must be a sequential dataset. A host input dataset can be a
member of a partitioned dataset.

What record formats can you use?

Input data records can be in any fixed-length or variable-length format. There’s
one exception: Do not define input data records as Variable-Blocked-Spanned
(VBS). The FileTek MVS Data Loader utility does not support the VBS record
format.

Are there any considerations for using the host
input dataset?

Consider using FREE=CLOSE for host input datasets that reside on tape. Because
the load phase can be long, releasing resources (such as a tape drive) is helpful. If
you do code FREE=CLOSE, then the tape drive(s) are released at the end of the
copy phase.

Where do you specify which input dataset you're

using?

The SYSREC DD statement in the execution JCL contains the name of the host
input dataset for a load operation. You can specify multiple host input datasets by
concatenating them to the SYSREC DD statement. You can use a different
DDname (other than SYSREC) and then specify that DDname in the FROMDD
keyword of a LOAD control statement, as described in Chapter 5, “Control
statements.”

3-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Input data 3
What's the difference between a column and a field in an input data record?

If the input dataset is a VRAM file from a previous load or created by another
program, then the SYREC DD statement is not required, but the FROMDD
keyword with a null value on the LOAD control statement is required. You also
specify the name of the input dataset you're using in the INFILE clause of the
LOAD DATA statement, as described on page 4-38.

What's the difference between a column and a field
In an input data record?

A data field in an input data record can be a column or a field.

= Column — contiguous data bytes that you load into a column in the target user
table.

= Field — contiguous data bytes that you don't load into a user table. You use a
field to assign a name to a portion of a record to be used in a condition, for
instance, to indicate which records to load. You distinguish field names from
column names by preceding them with a colon in the field_spec.

For example, assume you're loading data into a user table that you created with
the following CREATE TABLE statement:

CREATE TABLE JACK.ORDERS
(ORDER_NUM SMALLINT NOT NULL,
REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(15) NOT NULL)
TABLE SPACE ORDERS95

FileTek MVS Data Loader Utility Manual 3-3

3 Input data

FileTek Proprietary and Confidential

What's the difference between a logical record and a physical record?

Now, assume you're loading this input data record into that user table:

\AHZ\8\3\\9”M\0HG\UHIHr e | HJ\aHC\k NEEEEEEN |
mﬁm =
:RECORD_CODE ORDER_NUM REP_LASTNAME REP_FIRSTNAME

The first data field—A (RECORD_CODE)—is a field. You could use this field to

select and load records that begin with a certain record code, like A. Fields are not
loaded into user tables.

What's the difference between alogical record and
a physical record?

One input data record in an input dataset is referred to as a physical record. A
logical record is assembled from one or more physical records. Logical records can

contain both fields and columns. In the following example, each physical record
corresponds to one logical record:

Physical records Logical records
| Al2839] McGuire | Jack |—> A 2839 McGuire Jack
|B]2388] Cornflake | sue | —> B 2388 Cornflake Sue

Now in the following example, two physical records actually make up one logical
record:

Physical records

A[2839] McGuire [Jack c|]] Logical records

120.00 > A 2839 McGuire Jack 120.00
B/2388| Cornflake | sue lc] B 2388 Cornflake Sue 528.45
528.45

3-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Input data 3
Are there any considerations for VAR-type data?

You can combine a fixed number of physical records into one logical record, or
you can combine a varied number when physical records contain a continuation
field with a comparison value. In the previous example, the C is the comparison
value. In most cases, continuation fields are removed from physical records when
the logical record is assembled. LOB records are physical records that are
automatically included in the logical record.

Are there any considerations for VAR-type data?

When loading VARCHAR or VARBINARY data, each variable-length data field
must be preceded by a two-byte SMALLINT field indicating the actual length of
the data field. For instance, the following data field (hex, EBCDIC) has an actual
length of 3:

ojojoj3ci1clzCl3
I T
actual length data field (ABC)

How do you load LOB data?

With the FileTek MVS Data Loader utility, you can load LOB values two ways:

= When a LOB value fits in an input data record (the LOB value or the input
data record does not exceed 32 KB), you can define that LOB value as a loader
data type (for instance, VARCHAR or VARBINARY) and include it with the
other input data in the data file. In this case, the following loader data types
(source) are valid for BLOB and CLOB column (target) data types: BINARY,
BINARY EXTERNAL, CHARACTER, VARBINARY, and VARCHAR.

= When a LOB value fits within or exceeds the record length, you can define it

asa BLOB or CLOB data type. The LOB value then can span multiple records,
but each record cannot exceed the maximum record length (32KB-1). A LOB

FileTek MVS Data Loader Utility Manual 3-5

FileTek Proprietary and Confidential

3 Input data
What's delimited data?

record is a BLOB or CLOB data field that consists of one or more physical
records in the input data file. LOB records are automatically considered part
of the logical record.

Note the following guidelines for including LOB data fields in the input datasete
with other non-LOB data:

» Each LOB data field must start with a 64-bit length field followed by the data.
The native values key affects the interpretation of the length.

= A LOB data field does not have to start at the beginning of a record. It can
start in the same record as the non-LOB data.

= The last LOB data field must end at the end of a record.
= All other non-LOB data fields must still fit into a single record.
= LOB data fields must be placed after all non-LOB fields in the record.

See “Specifying a BLOB or CLOB data type” on page 4-104 for additional
considerations about including LOB data in the input dataset.

What's delimited data?

One way to separate data fields in an input data record is to use delimiters—
markers that follow data fields or enclose them. The server data loader trims
delimiters from input data records; it doesn't load delimiters into user tables.
Input data records with delimiters are called delimited data. There are two types
of delimited data: terminated and enclosed.

Note: You can't use delimiters for the following data types: BINARY (and
synonyms RAW and BYTE), DECIMAL (and synonym NUMERIC), DOUBLE,
FLOAT, INTEGER, SMALLINT, VARBINARY (and synonyms VARRAW and
VARBYTE), and VARCHAR.

3-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Input data 3
Are blank characters loaded?

Terminated data

Terminated data are data fields followed by a termination delimiter—any single
character or one or more blank characters. For example, a termination delimiter
could be a comma:

2/83/9 ,McGulilriel, Jaclk,
2[3/8/8/,/Clolrnfl]alkle . Slue],

Terminated data is read from the starting position of the data field up to, but not

including, the termination delimiter. The end of the input data record will serve
as the delimiter (if needed).

Enclosed data

Enclosed data are data fields preceded and followed by enclosure delimiters, such as
parentheses:

(2/83/9) (Mclclulire) (3aclk)

(2388 (clornfilakie)|(sluel)

This type of data is read by skipping any characters until the first enclosure
delimiter, then reading data until the second enclosure delimiter. Enclosure

delimiters can be defined as optional, meaning that not all data fields have to be
enclosed by those enclosure delimiters.

Are blank characters loaded?

Character-type data fields can contain blank characters, also called spaces,
whitespace, or just blanks. Leading blanks are blanks at the beginning of a data

FileTek MVS Data Loader Utility Manual 3-7

FileTek Proprietary and Confidential

3 Input data
Are blank characters loaded?

field. Trailing blanks are blanks at the end of a data field. Rules about the
trimming of blanks follow.

= Blanks that are part of a data field that’s enclosed by enclosure delimiters are
not trimmed.

= Leading blanks may be trimmed from a character-type data field when
optional enclosure delimiters are not present.

= Trailing blanks are not trimmed from character-type data fields.

= Leading and trailing blanks in VARCHAR data fields are not trimmed.

3-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

A

SYSSQL dataset

This chapter describes the format and provides examples of the LOAD DATA,
LOAD INDEX, and MERGE statements. You include these statements in a
SYSSQL dataset.

About the SYSSQL dataset

The host dataset named by the SYSSQL DD statement in the JCL can contain one
LOAD DATA statement, one LOAD INDEX statement, or one MERGE statement.
You can also include other SQL statements in this dataset. For example, you can
include a CREATE TABLE statement to create a user table before you load it or
include a CREATE INDEX statement to create a deferred index before you load it.
You cannot use the FileTek MVS Data Loader utility to issue queries, so a
SYSSQL dataset cannot contain SELECT statements.

The client data loader adds the contents of the SYSSQL dataset to the data stream
that it writes to a StorHouse VRAM file. In a subsequent step, the server data
loader reads the VRAM file to obtain the necessary information for the operation.

Character set of SYSSQL

The character set of the SYSSQL dataset is EBCDIC. Your input data can have a
different character set, for instance, you can load ASCII data from an ANSI-
format tape. If the character set of your input data is not EBCDIC, the server data
loader automatically converts any character string literals supplied on a LOAD

FileTek MVS Data Loader Utility Manual 4-1

FileTek Proprietary and Confidential

4 SYSSQL dataset
About the SYSSQL dataset

DATA statement to the character set of the input data. See page 4-28 for an
example.

SYSSQL guidelines

Guidelines for entering statements in a SYSSQL dataset are as follows:

= Only one LOAD DATA, LOAD INDEX, or MERGE statement is allowed in a
SYSSQL dataset, and the statement must follow any StorHouse SQL
statements.

= For compatibility, a LOAD DATA statement can contain DB2 and Oracle
clauses (for example, Oracle OPTIONS clause) that are not defined in the
StorHouse syntax. The FileTek MVS Data Loader utility accepts but does not
process these clauses.

= Statements can span more than one line, and any new line can begin with any
keyword.

= Character strings can be enclosed in single or double quotes, for example, ‘A’
or "A".

» Hexadecimal strings are preceded with X and enclosed in single or double
quotes, for example, X'0001' or X"0001".

= Case is significant only in quoted strings.

= Spaces are significant only in quoted strings. For example, ‘A" is a different
value from ' A

= You can include comments by starting them with two dashes (--).

» Statements must end with a semicolon. The semicolon must appear at the
end of a record after any comment.

4-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Statement formats

Statement formats

This section contains the conventions and syntax of the LOAD DATA, LOAD
INDEX, and MERGE statements.

Format conventions

The LOAD DATA, LOAD INDEX, and MERGE statements use the same format
conventions as StorHouse SQL. Those conventions are:

Convention Description

UPPERCASE Uppercase terms indicate keywords that are part of the syntax.
Type keywords in any case.

lowercase Lowercase terms refer to grammar elements (like field_spec) and
user-supplied values (like segment_tag). When supplying values,
only quoted strings are case sensitive.

), 1*-; .+ These characters are part of the syntax. Type them as shown.

{} Braces indicate that the item is required. When a list of items is
enclosed in braces and separated by a vertical bar, you must
choose one item.

[] Brackets indicate that the item is optional.

| Vertical bar separates alternatives. You can specify one of the
alternatives shown.

Ellipsis points indicate that you can repeat the part of the
statement preceding them any number of times.

FileTek MVS Data Loader Utility Manual 4-3

FileTek Proprietary and Confidential

4 SYSSQL dataset
Statement formats

SQL identifiers

The SQL identifiers that you supply on a statement—Iike unquoted table,
column, and field names—must follow these rules:

= Start with a letter

» Cannot exceed 32 characters

= Must be a contiguous string of characters (no blanks)

= Can consist of the characters a—z, A-Z, 0-9, _ (underscore)

= Cannot be an SQL reserved word

= Are case insensitive (you can type them in any case) unless delimited

You must delimit SQL identifiers that don't follow the rules. The delimiters are
double quotes. For example:

= "95orders" (doesn't start with a letter)
SUE."ORDER DETAILS" (contains a blank)
"july$" (contains a special character)
"GROUP" (is a reserved word)

Note that:
= Period(s) used for qualified table names must be outside the quotes, like in
SUE."ORDER DETAILS"

= The preceding colon for a delimited field name in a field_spec must be
outside the quotes. For example:

""RECORD CODE" POSITION (1) CHAR

4-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Statement formats

LOAD DATA

LOAD [DATA]

[CHARACTERSET {cset_name | ccsid }]

[{INFILE | INDDN } { [NOENVIRON] (infile_list) | * | - }]
[load_options]

{into_table_spec}...

cset_name WESEBCDIC500 | WEBPC850 | WE8ISO8859P1
cesid 500 | 850 | 819
(infile_list) sm_file_name [/group] [NOENVIRON]

[, sm_file_name [/group] [NOENVIRON]]...

load_options [{ DISCARDFILE | DISCARDDN } sth_file_name [/group]]
[{ DISCARDS | DISCARDMAX } num_discards]
[CONCATENATE num_lines]
[CONTINUEIF continueif_condition]
[PRESERVE BLANKS]
[SUBSPACE ROTATE]

continueif_condition {[THIS | NEXT] (position) | LAST } operator { any_string |

BLANKS }
position start_column [{:]-}end_column]
operator =|l=|r= <> <> <= >=
any_string string | Xstring
into_table_spec INTO TABLE [owner.] table_name

[WHEN field_condition [{ AND | OR } field_condition]...]

[FIELDS fields_specs]

[TRAILING [NULLCOLS]]

[SAME SEGMENT]

[DIFF[ERENT] SEGMENT]

[SEGMENT segment_tag]

[REPLACE SEGMENT [[owner.] table_name.] segment_tag]
[[TABLE | VALUE | HASH | LOB] SUBSPACE number 1]...

[(field_spec [, field_spec]...)]

FileTek MVS Data Loader Utility Manual 4-5

FileTek Proprietary and Confidential

4 SYSSQL dataset

Statement formats

Argument Format

field_condition { (position) | column_name | field_name } operator { any_string |
BLANKS }
fields_specs [CHAR]

[NULLFLAGS]

[delimiter_spec]

[NULLIF (EMPTY | BLANK)]

[DEFAULTIF (EMPTY | BLANK)]

delimiter_spec [TERMINATED [BY] { WHITESPACE | 'char' | X'hexbyte'}]
[[OPTIONALLY] ENCLOSED [BY] { 'char' | X'hexbyte' }
[AND {'char' | X'nexbyte'}]]

field_spec { field_name | column_name } data_spec
data_spec RECNUM
| SEQUENCE (start_num [,increment])
| SYSDATE

| CONSTANT any_value
| position_spec

any_value any_string | identifier | n

position_spec [POSITION (position | * [+num])]
[datatype_spec]
[NULLIF field_condition]
[DEFAULTIF field_condition]

datatype_spec See page 4-83 for loader data types.

Note the following:

= The LOAD keyword and INTO TABLE clause are the only required
arguments.

= You can specify load_options, into_table_spec, fields_specs, delimiter_spec,
and position_spec clauses in any order.

» If you omit a field_spec list and a FIELDS clause, the server data loader

generates a field_spec for every column in the named table using the CREATE
TABLE data types and lengths. You can do this only when the input data is

4-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Statement formats

relatively positioned and has the same order and same data types as the
CREATE TABLE definition.

If you omit a field_spec list but include a FIELDS NULLFLAGS clause, the
server data loader generates a field_spec for every column in the named table
using the CREATE TABLE data types and lengths.

If you a omit field_spec list but include a FIELDS CHAR clause, the server
data loader generates a field_spec for every column in the named table using

the CHARACTER loader data type (with any associated delimiter_spec).

The following table lists the function of each clause and keyword in the LOAD
DATA statement. See the listed page for more information.

To Use See page

Load data already on StorHouse INFILE or INDDN 4-8

Collect discarded records DISCARDFILE or 4-14
DISCARDDN

Limit the number of discarded records DISCARDS or 4-17
DISCARDMAX

Identify the character set of the input data CHARACTERSET 4-18

Combine a fixed number of physical records CONCATENATE 4-19

into one logical record

Combine a varied number of physical records ~ CONTINUEIF 4-21

into one logical record

Retain blank characters in input data PRESERVE BLANKS 4-30

Rotate among subspaces SUBSPACE ROTATE 4-32

Identify the name of the user table INTO TABLE 4-38

Choose which records to load WHEN 4-42

Generate field_specs, identify NULL flags, FIELDS 4-50

specify default delimiters and other defaults

Load missing data fields with null values TRAILING NULLCOLS 4-59

FileTek MVS Data Loader Utility Manual 4-7

FileTek Proprietary and Confidential

4 SYSSQL dataset

Statement formats

To Use See page
Load one or more segments at a time SAME SEGMENT and 4-61
DIFFERENT SEGMENT
Name a segment that may be replaced later SEGMENT 4-64
Replace a segment REPLACE SEGMENT 4-66
Select subspaces SUBSPACE number 4-68
Load a record number into a column RECNUM 4-78
Generate a sequence of values SEQUENCE 4-78
Load the current date into a column SYSDATE 4-79
Load a constant value into a column CONSTANT 4-79
Specify the position of a data field POSITION 4-80
Set a column to a null value NULLIF 4-105
Set a column to the default value DEFAULTIF 4-106
LOAD INDEX

LOAD INDEXI|ES] index_name [,index_name]... [subspace_clause]
[SEGMENTS segment_list]

Argument Format

subspace_clause SUBSPACE ROTATE |
[VALUE | HASH] SUBSPACE number

segment_list segment_list_item [, segment_list_item]...
segment_list_item segment_range | segment

segment_range first_segment - last_segment

4-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Loading data already on StorHouse

MERGE

{MERGE | COALESCE} INTO TABLE table_name [subspace_clause]
[SEGMENT segment_tag] [SEGMENTS segment_list]
[EXCLUDE segment_list] [MAXINSIZE n] [MINOUTSIZE n]

Argument Format

subclause_clause SUBSPACE ROTATE |
[VALUE | HASH | TABLE] SUBSPACE number

segment_list IDS segment_list_item [, segment_list_item]... |
TAGS segment_tag [, segment_tag]...

segment_list_item segment_range | segment

segment_range first_segment - last_segment

Loading data already on StorHouse

You can load data that’s already on StorHouse, for instance:

» Data copied to a VRAM file during a previous successful load operation
= Discarded records in a discard file (which is a VRAM file)
= Data in one or more StorHouse VRAM files

Specify the INFILE (synonym INDDN) clause with a VRAM file name or a list of
file names to load data already on StorHouse. In order to use the INFILE clause
to load data already on StorHouse, you must include the FROMDD keyword
with a null value on the LOAD control statement. You don't have to include the
SYSREC DD statement on the JCL. Conversely, if you use or omit INFILE * or
INFILE - to load data from a host input dataset, then the SYSREC DD statement
is required.

You can use the INFILE clause in combination with the DISCARDFILE clause to
collect discarded records while loading data in a host dataset or in a VRAM file.

FileTek MVS Data Loader Utility Manual 4-9

FileTek Proprietary and Confidential
4 SYSSQL dataset
Loading data already on StorHouse

See “Collecting discarded records in a discard file” on page 4-14 for more
information about using the DISCARDFILE clause.

When loading data that’s already in a VRAM file on StorHouse, you must specify
the name of that VRAM file in the INFILE clause. Your StorHouse system or
database administrator can obtain a VRAM file name by using the StorHouse
Command Language SHOW FILE command. You can also get the name of a
VRAM file created during a previous load operation by looking at the SYSPRINT
listings. The FileTek MVS Data Loader utility lists the names of these temporary
VRAM files in message LDL689I, for example:

DID NOT DELETE TEMP SM FILE STHLDR.TEMPF.L003434.K45081.NO0000

Note: Message LDL689I is generated only when the TEMP_FILE keyword on the
LOAD control statement is KEEP.

See “Temporary VRAM file names” on page 1-39 for more information about
the file name format of temporary VRAM files created during load operations.
Note that the prefix—STHLDR.TEMPF—is the default prefix. Your prefix may

differ if you specified one at the FNPREFIX keyword on the LOAD control
statement.

Format of INFILE clause
{ INFILE | INDDN } { [NOENVIRON] (infile_list) | * | - }
where infile_list is:

sm_file_name [/group][NOENVIRON][, sm_file_name [/group]
[NOENVIRON1]...

4-10 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Loading data already on StorHouse

Argument Description

NOENVIRON (optional) Keyword to use when loading discarded records or data
in a VRAM file created by another application program. If
specifying a list of files, you can place this keyword before the list if
it applies to all files in the list. Otherwise, place the keyword after
any applicable file name and group.

sm_file_name (required) Name of the StorHouse VRAM file that contains the data
you are loading. If specifying a list of files, enclose the list in
parentheses and use a comma to separate each file name and
group. Parentheses are not required when specifying a single file.

/group (optional) Name of the StorHouse file access group to which the
VRAM file belongs. You can omit the group name if it is the default
group of the StorHouse account ID you use to log in the StorHouse
FTP server.

*or- (optional) Argument for loading data from a host input dataset
(DDname SYSREC) instead of a VRAM file that's already on
StorHouse. This is the default if you omit the INFILE clause.

Example INFILE clauses

This section contains example INFILE clauses.

To load data from a previous load operation

You can load data in a VRAM file created during a previous successful load
operation by using the INFILE clause. In order to do this, the TEMP_FILE
keyword on the LOAD control statement from the previous load operation must
be KEEP; otherwise, the VRAM file is deleted after the successful completion of
the load operation.

When using INFILE to load data from a previous load operation, the LOAD

DATA statement from the previous load operation is ignored. For this load,
include all of the necessary clauses and field_specs in the LOAD DATA statement.

FileTek MVS Data Loader Utility Manual 4-11

FileTek Proprietary and Confidential

4 SYSSQL dataset
Loading data already on StorHouse

For example, assume that yesterday you loaded a user table, and now today, you
want to load a different user table with some of the same logical records that were
copied to the VRAM file called STHLDR.TEMPF.L003434.K45081.N00000. You
would specify this INFILE clause:

INFILE STHLDR.TEMPF.L003434.K45081.NO0000

Now if the VRAM file is not in the default group for the account ID at the ACCT
keyword on the SMDEF control statement, then you must also specify the
StorHouse group name. For example, if this VRAM file belongs to group STH,
which isn't your default group, then you would specify this INFILE clause with
the group name:

INFILE STHLDR.TEMPF.L003434.K45081.NOO000/STH

To load data from any other VRAM file

You can load data from a VRAM file created by any application program interface
(AP1) program that can write to StorHouse. In this case, however, you must use
the NOENVIRON keyword in the INFILE clause. Additionally, if the VRAM file
is not in the default group of the StorHouse account ID on the SMDEF control
statement, then you must specify the StorHouse group name.

For example, assume you're loading data in a StorHouse VRAM file called
SEP2195 in a group called ATM. You would use this INFILE clause if ATM is your
default group:

INFILE SEP2195 NOENVIRON

Or you would use this INFILE clause if ATM is not your default group:

INFILE SEP2195/ATM NOENVIRON

4-12 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Loading data already on StorHouse

To load data from multiple VRAM files

You can specify a list of VRAM files to load data from multiple files into a table.
Enclose the list in parentheses and use a comma to separate each file name. You
can place the NOENVIRON keyword before the file list if it applies to all files.
For example:

LOAD INFILE NOENVIRON (FILE1/ATM, FILE2/ATM, FILE3/ATM)

Otherwise, you can place the NOENVIRON keyword after any specific file in the
list if it applies to that file only.

LOAD INFILE (FILEL/ATM NOENVIRON, FILE2/ATM, FILE3/ATM)

To load discarded records

You can load discarded records in a discard file by using the INFILE clause with
the NOENVIRON keyword and by specifying the name of the discard file. If the
discard file is not in the default group of the StorHouse account 1D provided for
the ACCT keyword on the SMDEF control statement, then you must also specify
the StorHouse group name after the discard file name.

For instance, to load discarded records in a discard file called FILE1 in group STH,
you would use this INFILE clause if STH is your default group:

INFILE FILE1 NOENVIRON

Or you would use this INFILE clause if STH is not your default group:

INFILE FILE1/STH NOENVIRON

Now if you also wanted to collect any discarded records generated while loading

these discarded records, you would use the DISCARDFILE clause and specify the
name of the discard file to collect any new discarded records. For example, if you

FileTek MVS Data Loader Utility Manual 4-13

FileTek Proprietary and Confidential

4 SYSSQL dataset
Collecting discarded records in a discard file

wanted to load discarded records in FILE1 and collect discarded records in FILE2,
you would specify these clauses:

INFILE FILEL1 NOENVIRON
DISCARDFILE FILE2

To load data from a host input dataset and collect discarded
records

You can load data from a host input dataset and collect discarded records by
using INFILE * and specifying a DISCARDFILE clause. See “Collecting discarded
records in a discard file” on page 4-14 for more information about the
DISCARDFILE clause.

For example, assume you're loading data from a host input dataset named by the
SYSREC DD statement on the JCL, and you want to collect discarded records in a
discard file called FILE1 in group STH. You would use these clauses if STH is your
default group:

INFILE *
DISCARDFILE FILE1

Or you would specify these clauses if STH is not your default group:

INFILE *
DISCARDFILE FILE1/STH

Collecting discarded records in a discard file

Discarded records are logical records that do not meet the selection criteria in a
WHEN clause. If you're using a WHEN clause and you want to collect discarded
records in a discard file, then use the DISCARDFILE (synonym DISCARDDN)
clause.

4-14 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Collecting discarded records in a discard file

If you're loading data from a host input dataset and want to collect discarded
records, then use INFILE * or INDDN - with the DISCARDFILE clause. If you're
loading data from a VRAM file on StorHouse, then specify INFILE with the
VRAM file name, followed by the DISCARDFILE clause. See “Identifying the user
table to load” on page 4-38 for more information about the INFILE clause.

Note the following:

= Adiscard file is a VRAM file on StorHouse. Someone must create this file on
StorHouse before you can collect discarded records. A load fails if the discard
file does not exist on StorHouse.

= You must use your own API program to view discarded records in a discard
file or to determine which records were discarded.

= You discard logical records, but the records in the discard file appear as a set of
physical records (the original physical records that constituted the discarded
logical record).

» If the input data is loaded from a host input dataset, then discarded records
are in blocked format. If the input data is in a StorHouse VRAM file, the
discarded records are blocked if the VRAM file data was blocked.

= Ifyou forget to include a DISCARDFILE clause and any logical records do not
satisfy the selection criteria of a WHEN clause, you'll receive a warning
message and the discarded records will not be saved.

= If you specify the same discard file name for different loads, then new
discarded records are appended to existing discarded records in that discard
file. Discarded records are not overwritten.

= A LOAD DATA statement contains only one DISCARDFILE clause; therefore,

all discarded records are placed into one discard file no matter how many
INTO TABLE clauses or WHEN clauses you use.

FileTek MVS Data Loader Utility Manual 4-15

FileTek Proprietary and Confidential

4 SYSSQL dataset

Collecting discarded records in a discard file

= Whenever discarded records are created, the server data loader issues an
informational message indicating the number of records discarded.

= If you want to set a maximum number of discarded records, use the
DISCARDS clause (see page 4-17).

Caution: If a load fails and you restart it, the discard results won't be reliable
because the discard file may contain duplicate records.

Format of DISCARDFILE clause

{ DISCARDFILE | DISCARDDN } sth_file_name [/group]

Argument Description

sth_file_name (required) Name of the StorHouse VRAM file to contain discarded
records during the load.

/group (optional) Name of the StorHouse group to which the discard file
belongs. If the discard file is not in the default group of the
StorHouse account ID supplied on the SMDEF control statement,
then you must also specify the StorHouse group name.

Example DISCARDFILE clause

To collect discarded records in a discard file called FILE1 and a group called STH,
you would use one of these clauses if STH is your default group:

DISCARDFILE FILE1
DISCARDDN FILE1

Or you would specify one of these clauses if STH is not your default group:

DISCARDFILE FILE1/STH
DISCARDDN FILE1/STH

4-16 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Limiting the number of discarded records

Limiting the number of discarded records

You can limit the number of discarded records by using the DISCARDS
(synonym DISCARDMAX) clause. The number of discarded records as well as the
records themselves are logical records.

Note the following:

= A load fails when the number of discarded records exceeds this limit.

= Ifyou include a DISCARDFILE clause but omit a DISCARDS clause, then
there’s no limit to the number of discarded records.

= Ifyou include a DISCARDS clause but omit a DISCARDFILE clause, then
discarded records will be limited but not saved.

Format of DISCARDS clause

{ DISCARDS | DISCARDMAX } num_discards

Argument Description

num_discards (required) Maximum number of discarded records for each
SYSREC dataset. Valid values are 0 (no limit) through
2147483646.

Example DISCARDS clause

To limit the number of discarded records to 500, specify one of these clauses:

DISCARDS 500
DISCARDMAX 500

FileTek MVS Data Loader Utility Manual 4-17

FileTek Proprietary and Confidential

4 SYSSQL dataset
Specifying the character set of the input data

Specifying the character set of the input data

You can specify the character set of the input data. When you do, any character-
based data and padding are converted to this character set. StorHouse supports
ISO, EBCDIC, and PC character sets. The default is EBCDIC.

You have four options for specifying the character set of the input data you're
loading. You can:

= Take the default (EBCDIC)

= Provide a value for the CCSID keyword on a LOAD control statement
(described on page 5-6)

= Use the CHARACTERSET clause in a LOAD DATA statement

= Use the CHARSET keyword in a datatype_spec for an individual data field of
type CHAR , CLOB, or any EXTERNAL (described on page 4-102)

Note the following rules for specifying a character set:

» If you specify the character set for both the CHARACTERSET clause and the
CCSID keyword, then the CHARACTERSET clause overrides the CCSID
keyword.

= Ifyou don't include the CHARACTERSET clause, CCSID keyword, or
CHARSET keyword, then the default character set is EBCDIC.

= The CHARSET value overrides both the CHARACTERSET clause and the
CCSID keyword for an individual data field.

4-18 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Concatenating a fixed number of physical records into a logical record

Format of CHARACTERSET clause

CHARACTERSET { cset_name | ccsid }

Argument Description

cset_name (required if no ccsid is specified) Name of the character set.
Valid values:

= WESEBCDIC500 for EBCDIC character set
= WES8ISO8859P1 for ISO 8859-1 character set
» WE8PC850 for PC character set

ccsid (required if no cset_name is specified) CCSID of the
character set. Valid values:

= 500 for EBCDIC character set
= 819 for ISO 8859-1 character set
= 850 for PC character set

Example CHARACTERSET clause

Assume the input data is the PC character set. You could specify one of these
CHARACTERSET clauses in a LOAD DATA statement:

CHARACTERSET 850
CHARACTERSET WE8PC850

Concatenating a fixed number of physical records
into a logical record

You can create logical records from the same number of physical records by using
the CONCATENATE clause. For example, when every pair of data records
corresponds to a row in a user table, you could use this clause to combine the first

FileTek MVS Data Loader Utility Manual 4-19

FileTek Proprietary and Confidential

4 SYSSQL dataset
Concatenating a fixed number of physical records into a logical record

pair of physical records into one logical record, the second pair of physical
records into another logical record, and so on. If the number of physical records
to be combined varies, then use the CONTINUEIF clause described on page 4-21
instead of the CONCATENATE clause.

Note: The CONCATENATE clause applies to all into_table_specs in a LOAD

DATA statement. The CONCATENATE clause does not apply to LOB records in
the input dataset.

Format of CONCATENATE clause

CONCATENATE num_lines

Argument Description

num_lines (required) Number of physical records to combine. This
number must be greater than 1.

Example CONCATENATE clause

Assume that two physical records in an input dataset make up one row in a user
table. You would use this CONCATENATE clause to combine records 1 and 2,
records 3 and 4, records 5 and 6, and so on:

CONCATENATE 2

So if these are the physical records:

[fafafaffa]fa e a2]la]

[2]l2][2] 2] 2] 2] 2] 2]2]2]
3/3333/33333
4fajalaiafalalaa]a]

4-20 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Combining a varied number of physical records into a logical record

Then these are the logical records:

(12][a]x]x]lz]a]l2]la]2] 2] 2] 2][2] 2] 2]}2]}2] 2] 2
313/3/3/3133/333(4/4/4/4/4/4/4/4/a4

Combining a varied number of physical records
into a logical record

Use the CONTINUEIF clause when the number of physical records to be
combined varies, or to combine physical records that satisfy a certain condition. A
condition is true when a continuation field contains or does not contain a
comparison value in a specified location.

For example, with a CONTINUEIF clause you can combine physical records that
contain an * (comparison value) in column 80 (location). Or you can combine
physical records that don't contain blanks (comparison value) in columns 1 and 2
(location).

Note: The CONTINUEIF clause applies to all into_table_specs in a LOAD DATA

statement. The CONTINUEIF clause does not apply to LOB records in the input
dataset.

Format of CONTINUEIF clause
CONTINUEIF continueif _condition
where continueif_condition:

{[THIS | NEXT] (position) | LAST } operator { any_string | BLANKS }

FileTek MVS Data Loader Utility Manual 4-21

FileTek Proprietary and Confidential

4 SYSSQL dataset

Combining a varied number of physical records into a logical record

Argument Description

THIS (optional and the default) If the condition is true in the current record,
then append the next physical record to it, continuing until the
condition is false. If the condition is false in the current record, then it
is the last physical record of the current logical record. The
continuation field is removed from the physical record.

NEXT (optional) If the condition is true in the next record, then append it to
the previous (current) physical record. If the condition is false in the
next record, then the current physical record is the last physical
record of the current logical record. The continuation field is removed
from the physical record.

(position) Starting (required) and ending (optional) column numbers of the
continuation field in the physical record. The format is:

start_column [{:]-}end_column]

For example (1:2) or (1-2). The position is required if you specify
THIS or NEXT. The first position in a record is 1. This range of
columns is removed from every physical record when the logical
records are assembled. This is the only place where you'll specify
column numbers in the physical record instead of the logical record.

LAST (required if you omit (position)) If the condition is true in the last non-
blank character(s) in the current physical record, then append the
next physical record to it, continuing until the condition is false. If the
condition is false in the current record, then the current record is the
last physical record of the current logical record. The continuation
field is not removed from the physical record; therefore, it remains in
the logical record.

operator (required) Comparison operator. Specify one of the following:

= (equal), != or = or <> (not equal), < (less than), > (greater than),
<= (less than or equal), >= (greater than or equal)

4-22 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Combining a varied number of physical records into a logical record

Argument Description

any_string (required if you omit BLANKS) Comparison value. The format is:
string | Xstring

string String of characters enclosed in single or double quotes. Use string
for continuation fields containing character data. This character string
must match the case of the input data.

Xstring String of hex digits preceded with X and enclosed in single or double
quotes, for example, x'01ff'. Use X string for continuation fields
containing binary data.

BLANKS (required if you omit any_string) Keyword to specify a blank as the
comparison value.

Example CONTINUEIF clauses

This section contains example CONTINUEIF clauses.

To combine the current physical record with the next one

You can combine the current physical record with the next one by using the
THIS keyword in a CONTINUEIF clause. When you use CONTINUEIF THIS,
the continuation field is removed from every physical record before the logical
records are assembled. Note that THIS is the default if you do not specify NEXT,
LAST, or THIS.

For example, assume that the comparison value is an * located in column 1. You
would use one of these CONTINUEIF clauses:

CONTINUEIF THIS (1) ="
or
CONTINUEIF (1) =™

If record 1 contains an asterisk in column 1, then record 2 will be combined with
record 1. If record 2 also contains an asterisk in column 1, then record 3 will be

FileTek MVS Data Loader Utility Manual 4-23

FileTek Proprietary and Confidential

4 SYSSQL dataset
Combining a varied number of physical records into a logical record

combined with records 1 and 2. If record 2 doesn’t contain an asterisk in column
1, itis still combined with record 1, but record 3 starts a new logical record.

So if these are the physical records:
(e falaflafla]laa]a]
[12][2][2][2][2][2][2][2][2][2]
*13/3/33/3/3 3333
*[aalaafa a[a[a]a]4]
[5/5/55/55/5/5]5/5

Then these are the assembled logical records:
[af[afafafa]afa]la]la]2]2]2]2[2] 2] 2]][] 2] 2]
313/3(3/3/33/3334 4/4[4/4/4/4/4 /445555555555

Notice that the continuation field (column 1) is removed from all physical
records. The * and blanks are not part of the logical records.

To combine the next physical record with the previous one

You can combine the next physical record with the previous one by using the
NEXT keyword in a CONTINUEIF clause. When you use CONTINUEIF NEXT,
the continuation field is removed from every physical record before the logical
records are assembled.

For example, assume that the comparison value is ABC located in columns 5, 6,
and 7. You would use this CONTINUEIF NEXT clause:

CONTINUEIF NEXT (5:7) ='ABC'
If record 2 contains ABC in columns 5, 6, and 7, then record 2 will be appended

to record 1. If record 2 does not contain the comparison value in the indicated
columns, then it begins a new logical record.

4-24 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Combining a varied number of physical records into a logical record

So if these are the physical records:

EYEYEY EY E EYEYFYFY EY EY
2212]2/2[2]2]2]2]2]2]
3/333AB[C/333[3
4444 4[alaa]a 4[4
5/5/5/5A/B/C555]5

Then these are the assembled logical records:

Y FNEYFYFYFYEY
2/2(2/2/2 2121233333333

4/4/4/4/4/44/45/55555]55

Notice that the continuation field (columns 5 through 7) is removed from all
physical records.

To use the last non-blank data column as the comparison
value

The LAST keyword in a CONTINUEIF clause is similar to the THIS keyword in
that you use it to combine the current physical record with the next one. LAST
differs from THIS as follows:

= The test is always made against the last non-blank character(s).

= You don't specify starting and ending column numbers to identify the
location of the continuation field.

= The continuation field is not removed from the physical records.

For instance, assume that the comparison value is a comma located in the last
non-blank data column. You would use this CONTINUEIF LAST clause:

CONTINUEIF LAST =",

FileTek MVS Data Loader Utility Manual 4-25

FileTek Proprietary and Confidential

4 SYSSQL dataset
Combining a varied number of physical records into a logical record

So if these are the physical records:

[l f[a]fa]x]l2]a]l]la]2]
[2]2]2][2] 2] 2] 2] 2]2][2]]
3333333333,

4444 4[alaialaa],

5/5/555/5 5555 |

Then these are the assembled logical records:

[[[a]afafla][a]2]x]2]2].][2]2]2]2[2] 2] 2] 2]2[2] |
3]313/33(3/3(3/33], 4/4/4/4/44/4/4/4/4], 5[5 55555555 |

Notice that the continuation field is not removed from the physical records. The
commas and blanks are part of the logical records.

To specify the starting column number of a continuation
field

You must specify a starting column number with the THIS or NEXT keyword to
identify the starting location of the continuation field in a physical record.
Enclose the column number in parentheses. Note that column numbers start
with 1. When you specify only a starting column number, the length of the
continuation field is equal to the length of the comparison value that you
provide.

For example, assume the comparison value is the letter C, located in column 79.
You would use this CONTINUEIF clause:

CONTINUEIF THIS (79) ='C'
In this example, the length of the continuation field is 1 because the comparison

value is the letter C. If the current physical record contains the letter C in column
79, then the next physical record is combined with it.

4-26 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Combining a varied number of physical records into a logical record

To specify starting and ending column numbers of a
continuation field

You can specify both the starting and ending column numbers with the THIS or
NEXT keyword to identify the location of the continuation field in the physical
record. Enclose the column numbers in parentheses, and use a colon or dash to
separate the starting column number from the ending column number.

For example, assume the comparison value is ABC located in columns 5, 6, and 7.
You want to combine the next physical record with the previous one, so you
would specify the following CONTINUEIF clause:

CONTINUEIF NEXT (5:7) ='ABC'

If the comparison value is shorter than the length defined by the starting and
ending column numbers, then the server data loader pads the value on the right
with blanks (if a character string) or zeros (if hex digits). For example, if
CONTINUEIF NEXT (5:7) = 'AB'

then the actual selection criteria is 'AB ' (blank padded on the right).

If the comparison value is longer than the length defined by the starting and
ending column numbers, then the server data loader trims the value on the right.
For instance, if

CONTINUEIF NEXT (5:7) = 'ABCD'

then the D is trimmed and not considered part of the comparison value. You will

receive a warning message when any non-blank characters or non-zero bytes are
trimmed.

FileTek MVS Data Loader Utility Manual 4-27

FileTek Proprietary and Confidential

SYSSQL dataset

Combining a varied number of physical records into a logical record

To use a character string as a comparison value

If the type of data in the continuation field is character, then specify the
comparison value as a character string enclosed in single or double quotes. The
character string must match the case (UPPER, lower, or Mixed) of the input data.

For instance, if the comparison value is the letter c, located in column 79 of the
physical record, then you would specify the comparison value as a character
string:

CONTINUEIF (79) = 'c'

If the value of the CCSID keyword on the LOAD control statement differs from
EBCDIC (which is the character set of the SYSSQL dataset), then all comparison
values that are character strings are automatically converted by the server data
loader to the CCSID of the compared data field.

For example, suppose you're loading ASCII data from an ANSI-format tape. You
can load this data directly, without conversion, by specifying an ASCIl1 CCSID
(819) through the CCSID keyword on the LOAD control statement. However,
SYSSQL is always EBCDIC (CCSID 500). The server data loader will convert any
character constants in SYSSQL to CCSID 819, so comparisons will work as
expected.

To use a hex string as a comparison value

If the type of data in the continuation field is binary, then specify the comparison
value as an even number of hex digits preceded with X and enclosed in single or
double quotes.

For example, if the comparison value is the number 1, data type SMALLINT,
located in column 1 of the physical record, then you would specify this
comparison value as a string of hex digits:

CONTINUEIF (1:2) = X'0001'

4-28 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Combining a varied number of physical records into a logical record

To use blank characters as a comparison value

You can specify one or more blank characters as a comparison value by using the
BLANKS keyword in the CONTINUEIF clause. You can use BLANKS with the
THIS and NEXT keywords; LAST tests non-blank data only. The continuation
field is removed from every physical record before the logical records are
assembled.

Note: The default length of BLANKS is 1; so, if you specify a starting column
only, the length of the continuation field is one blank.

For example, to combine the next physical record with the current one whenever
column 10 and column 11 contain a blank character, then you would use this
CONTINUEIF clause:

CONTINUEIF THIS (10:11) = BLANKS

So if these are the physical records:

[affaffaffafa]la]a]la]a]a]
[2]2]2][2][2][2]}2]}2]2]]]
30333303333 |
44/44/4[4 a/a]alaa

555555555 |

66666666666
Then these are the assembled logical records:

[a]a[a[a]fa]x]x][a][a]
2(212/2.2(2/2/2/2/3(3/3/3/3'33[3 344 /4[4[4/4/a]4]4

5/5/5/5/5/5/5/5/5/6/6 6666666

Notice that the continuation field (columns 10 and 11) is removed from all
physical records. Also note that record 1 does not contain a blank character in
column 10; therefore, the condition is false and record 2 is not appended to
record 1.

FileTek MVS Data Loader Utility Manual 4-29

FileTek Proprietary and Confidential

4 SYSSQL dataset
Preserving blanks

To use a not equal comparison operator

You can specify that a continuation field not equal a specific comparison value by
using any one of these “not equal” comparison operators in a CONTINUEIF
clause: != or o= or <>

For instance, to combine the next physical record with the current one whenever
column 10 does not contain a blank character, then you would use this
CONTINUEIF clause:

CONTINUEIF THIS (10) <> BLANKS

So if these are the physical records:

[fafafaffa]fa e a2]la]
2[2/2]2/2[2 22]2] |
3/3333/3333
4alalaafalalaia] |

5/5/5/5/5 55555

6666666066 |
Then these are the assembled logical records:

[1]a2]la[a][2]x]1]1]2] 2]][] 2]}2[2]]]2]

ssa3ssalas
4aaaaaaas
5l5/555/5 /5556 6]ss elel s

Preserving blanks

The server data loader automatically trims leading blanks from a delimited data
field that's supposed to be enclosed but isn't. If the previous data field is not

4-30 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Preserving blanks

TERMINATED BY WHITESPACE, you can retain the leading blanks by using the
PRESERVE BLANKS clause.

Note: Blanks within enclosure delimiters are always preserved.

Before reading this section, it may be helpful to have a basic understanding of
delimited data and blanks. Consider reading the following sections first:

= “What'’s delimited data?” (see page 3-6)
= “Are blank characters loaded?” (see page 3-7)

= “Generating field_specs, identifying NULL flags, specifying default
delimiters and other defaults” (see page 4-50)

Format of PRESERVE BLANKS clause

PRESERVE BLANKS

Example PRESERVE BLANKS clause
Suppose you specified this FIELDS clause:
FIELDS TERMINATED BY ' OPTIONALLY ENCLOSED BY "™

But in this input data record, the optional enclosure delimiter (double quote)
isn't present in the first two data fields:

2[8309,] Miclclulilrlel,["3alc/ k] ["].]
Without the PRESERVE BLANKS clause, the leading blanks would be trimmed
and the following data fields would be loaded:

253’8 wlclolu ilre 3 alcli |

data field 1 data field 2 data field 3

FileTek MVS Data Loader Utility Manual 4-31

FileTek Proprietary and Confidential

4 SYSSQL dataset
Rotating among subspaces

With the PRESERVE BLANKS clause, the leading blanks would be retained and
the following data fields would be loaded:

J2lslals) wleleluli rlel 3lale k|

data field 1 data field 2 data field 3

Rotating among subspaces

You can rotate user table components (table data, value indexes, hash indexes,
and LOB data) among subspaces by using the SUBSPACE ROTATE clause. You
might do this if you're loading multiple segments of a table at a time and do not
need to select certain subspaces for components. Rotation is not necessary when
loading one segment or when a user tablespace contains one subspace for all
component types or one subspace for each component type. You use SUBSPACE
ROTATE with multiple INTO TABLE clauses and DIFFERENT SEGMENT
clauses. You can also use SUBSPACE ROTATE to rotate among subspaces for
successive result segments of a LOAD INDEX or MERGE operation.

Note the following:

= You must specify the SUBSPACE ROTATE clause before the INTO TABLE
clauses of the LOAD DATA and MERGE statements.

= You cannot use both a SUBSPACE ROTATE and a SUBSPACE number clause
in a LOAD DATA, LOAD INDEX, or MERGE statement. Only one of these
clauses is allowed.

= If you omit both the SUBSPACE ROTATE and the SUBSPACE number clause,

then the server data loader uses the lowest-numbered subspace that allows the
component type.

4-32 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Rotating among subspaces

Rotation of subspaces occurs independently for each component type, that is,
the server data loader rotates among applicable subspaces for table data, for
hash indexes, for value indexes, and for LOB data.

If an INTO TABLE clause specifies (or defaults to) SAME SEGMENT, it shares
the subspace of the most recent INTO TABLE clause for the same table.

For example, in the following LOAD DATA statement, the second INTO
TABLE clause shares the same subspace as the first INTO TABLE clause, but
the third INTO TABLE clause uses the next subspace.

LOAD
SUBSPACE ROTATE

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE="1/1/2000'

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE = '1/31/2000'

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE = '2/1/2000'
DIFF SEGMENT;

If a user table has multiple indexes (for instance, two hash indexes), and those
indexes are assigned to the same user tablespace, each index does not rotate
among subspaces but rather both index files (for instance, both hash index
files) for an INTO TABLE clause use the same subspace.

When indexes for a user table are assigned to different user tablespaces, each
user tablespace can contain a different number of subspaces for each index
type. For example, one user tablespace may contain two subspaces for hash
indexes and three subspaces for value indexes, while the other user tablespace
may contain four subspaces for hash indexes and five subspaces for value
indexes.

FileTek MVS Data Loader Utility Manual 4-33

FileTek Proprietary and Confidential

4 SYSSQL dataset
Rotating among subspaces

Format of SUBSPACE ROTATE clause

SUBSPACE ROTATE

Example SUBSPACE ROTATE clauses

This section contains example SUBSPACE ROTATE clauses.

To rotate among subspaces in a user tablespace

Assume you're loading two segments. The user table has a hash index and a value
index assigned to the same user tablespace as the table. The user tablespace
contains the following subspaces:

Subspace number OBJECT_TYPE

1 blank (all component types)
2 T (table data only)
3 V (value indexes only)

The following LOAD DATA statement creates two table data files, two hash index
files, and two value index files for the ATM.TRANSACTIONS table:

LOAD
SUBSPACE ROTATE

INTO TABLE ATM.TRANSACTIONS
WHEN (1) = A’

INTO TABLE ATM.TRANSACTIONS

WHEN (1) = 'B'
DIFF SEGMENT;

4-34 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Rotating among subspaces

For the first INTO TABLE clause (segment 1), the server data loader uses
subspace 1 for the table data file, hash index file, and value index file (because
subspace 1 is the lowest-numbered subspace that allows all component types).
For the second INTO TABLE clause (segment 2), the server data loader uses the

following subspaces:

= Subspace 2 for the table data file (because it’s the next subspace that allows

table data)

= Subspace 1 for the hash index file (because it’s the only subspace that allows

hash indexes)

= Subspace 3 for the value index file (because it's the next subspace that allows

value indexes)

To rotate among subspaces in multiple user tablespaces

Assume you're loading two segments. The user table has two hash indexes, two
value indexes, and two LOB columns (to be stored out-of-line). The table, hash
index 1, and value index 1 are assigned to user tablespace 1. Hash index 2, value
index 2, and both LOB columns are assigned to user tablespace 2.

User tablespace 1 contains the following subspaces:

Subspace number

1

2

3

OBJECT_TYPE

T (table data only)

T (table data only)

H (hash indexes only)
H (hash indexes only)
V (value indexes only)

V (value indexes only)

FileTek MVS Data Loader Utility Manual 4-35

FileTek Proprietary and Confidential

4 SYSSQL dataset
Rotating among subspaces

User tablespace 2 contains the following subspaces:

Subspace number OBJECT_TYPE

1 H (hash indexes only)
2 V (value indexes only)
3 L (LOB data only)
4 L (LOB data only)

The following LOAD DATA statement creates two table data files, four hash
index files, four value index files, and two LOB subsegment files for the
POS.TRANSACTIONS table:

LOAD
SUBSPACE ROTATE

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE= '1/1/2000'

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE = '2/1/2000'
DIFF SEGMENT;

For the first INTO TABLE clause (segment 1), the server data loader uses the
following subspaces:

= Subspace 1 in user tablespace 1 for the table data file (because it’s the lowest-
numbered subspace that allows table data)

= Subspace 3 in user tablespace 1 for the hash index file of hash index 1
(because it’s the lowest-numbered subspace that allows hash indexes)

= Subspace 5 in user tablespace 1 for the value index file of value index 1
(because it’s the lowest-numbered subspace that allows value indexes)

4-36 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Rotating among subspaces

= Subspace 1 in user tablespace 2 for the hash index file of hash index 2
(because it’s the only subspace that allows hash indexes)

= Subspace 2 in user tablespace 2 for the value index file of value index 2
(because it’s the only subspace that allows value indexes)

= Subspace 3 in user tablespace 2 for both LOB subsegment files (because it’s
the lowest-numbered subspace that allows LOB data)

For the second INTO TABLE clause (segment 2), the server data loader uses the
following subspaces:

= Subspace 2 in user tablespace 1 for the table data file (because it’s the next
subspace that allows table data)

= Subspace 4 in user tablespace 1 for the hash index file of hash index 1
(because it’s the next subspace that allows hash indexes)

= Subspace 6 in user tablespace 1 for the value index file of value index 1
(because it’s the next subspace that allows value indexes)

= Subspace 1 in user tablespace 2 for the hash index file of hash index 2
(because it’s the only subspace that allows hash indexes)

= Subspace 2 in user tablespace 2 for the value index file of value index 2
(because it’s the only subspace that allows value indexes)

= Subspace 4 in user tablespace 2 for both LOB subsegment files (because it’s
the next subspace that allows LOB data)

FileTek MVS Data Loader Utility Manual 4-37

FileTek Proprietary and Confidential
4 SYSSQL dataset
Identifying the user table to load

Identifying the user table to load

An INTO TABLE clause specifies the name of the user table you are loading. You
can:

= Provide the fully qualified table name (with the owner name)

= Omit the owner name if the ACCT keyword on the SMDEF control statement
is the owner

= Use a symbolic variable to substitute an owner name, table name, or both

One INTO TABLE clause is required for each user table. For instance, to load two
user tables with the same data, you would specify two INTO TABLE clauses. The
maximum number of INTO TABLE clauses you can include in a LOAD DATA
statement depends on the value of the StorHouse SQL_LDR_MAXINTO system
parameter set for your organization. For more information about this system
parameter, refer to the StorHouse Database Administration Guide.

Caution: Your load will fail if the number of INTO TABLE clauses exceeds the
maximum number.

4-38 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4

Identifying the user table to load

Format of INTO TABLE clause

INTO TABLE [owner.] table_name

Argument Description

owner. (optional) Owner of the user table. You can omit the owner name if
the ACCT keyword on the SMDEF control statement is the owner,
or you can use a symbolic variable to substitute the owner name in
the LOAD control statement or the EXEC statement of the JCL.

table_name (required) Name assigned to the user table on the CREATE
TABLE or CREATE SYNONYM statement. A table name can be a
synonym but it cannot be a view. You can use a symbolic variable
to substitute a full or partial table name in the LOAD control
statement or the EXEC statement of the JCL.

Example INTO TABLE clauses

This section contains example INTO TABLE clauses.

To use the fully qualified table name

The format of a fully qualified StorHouse user table name is:
owner.table_name

where owner is the 1-32 character name of the owner of the user table, and
table_name is the 1-32 character table name assigned to the user table when it
was created with the CREATE TABLE or CREATE SYNONYM statement.

For example, assume your account ID is JULIETTE and you're loading a user
table called ORDERS owned by JACK. You would specify the fully qualified user
table name as follows:

INTO TABLE JACK.ORDERS

FileTek MVS Data Loader Utility Manual 4-39

FileTek Proprietary and Confidential
4 SYSSQL dataset
Identifying the user table to load

To omit the owner name

If you omit the owner name in the two-part table name, a StorHouse engine
assumes that the owner is the account 1D supplied for the ACCT keyword on the
SMDEF control statement. The engine checks that this account ID is the owner
of the user table or has INSERT privilege on the user table.

For instance, if the ACCT keyword on the SMDEF control statement is JACK,
then you can identify the user table name without the owner name, as follows:

INTO TABLE ORDERS

Note: The maximum length of the account ID in the ACCT keyword is 12
characters, but for DB2 users the maximum length is 8 characters. If an owner
name contains more than 12 characters, you must use the fully qualified table
name (provide the owner name).

To use a symbolic variable to substitute an owner name,
table name, or both

Rather than providing the owner name or table name or both in an INTO TABLE
clause, you can use a symbolic variable—for instance, &&0—and supply a
substitution string in the Pn keyword of the LOAD control statement or in the
PARM of the EXEC statement of the JCL. You can also substitute part of a table
name. In fact, you can use a symbolic variable to replace any character string in a
SYSSQL dataset. You can include up to nine symbolic variables—&&0 through
&&8—in a SYSSQL dataset. Chapter 5, “Control statements,” describes the Pn
keyword in detail. Some example substitutions follow.

To substitute an owner name. To substitute the owner name in a user table
called ORDERS, you would create an INTO TABLE clause as follows:

INTO TABLE &&0.0ORDERS

4-40 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Identifying the user table to load

Then you would supply the substitution string for the Pn keyword in the LOAD
control statement. For example, if the owner is JACK, supply this substitution
string:

LOAD P0O=JACK

Or you would supply the substitution string in the PARM of the EXEC statement
as follows:

LOADER EXEC PGM=LDLSLDR,PARM="LOAD P0O=JACK'

In this example, the complete name is JACK.ORDERS.

To substitute both an owner name and a table name. To substitute both
the owner name (JACK) and the table name (ORDERS) in the SYSSQL dataset,
you would create an INTO TABLE clause and Pn keyword as follows:

INTO TABLE &&0.&&1
LOAD P0O=JACK P1=ORDERS

Or you would create an INTO TABLE clause and EXEC statement as follows:

INTO TABLE &&0.&&1
LOADER EXEC PGM=LDLSLDR,PARM="LOAD P0=JACK P1=ORDERS'

In this example, the complete name is JACK.ORDERS.

To substitute part of a table name. To substitute part of a table name in the
SYSSQL dataset, for instance, to insert a date into a table name, you would create
an INTO TABLE clause and Pn keyword as follows:

INTO TABLE JACK.ORDERS&&0
LOAD P0O=JULY4

FileTek MVS Data Loader Utility Manual 4-41

FileTek Proprietary and Confidential

4 SYSSQL dataset
Choosing which rows to load

Or you would create an INTO TABLE clause and EXEC statement as follows:

INTO TABLE JACK.ORDERS&&0
LOADER EXEC PGM=LDLSLDR,PARM="'LOAD P0O=JULY4'

In this example, the complete name is JACK.ORDERSJULY4.

Choosing which rows to load

You can choose to load or discard a logical record by using the WHEN clause.
This clause tests one or more conditions in a logical record. If you omit the
WHEN clause, which you can because it’s optional, then all logical records are
loaded into the specified user table. If you include the WHEN clause, then it
must follow the INTO TABLE clause.

The WHEN clause gives you a number of options for selecting the data that you
want to load, whether you're loading one user table or multiple user tables. With
one input dataset you can:

= Load logical records that meet one or more conditions, that is, where certain
data fields contain certain values.

= Load all logical records into multiple user tables. In other words, you can load
multiple (different) user tables with the same input data records.

= Load all logical records into some user tables and some logical records into
other user tables.

= Load some logical records into some user tables and some logical records into
other user tables.

With the WHEN clause, you specify criteria for selecting a logical record. This

selection criteria includes the location of a value you want tested as well as the
value itself. Logical records that satisfy the selection criteria are loaded.

4-42 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Choosing which rows to load

Note the following:

= You cannot use a WHEN clause for delimited data or relatively positioned
data fields.

= When specifying multiple criteria (AND and OR), ANDs have a higher
precedence than ORs. You can use parentheses to alter or force precedence.

= For clarity, you can use parentheses to enclose a field condition.

= You can use the DISCARDFILE clause to collect logical records that don't
satisfy the selection criteria in any WHEN clause. See “Collecting discarded
records in a discard file” on page 4-14 for more information.

By using the SKIP and TAKE keywords on the LOAD control statement (see
pages 5-8 and 5-9) you can select specific physical records to be transferred to
StorHouse. The WHEN clause then applies to the remaining records.

For example, if an input dataset contains 100 physical records, and if TAKE=50,
then the WHEN clause applies to the first 50 records in the input dataset. Now
assume that SKIP=50. In this case, the WHEN clause applies to the last 50 records
because the first 50 records are not transferred to StorHouse.

Remember that the client data loader processes the SKIP and TAKE keywords,
and the server data loader processes the LOAD DATA statement. The SKIP and

TAKE keywords apply to physical records. The WHEN clause applies to logical
records.

Format of WHEN clause

WHEN field_condition [{ AND | OR } field_condition]...

FileTek MVS Data Loader Utility Manual 4-43

FileTek Proprietary and Confidential

4 SYSSQL dataset

Choosing which rows to load

Argument Description

field_condition { ('position) | column_name | field_name } operator { any_string |
BLANKS }
(position) (required if not using column_name or field_name) Starting

(required) and ending (optional) column numbers of the column or
field that contains the criteria you are testing. The format is:

start_column [{:|-}end_column]

For example: (1:3) or (1-3) indicates the criteria starts in column 1
and ends in column 3.

Note that when specifying a (position) with a character (not a hex)
string, the data is assumed to be in the default data CCSID.

column_name (required if not using (position) or field_name) Name of a column
that contains the criteria you are testing.

field_name (required if not using (position) or column_name) Name of a field
that contains the criteria you are testing.

operator (required) Comparison operator. Specify one of the following:

= (equal), = or "= or <> (not equal), < (less than), > (greater than),
<= (less than or equal), >= (greater than or equal)

any_string (required if not using BLANKS) Criteria you are testing. Specify one
of the following, depending on the type of data in the data field:

= string — string of characters enclosed in single or double quotes.
Use string for data fields containing character data. This
character string must match the case (UPPER, lower, or Mixed)
of the input data.

= Xstring — string of hexadecimal digits preceded with X and
enclosed in single or double quotes. Use Xstring for data fields
containing binary data.

BLANKS (required if not using any_string) Keyword to test one or more
blanks.
AND (optional) Keyword for testing multiple values. A logical record is

loaded when all conditions specified for AND are true.

OR (optional) Keyword for testing multiple values. A logical record is
loaded when at least one condition specified for OR is true.

4-44 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Choosing which rows to load

Example WHEN clauses

This section contains example WHEN clauses.

To specify the starting column number of the selection
criteria

You can specify a starting column number to identify the starting location of the
value you want tested as selection criteria. Enclose the column number in
parentheses. When you specify a starting column number only, the length of the
selection criteria is derived from the comparison string.

For example, assume the selection criteria is the number 3, data type SMALLINT,
located at column 1 of the logical record. You would use this WHEN clause:

WHEN (1) = X'0003'

In this example, because there’s no ending column number, the length is derived
from the comparison value, which is 2.

To specify starting and ending column numbers of the
selection criteria

You can specify both the starting and ending column numbers to identify the
location of the value you want tested as selection criteria. Enclose the column
numbers in parentheses, and use a colon or a dash to separate the starting column
number from the ending column number.

For example, assume the value you want tested is the character string ABC located
in columns 1 through 3. You would specify this WHEN clause:

WHEN (1:3) = 'ABC'

Padding selection criteria. If the value is shorter than the length defined by
the starting and ending column numbers, then that value is padded on the right

FileTek MVS Data Loader Utility Manual 4-45

FileTek Proprietary and Confidential

4 SYSSQL dataset
Choosing which rows to load

with blanks (if a character string) or zeros (if a hexadecimal digits). For example,
if
WHEN (1:3) ='AB'

then the actual selection criteria is ‘AB ’ (blank padded on the right).

Trimming selection criteria. If the value is longer than the length defined by
the starting and ending column numbers, then it is truncated on the right. For
instance, if

WHEN (1:3) = 'ABCD'

then the D is trimmed and not considered part of the selection criteria. You'll
receive a warning message when any non-blank characters or non-zero bytes are
trimmed.

To use a column name to identify the selection criteria

You can use a column name instead of the starting and ending column numbers
or a field name to identify the value you want tested as selection criteria. This
column name must exactly match the column name in the table’s CREATE
TABLE statement. You must delimit column names that do not follow the
conventions of StorHouse SQL identifiers (see page 4-4 for conventions).

When you use a column name in a WHEN clause, the field_spec for that column
identifies the location and length of the value. For example, assume the name of
the column that contains the value you want tested is CUSTOMER_NUMBER.
Here’s the WHEN clause:

WHEN CUSTOMER_NUMBER = '3392003900'

Here’s the field_spec for the CUSTOMER_NUMBER column:

CUSTOMER_NUMBER POSITION (6) INTEGER EXTERNAL(10)

4-46 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Choosing which rows to load

In this example, the WHEN clause identifies the value that you are testing and
the field_spec identifies the location and length of that value. All logical records
with the integer 3392003900 starting in position 6 will be loaded.

To use afield name to identify the selection criteria

You can use a field name instead of the starting and ending column numbers or a
column name to identify the value you want tested as selection criteria. You must
delimit field names that do not follow the conventions of StorHouse SQL
identifiers (see page 4-4 for conventions).

When you use a field name in a WHEN clause, the field_spec for that field
identifies the location and length of the value. For example, assume the name of
the field that contains the value you want tested is RECORD_CODE and the value
you are testing is B. Here’s the WHEN clause:

WHEN RECORD_CODE = 'B'

Here’s the field_spec for the RECORD_CODE field:

‘RECORD_CODE POSITION (1) CHAR

In this example, the WHEN clause identifies the value that you are testing and
the field_spec identifies the location and length of that value. Field names in a
WHEN clause must not be preceded by a colon. Field names in a field_spec must

be preceded by a colon. All logical records with the letter B in position 1 will be
loaded.

FileTek MVS Data Loader Utility Manual 4-47

FileTek Proprietary and Confidential

4 SYSSQL dataset
Choosing which rows to load

To use a character string as selection criteria

When the value you are testing as selection criteria is character data, enclose that
value in single or double quotes. Note the following:

= The character string must match the case (UPPER, lower, or Mixed) of the
input data.

» If the selection column or field is of VARCHAR type, then the comparison is
made against the character data only; the length part (first 2 bytes) is not
included. If the actual length of the data field differs from the length of the
tested value, the test can be true only if non-significant (blank) bytes are
trimmed from the larger value.

= |f the value of the CCSID keyword on the LOAD control statement differs
from EBCDIC (the character set of the SYSSQL dataset), then all comparison
values that are character strings are automatically converted by the server data
loader to the CCSID of the compared data field.

For example, if the selection criteria is the letter A, data type CHAR, located in
column 1 of the logical record, then you would specify this selection criteria as a
character string enclosed in quotes:

WHEN (1) = A"

To use a hexadecimal string as selection criteria

When the value you are testing as selection criteria is binary data, precede the
value with X and enclose the value in single or double quotes. For example,
assume the selection criteria is the number 1, data type SMALLINT, located at
column 1 of the logical record. You would specify this selection criteria as a string
of hexadecimal digits preceded with X and enclosed in quotes:

WHEN (1:2) = X'0001'

4-48 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Choosing which rows to load

When the value you are testing as selection criteria is one or more blank
characters, then use the BLANKS keyword in a WHEN clause. The default length
of BLANKS is 1, so if you specify a starting column only, the selection criteria is
one blank.

To test blanks

For instance, you would specify this WHEN clause to load all logical records that
contain a blank character in column 80:

WHEN (80) = BLANKS

To test multiple values (using AND)

You can test multiple values by using the AND keyword in a WHEN clause. A
logical record is loaded when all conditions are true. For example:

WHEN (1) = 'A" AND STOCK_NUMBER = '1023992'

In this example, all records with the letter A in column 1 and where the column
STOCK_NUMBER contains a value of 1023992 will be loaded.

To test one value or another (using OR)

You can test one value or another by using the OR keyword in a WHEN clause. A
logical record is loaded when at least one of the conditions is true. For example:

WHEN (11:13) = '800' OR (11:13) = '888'

In this example, a logical record with either 800 or 888 in columns 11 through 13
will be loaded.

FileTek MVS Data Loader Utility Manual 4-49

FileTek Proprietary and Confidential

4 SYSSQL dataset
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

To test one value or another and multiple values (using OR
and AND)

You can specify multiple selection criteria by using both the AND and OR
keywords in a WHEN clause. A logical record is loaded when all AND conditions
are true and when at least one of the OR conditions is true. You can use
parentheses to enforce precedence. For example:

WHEN ((1:3)= '301' OR (1:3)='410") AND ((11:13)= '301' OR (11:13)= '410")

In this example, a logical record with either 301 or 410 in columns 1 through 3
and with either 301 or 410 in columns 11 through 13 will be loaded.

Generating field_specs, identifying NULL flags,
specifying default delimiters and other defaults

You can use a FIELDS clause to:

= Generate a field_spec as the CHARACTER loader data type for every column
in the named user table. To do this, include the CHAR keyword with the
FIELDS clause and omit the field_spec for all data fields.

= Indicate each input data record starts with a sequence of 1-byte NULL flags
(T for NULL or F for NOT NULL). To do this, include the NULLFLAGS
keyword with the FIELDS clause and omit the field_spec for all data fields.

= Specify a default delimiter for character-based data fields (CHARACTER and
all EXTERNAL data types). See "Guidelines for specifying a default delimiter"
on page 4-52 for more information. You can also specify a delimiter in a
field_spec for an individual data field.

» Load a NULL value for any data field that is empty or contains blanks. An
empty data field consists of two adjacent delimiters. To do this, include the

4-50 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

NULLIF clause with the FIELDS clause. You can also include a NULLIF clause
with a field_spec for an individual data field.

= Load a column’s default value for any data field that is empty or contains
blanks. To do this, include a DEFAULTIF clause with the FIELDS clause. You
can also include a DEFAULTIF clause with a field_spec for an individual data
field.

= If you are loading LOB data that never exceeds 32705, you can use FIELDS
CHAR and place the LOB data in the data stream.

= You can include the CHAR and NULLFLAGS keywords in a FIELDS clause
only when you omit a field_spec for all data fields.

= Ifyou omit a field_spec for all data fields and you omit the FIELDS clause, the
server data loader generates a field_spec for every column in the named table
using the corresponding the CREATE TABLE data type.

= When you use the NULLFLAGS keyword, the server data loader appends a
NULLIF clause to each generated field_spec when the NULL flag is T (for
NULL). This loads a NULL into the corresponding table column.

= When you use FIELDS CHAR, FileTek recommends you include a
delimiter_spec.

» NULLIF and/or DEFAULTIF clauses in the FIELDS clause apply to any
generated field_specs or to any data fields that do not have NULLIF and/or
DEFAULTIF clauses in their field_specs.

= |Ifyou specify FIELDS CHAR and the input dataset contains LOB data fields,
all fields must still fit in a legal (32K-1-max) record size.

= If you omit the field_specs and the FIELDS CHAR clause, the FileTek MVS

Data Loader utility places any LOB data fields at the end of the record in
CREATE TABLE order.

FileTek MVS Data Loader Utility Manual 4-51

FileTek Proprietary and Confidential

4 SYSSQL dataset
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

Guidelines for specifying a default delimiter

You can delimit data fields composed of character data. These data fields include
CHARACTER and all of the EXTERNAL data types. Note the following:

= You cannot delimit VARCHAR data fields.

= A delimiter can be only one character.

= The maximum length of a data field does not include the delimiter(s).

= You cannot use delimited data fields in a WHEN clause.

» If a data field contains a character that is also used as an enclosure delimiter,
you can double that character in the data to protect it. The server data loader
converts the doubled character to a single character.

= If a data field contains a character that is also used as a termination delimiter,
you cannot double that character in the data; but you can use an enclosure
delimiter. For instance, if the data field is:

SAN ANTONIO, TX

and the termination delimiter is a comma:

SAN ANTONIO,TX,

then use an enclose delimiter (such as parentheses) to protect the data field:
(SAN ANTONIO,TX),

» If data fields are enclosed with a single delimiter (like a single quote) and are
not separated by a terminator or blanks, adjacent delimiters would be
interpreted as data. For example, the following data fields are enclosed by

4-52 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

single quotes. The end delimiter of the first data field and the start delimiter
of the second data field would be interpreted as data:

'2839"Jack’

= You can use the OPTIONALLY keyword only when using the TERMINATED
keyword. You can include both keywords in the FIELDS clause, or both in a
field_spec, or one in a FIELDS clause and the other in a field_spec.

See “What'’s delimited data?” on page 3-6 for basic information about delimited
data and types of delimiters. See “Specifying a delimiter for an individual data
field” on page 4-103 for more information about overriding the default
delimiter.

Format of FIELDS clause
FIELDS fields_specs

where fields_specs:

[CHAR]

[NULLFLAGS]

[delimiter_spec]

[NULLIF (EMPTY | BLANK)]
[DEFAULTIF (EMPTY | BLANK)]

and where delimiter_spec:

[TERMINATED [BY] { WHITESPACE | ‘char' | X'hexbyte'}]
[[OPTIONALLY] ENCLOSED [BY]{ 'char' | X'hexbyte' }
[AND { 'char' | X'hexbyte'}]]

FileTek MVS Data Loader Utility Manual 4-53

FileTek Proprietary and Confidential

4 SYSSQL dataset
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

Argument Description

CHAR (optional) Keyword for generating a field_spec as the
CHARACTER loader data type for all columns in the named
table. A delimiter_spec is highly suggested. An error occurs if
you include FIELDS CHAR and a field_spec list in a LOAD
DATA statement.

NULLFLAGS (optional) Keyword for generating a field_spec for all columns
as the corresponding CREATE TABLE data type (if CHAR is
omitted) and for identifying NULL flags (T for NULL and F for
NOT NULL) at the beginning of each input data record for
each data field. An error occurs if you include FIELDS
NULLFLAGS and a field_spec list in a LOAD DATA statement.

delimiter_spec (optional but recommended) Keywords for describing delimited
data.
TERMINATED Keyword for describing terminated data fields.
BY Keyword for readability only.
WHITESPACE Keyword for indicating that the delimiter is one or more blank

characters. You can use this keyword with the TERMINATED
keyword, not the ENCLOSED keyword.

Value of a character delimiter, consisting of exactly one
character and enclosed in singe or double quotes. This value
must match the case (UPPER or lower) of the input data.

char

X'hexbyte' Value of a hexadecimal delimiter, consisting of exactly two hex
digits.

OPTIONALLY Keyword for indicating that some data fields may be enclosed
with the specified delimiter(s). You can specify OPTIONALLY
only when using TERMINATED. You can include both keywords
in the FIELDS clause, or both in a field_spec, or one in a
FIELDS clause and the other in a field_spec.

ENCLOSED Keyword for describing enclosed data fields.

AND Keyword for describing data fields enclosed with different
starting and ending delimiters. If omitted, the enclosure
delimiters are the same. The AND keyword must follow the
ENCLOSED keyword.

4-54 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

Argument Description

NULLIF (optional) Option to load a NULL value for any data field that is
empty or contains blanks.

EMPTY Keyword for indicating an empty condition, that is, two adjacent
delimiters. Using the EMPTY keyword is equivalent to
specifying an empty pair of delimiters in the NULLIF clause.

BLANK Keyword for indicating a data field contains zero or more
blanks.
DEFAULTIF (optional) Option to load a column’s default value for any data

field that is empty or contains blanks. See the preceding
EMPTY and BLANK keywords for more information.

Example FIELDS clauses

This section contains example FIELDS clauses.

To describe data fields terminated with a character

When data fields are terminated by a single character, use the TERMINATED
keyword and specify the value of the delimiter in the FIELDS clause. You can
specify a delimiter’s value in character or hexadecimal format. Enclose the value
in single or double quotes. The end of a logical record always serves as a
termination delimiter for the last data field if no delimiter is present.

For example, to specify the delimiter for these data fields:

2/8/3/9/tMcGulirielt Jack!
2[3/8[8/1/Clolr nf1]alkle t/Sluet

You would include this FIELDS clause:

FIELDS TERMINATED BY '

FileTek MVS Data Loader Utility Manual 4-55

FileTek Proprietary and Confidential

4 SYSSQL dataset
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

To describe data fields terminated by a blank

When data fields are terminated by a blank, use the TERMINATED keyword
with the WHITESPACE keyword in the FIELDS clause. For example, to specify
the delimiter for these data fields:

2(8/3/9] mclculifriel [[[[dalelk 1]
2[3]88| [clofirint[1lalklel [[[sfulel [[[[001

You would include this FIELDS clause:
FIELDS TERMINATED BY WHITESPACE

Note: The next field’s data will not include any of the whitespace from the
previous data field unless the next data field has a fixed-start position.

To describe data fields enclosed by the same delimiter

When data fields are enclosed by the same delimiter, then use the ENCLOSED
keyword and specify the value of the enclosure delimiter. For example, to specify
that data fields are enclosed by double quotes and terminated with blanks:

"l2839" "MeGuliire” ["3ack" |
"l2308[8]" ["IClojrinif Ia[k[e[" ["[s[ue|" |

You would include this FIELDS clause:

FIELDS TERMINATED BY WHITESPACE ENCLOSED BY ™"

4-56 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

To describe data fields enclosed by different delimiters

When data fields are enclosed by different enclosure delimiters, then use the
ENCLOSED keyword and specify the delimiter characters with the AND
keyword. For example, to specify that data fields are enclosed by parentheses:

(1283/9) (MeciGulirle) (Jack)
([213[8/8)) [([Clorin f1]akle))[([s]ue])

You would include this FIELDS clause:

FIELDS ENCLOSED BY ‘(" AND '

To describe data fields that are both terminated and
enclosed

When data fields are both terminated and enclosed, then use the TERMINATED
keyword followed by the ENCLOSED keyword in a FIELDS clause. You can also
use the OPTIONALLY keyword when some data fields are enclosed. For example,
to specify that all data fields are terminated by a comma and some are optionally
enclosed by parentheses:

2/8/3 9], (McGuilrie) [3ack.

2388/, (Clolrnflilakle) [sue,
You would include this FIELDS clause;

FIELDS TERMINATED BY ', OPTIONALLY ENCLOSED BY ‘(" AND ')’

FileTek MVS Data Loader Utility Manual 4-57

FileTek Proprietary and Confidential

4 SYSSQL dataset
Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults

To generate CHAR field_specs

You can generate field_specs as the CHARACTER loader data type by including
the CHAR keyword with the FIELDS clause and by omitting field_specs from the
LOAD DATA statement. For example, to generate field_specs for these data fields:

2839 McGuirle Jack
2/3/8'8] [Clojrinif llakle [sulel

include this FIELDS clause:

FIELDS CHAR TERMINATED BY WHITESPACE

To identify NULL flags in input data records

You can identify NULL flags in input data records by using the NULLFLAGS
keyword in a FIELDS clause and by omitting field_specs in a LOAD DATA
statement. In the following example, the server data loader generates field_specs
using the CHARACTER data type.

For example, to describe these data fields:

FIFF 2839 McGuilrlel Jaclk
FIFF 23088 [clorinf[llalkiel slue] |

include this FIELDS clause;

FIELDS CHAR NULLFLAGS TERMINATED BY WHITESPACE
To load NULL values for empty data fields

You can load a NULL value for an empty data field (two adjacent delimiters) by
including the NULLIF clause with the EMPTY keyword. For example, to load a

4-58 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential
SYSSQL dataset 4
Loading missing data fields with null values

NULL value for the empty data field in the first record below and to generate
field_specs using the CHARACTER data type:

(1283/9) (MeiGulirle) (Ialek) ()
([213[8/8)) [([clorin f1]akle))[([sluel) (L)

include this FIELDS clause:

FIELDS CHAR ENCLOSED BY '(" AND ‘) NULLIF EMPTY

Loading missing data fields with null values

A record that’s missing a data field is called a short record. By using the TRAILING
NULLCOLS clause, you can load a null value for a data field that's defined in a
field_spec but missing in a record. If you omit this clause, then the FileTek MVS
Data Loader utility generates an error message when a data record is missing a
data field.

Note the following:

= The column in the user table must allow null values. The load will fail if you
try to load a null value into a column defined as NOT NULL.

= If the field_spec refers to a field (not a column), no error is generated and no
null value is loaded. Fields are not loaded into user tables.

= Ifan input data record ends in the middle of a data field (of character-type
data) and you specify the TRAILING NULLCOLS clause, then the record is
padded.

» If you specify the TRAILING NULLCOLS clause and the data record ends
before the start of a data field, then that data field is loaded with a null value.

FileTek MVS Data Loader Utility Manual 4-59

FileTek Proprietary and Confidential

4 SYSSQL dataset
Loading missing data fields with null values

If a data field is not missing, but you want to replace the data value with a null
value, then you can use the NULLIF clause in a field_spec. See “Loading a
column with a null value” on page 4-105 for more information about the
NULLIF clause.

Format of TRAILING NULLCOLS clause
TRAILING [NULLCOLS]

The NULLCOLS keyword is optional.

Example TRAILING NULLCOLS clause

Assume that you are loading a user table with three columns. Below is the
field_spec:

(ORDER_NUM POSITION (1) INT EXTERNAL(4),
REP_LASTNAME POSITION (5) CHAR(15),
REP_FIRSTNAME POSITION (20) CHAR(15))

These are some of the input data records. Notice that record 4 is missing the
representative’s first name.

283[omcelulifrle. [1 3alek T
2:308[8/clorinfiifakel | | || [sjule | [[
alaizlomicicluliirlel | L[afarefkl LD
3095 clolrinflialkle | | [[

If you included the TRAILING NULLCOLS clause and if the user table’s column
allowed null values, then the server data loader would load a null value into the
REP_FIRSTNAME column. If you omitted the TRAILING NULLCOLS clause,
then the FileTek MVS Data Loader utility would generate an error because data’s

4-60 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Loading one or more segments

missing. The load operation would fail if the REP_FIRSTNAME column in the
user table was defined as NOT NULL.

Loading one or more segments

You can load data into multiple segments of a user table by including multiple
INTO TABLE clauses and specifying the SAME SEGMENT and DIFFERENT
SEGMENT clauses. You can also load multiple segments of different user tables
during one load. See “Loads and segments” on page 1-8 for more information
about segments.

SAME SEGMENT is the default, which means that the server data loader loads
the data into one segment. Simply omit the SAME SEGMENT and DIFFERENT
SEGMENT clauses when you want to load data into one new segment.

Note the following:

= The value of the StorHouse SQL_LDR_MAXINTO system parameter must be
greater than 1 to load multiple segments during a load.

= When there are multiple INTO TABLE clauses, then SAME SEGMENT loads
data into the same segment as the most recent INTO TABLE clause for the
same user table.

= You can name segments if you need or plan to replace them later. See page

4-64 for more information about using the SEGMENT clause to name a
segment.

FileTek MVS Data Loader Utility Manual 4-61

FileTek Proprietary and Confidential

SYSSQL dataset

Loading one or more segments

Format of SAME and DIFFERENT SEGMENT
clauses

SAME SEGMENT

DIFF[ERENT] SEGMENT

Example SAME and DIFFERENT SEGMENT
clauses

This section contains examples that show how to load data into multiple
segments of the same user table as well as into different user tables.

To load multiple segments of the same user table

The following example loads two segments in the ATM.TRANSACTIONS table.
Records containing A in column 1 will be loaded into one segment and those
containing B in column 1 will be loaded into a different segment.

LOAD
INTO TABLE ATM.TRANSACTIONS
WHEN (1) = A"

INTO TABLE ATM.TRANSACTIONS
WHEN (1) = 'B'
DIFF SEGMENT;

4-62 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Loading one or more segments

To load multiple segments of different user tables

The following example loads one segment of one user table and multiple
segments of another user table.

LOAD
INTO TABLE ATM.TRANSACTIONS

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE= '5/1/1999'

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE = '6/1/1999'
DIFF SEGMENT;

Note the following:

= All records will be loaded into one segment of the ATM.TRANSACTIONS user
table. SAME SEGMENT (omitted from the into_table_spec) is the default.

= Records containing 5/1/1999 in the TRANS_DATE column will be loaded into
one segment of the POS.TRANSACTIONS table. SAME SEGMENT (omitted
from the into_table_spec) is the default.

= Records containing 6/1/1999 in the TRANS_DATE column will be loaded into
a different segment of the POS. TRANSACTIONS table.

FileTek MVS Data Loader Utility Manual 4-63

FileTek Proprietary and Confidential

4 SYSSQL dataset
Naming a segment

Naming a segment

You can name the current segment you're loading in the event you need to
replace it in the future. This name is called a segment tag. You specify a segment
tag with the SEGMENT clause. Note the following:

= If you omit the SEGMENT clause, the default segment tag is the load ID that’s
automatically generated during a load. The FileTek MVS Data Loader utility
reports the load 1D on message LDL7571.

= Segment tags need not be unique, but this could result in several segments
being invalidated by a subsequent replace operation.

= |If there are multiple INTO TABLE clauses for the same segment, you can
specify only one SEGMENT clause for one of the INTO TABLE clauses. An
error will occur if you specify different segment tags for the same segment.

= Segment tags are stored in the SYSSTHSEGMENTS system table.

» StorHouse/RM normalizes the segment tag on a SEGMENT clause to
uppercase. This means you can use any case when providing a segment tag on
a REPLACE clause. Segment tags are case sensitive only when delimited.

Format of SEGMENT clause

SEGMENT segment_tag

Argument Description

segment_tag (required) Name of the segment that you're loading into the user
table specified on the INTO TABLE clause. This name cannot
exceed 40 characters and must follow SQL identifier conventions
(see page 4-4) or be quoted.

4-64 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Naming a segment

Example SEGMENT clauses

This section contains example SEGMENT clauses.

To use the load ID as the segment tag

Omit the SEGMENT clause to use the load ID generated by the FileTek MVS
Data Loader utility. For example, there’s no SEGMENT clause for either INTO
TABLE clause below, so the load 1D is the segment tag for both segments.

Note: Load IDs start with a digit, so if you issue a subsequent REPLACE clause,
you must delimit the load 1D with double quotes.

LOAD
INTO TABLE ATM.TRANSACTIONS
WHEN (1) = A’

INTO TABLE ATM.TRANSACTIONS
WHEN (1) = 'B'
DIFF SEGMENT;

To assign different segment tags for multiple segments of
the same user table

In the following example, the segment tag in the second INTO TABLE clause is
different from the one in the first INTO TABLE clause.

LOAD

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE='5/1/1999'
SEGMENT MAYSEGMENT

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE = '6/1/1999'
DIFF SEGMENT

SEGMENT JUNESEGMENT;

FileTek MVS Data Loader Utility Manual 4-65

FileTek Proprietary and Confidential

4 SYSSQL dataset
Replacing a segment

Replacing a segment

You can invalidate an existing segment by using the REPLACE SEGMENT clause.
When you replace a segment, a StorHouse engine updates the
SYSSTHSEGMENTS system table, setting the INVALID_FLAG column to Y and
the INVALID_TIME column to the current time for all segments with the given
segment tag, owner, and table name.

Note the following:

= You can obtain the segment tag from the SYSSTHSEGMENTS system table.

= If you named a segment with the SEGMENT clause, you can use any case
when providing the segment tag on the REPLACE clause. StorHouse/RM

normalizes these segment tags to uppercase. For example:

SEGMENTcallsload
REPLACE SEGMENT CALLSLOAD or REPLACE SEGMENT Callsload

= If you delimited the segment tag on the SEGMENT clause, you must use the
same case and delimit it on the REPLACE clause. For example:

SEGMENT "1seg"
REPLACE SEGMENT "1seg"

= If you omitted the SEGMENT clause when the segment was loaded, the load
ID is the segment tag. Load IDs start with a digit, so you must delimit them
with double quotes. For example:

REPLACE SEGMENT "00343445081"

= If you omit the owner and table name, the default is the owner and table
name specified on the INTO TABLE clause.

4-66 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Replacing a segment

If you include both the SEGMENT and REPLACE SEGMENT clauses and
specify the same segment tag for both, the current (new) segment will not be
invalidated.

= |f there are multiple INTO TABLE clauses for the same segment, you need to
specify only one REPLACE SEGMENT clause for one of the INTO TABLE
clauses. An error occurs if you specify different segment tags for the same
segment.

= When replacing segments without loading data, the SYSREC DD statement in
the JCL must name an empty dataset. You can use DD* followed by /*.

= No error occurs if there are no segments with the specified segment tag.

Format of REPLACE SEGMENT clause

REPLACE SEGMENT [[owner.] table_name.] segment_tag

Argument Description

owner. (optional) StorHouse account ID of the owner of the user table
containing the segment you are replacing. If you omit the owner
name, the server data loader uses the owner name on the
corresponding INTO TABLE clause.

table_name. (optional) Name of the user table containing the segment you are
replacing. If you omit the table name, the server data loader uses
the table name on the corresponding INTO TABLE clause.

segment_tag (required) Name assigned to the segment (on the SEGMENT
clause) when you loaded the user table. If you omitted the
SEGMENT clause, the load ID is the segment tag.

FileTek MVS Data Loader Utility Manual 4-67

FileTek Proprietary and Confidential

4 SYSSQL dataset
Selecting subspaces

Example REPLACE SEGMENT clause

The following example loads data into a new segment called JULYSEGMENT and
invalidates the segment called JUNESEGMENT. The server data loader will replace
all segments named JUNESEGMENT in the POS.TRANSACTIONS table.

LOAD

INTO TABLE POS.TRANSACTIONS
WHEN TRANS_DATE='7/1/1999'
SEGMENT JULYSEGMENT
REPLACE JUNESEGMENT;

Selecting subspaces

You can select specific subspaces for user table components (table data, value
indexes, hash indexes, and LOB data) by including one or more SUBSPACE
number clauses after an INTO TABLE clause of a LOAD DATA or MERGE
statement or on a LOAD INDEX statement. Note the following:

= You cannot use both a SUBSPACE ROTATE and a SUBSPACE number clause
in a LOAD DATA, LOAD INDEX, or MERGE statement. Only one of these
clauses is allowed.

= |fyou omit both the SUBSPACE ROTATE and the SUBSPACE number clause,
the server data loader uses the lowest-numbered subspace that allows the
component type.

= You can include a SUBSPACE number clause for any component types. For
instance, for a data load, you can select a subspace for just table data and use
the default selection (lowest-numbered subspace) for indexes and LOB data.
For an index load, you can select different subspaces for value and hash
indexes. And for a merge operation, you can select different subspaces for
table data, value indexes, and hash indexes. LOB data is not reprocessed in a
merge operation, so it remains in its current location.

4-68 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Selecting subspaces

= |f you omit the component type (for example, TABLE or VALUE), the clause
applies to all component types (unless one or more is overridden by a later
SUBSPACE number clause). For example, if you specify SUBSPACE 2, then
the server data loader uses subspace 2 for table data, hash indexes, value
indexes, and LOB data.

= If you specify multiple SUBSPACE number clauses in the same INTO TABLE
clause, later ones that specify the same component type(s) supersede earlier
Oones.

= Subspace(s) must exist for the applicable component type. For example, you
can select subspace 3 for table data if the user tablespace contains a subspace 3
defined with OBJECT_TYPE T (for table data) or blank (for all component
types). An error occurs if you select a subspace that does not exist or is not
valid for a component type.

= The server data loader uses the table data subspace and the user table
tablespace for LOB values that fit within a row, that is, for in-line LOBSs.

Format of SUBSPACE number clause

[[TABLE | VALUE | HASH | LOB] SUBSPACE number]...

Argument Description

TABLE (optional) Keyword to select a subspace for table data.
VALUE (optional) Keyword to select a subspace for value indexes.
HASH (optional) Keyword to select a subspace for hash indexes.
LOB (optional) Keyword to select a subspace for LOB data.

StorHouse/RM uses LOB subspaces only for out-of-line LOBs.

number (required) Subspace number. If you omit TABLE, VALUE, HASH or
LOB, all component types use the same subspace number.

FileTek MVS Data Loader Utility Manual 4-69

FileTek Proprietary and Confidential

4 SYSSQL dataset
Selecting subspaces

See page 4-132 for the SUBSPACE number clause of the LOAD INDEX statement
and page 4-135 for the SUBSPACE number clause of the MERGE statement.

Example SUBSPACE number clauses

This section contains example SUBSPACE number clauses.

To select subspaces when loading one segment

You can select a specific subspace for each component type. For example, assume
you're loading one segment. The user table has three hash indexes, and two value
indexes assigned to the same user tablespace as the table. The user tablespace
contains the following subspaces:

Subspace number OBJECT_TYPE

1 T (table data only)
2 T (table data only)
3 H (hash indexes only)
4 H (hash indexes only)
5 V (value indexes only)
6 V (value indexes only)

With the following LOAD DATA statement, the server data loader uses the
following subspaces:

= Subspace 2 for the table data file
= Subspace 4 for all three hash index files
= Subspace 6 for both value index files

4-70 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4

LOAD

INTO TABLE TOLLFREE
TABLE SUBSPACE 2
HASH SUBSPACE 4
VALUE SUBSPACE 6
(FROMNUM POSITION(1) BINARY EXTERNAL(10),
TONUM BINARY EXTERNAL(10),
ACCOUNT CHAR(12))

WHEN (11:13) = '800' OR (11:13) = '888' ;

Selecting subspaces

To select subspaces when loading multiple segments

When loading multiple segments, you can use the same subspace or different
subspaces for each component type. For example, assume you're loading two
segments. The user table has one hash index and one value index assigned to the
same user tablespace as the table.

The user tablespace contains the following subspaces:

Subspace number
1
2
3

OBJECT_TYPE

T (table data only)

T (table data only)

T (table data only)

H (hash indexes only)
H (hash indexes only)
H (hash indexes only)
V (value indexes only)
V (value indexes only)

V (value indexes only)

Assume you want to use a different subspace for each table data file but the same
subspace for both hash index files and the same subspace for both value index

FileTek MVS Data Loader Utility Manual 4-71

FileTek Proprietary and Confidential

4 SYSSQL dataset
Selecting subspaces

files. With the following LOAD DATA statement, the server data loader uses the
following subspaces:

= Subspace 1 for the table data file in segment 1
= Subspace 2 for the table data file in segment 2
= Subspace 5 for the hash index files in segments 1 and 2
= Subspace 9 for the value index files in segments 1 and 2

LOAD

INTO TABLE MARCHCALLS

TABLE SUBSPACE 1

HASH SUBSPACE 5

VALUE SUBSPACE 9

(FROMNUM POSITION(1) BINARY EXTERNAL(10),
TONUM BINARY EXTERNAL(10),

ACCOUNT CHAR(12))

WHEN (11:13) = '800' OR (11:13) = '888'

INTO TABLE MARCHCALLS
DIFFERENT SEGMENT

TABLE SUBSPACE 2

HASH SUBSPACE 5

VALUE SUBSPACE 9

(FROMNUM POSITION(1) BINARY EXTERNAL(10),
TONUM BINARY EXTERNAL(10),

ACCOUNT CHAR(12))

WHEN (11:13) != '800' AND (11:13) !='888";

To select subspaces in multiple user tablespaces

If any indexes or LOB columns for a user table are assigned to different user
tablespaces, you can select different subspaces in different user tablespaces. If the
subspace number is the same in all user tablespaces, then you can omit the
TABLE | HASH | VALUE | LOB keywords and just specify the SUBSPACE keyword
with the subspace number.

4-72 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Selecting subspaces

For example, assume you're loading one segment. The user table, assigned to user
tablespace 1, has two hash indexes, two value indexes, and two LOB columns.
The hash indexes are assigned to user tablespace 2, the value indexes are assigned
to user tablespace 3, and the LOB columns are assigned to user tablespace 4.

User tablespace 1 contains the following subspaces:

Subspace number OBJECT_TYPE
1 T (table data only)

2 T (table data only)

User tablespace 2 contains the following subspaces:

Subspace number OBJECT_TYPE
1 H (hash indexes only)

2 H (hash indexes only)

User tablespace 3 contains the following subspaces:

Subspace number OBJECT_TYPE
1 V (value indexes only)

2 V (value indexes only)

User tablespace 4 contains the following subspaces:

Subspace number OBJECT_TYPE
1 L (LOB data only)

2 L (LOB data only)

FileTek MVS Data Loader Utility Manual 4-73

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

With the following LOAD DATA statement, the server data loader uses the
following subspaces:

= Subspace 2 in user tablespace 1 for the table data file

= Subspace 2 in user tablespace 2 for both hash index files

= Subspace 2 in user tablespace 3 for both value index files

= Subspace 2 in user tablespace 4 for both LOB subsegment files

LOAD

INTO TABLE CALLSDBA.BILLSUMMARY
SUBSPACE 2

(BILL_ACCOUNT CHAR(10),

BILL_DATE DATE EXTERNAL(10),
BILL_CATEGORY CHAR(1),
NUMBER_CALLS INT EXTERNAL(3),
PHOTO_ID VARBINARY,

BILL_IMAGE VARBINARY);

Describing data fields

A field_spec describes a data field in a logical record. Include a field_spec to:

= Describe a field in a WHEN clause.
You must provide a field_spec for any field name specified in a WHEN clause.
Remember that fields aren't loaded into user tables. You use fields only to
assign a name to a portion of the logical record to be used in a condition.

= Generate a value to be loaded into a column. You can generate:

— the record number of a logical record (RECNUM)
— asequence of values (SEQUENCE)

— the current date (SYSDATE)

— aconstant value (CONSTANT)

4-74 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

Describe a data field to be loaded into a column. You can describe:

— the position of the data field in the logical record (position_spec)

— the name and length of the data type (datatype_spec)

— the character set for an individual data field (CHARSET)

— adelimiter for a CHAR or EXTERNAL data field (delimiter_spec)

— acondition that causes a column to be loaded with a null value (NULLIF)
or a default value (DEFAULTIF)

You can omit all or some field_specs when describing data fields to be loaded

into columns.

If you include a FIELDS CHAR clause, you must omit all field_specs. The
server data loader generates a field_spec for every column with the
CHARACTER loader data type and determines the length of the data fields
using the default-length rules for CHARACTER.

You can omit a FIELDS CHAR clause and all field_specs if the input data is in
the same order as the CREATE TABLE definition and all data fields are
relatively positioned and of the same data type. The server data loader uses
the CREATE TABLE definition (data types and lengths) to determine how to
interpret the input data.

If you omit a FIELDS CHAR clause and some field_specs, the server data

loader loads the omitted columns with the default value. If no default value
was assigned when the user table was created, a null value is loaded.

Format of field spec

(field_spec [, field_spec]...)

FileTek MVS Data Loader Utility Manual 4-75

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

where field_spec:

{ :field_name | column_name } data_spec

Argument Description

‘field_name (required if using a field name in a condition) Name of the field you
are using in a condition. Precede this field name with a colon (:).
This name must adhere to the conventions of StorHouse SQL
identifiers (see page 4-4 for conventions) or be quoted.

column_name (required to generate data or to describe a column to be loaded)
Name of the column in the input data. This name must match the
column name specified in the CREATE TABLE statement.

data_spec (optional) Value to be generated or description of the data field.
The format is:

RECNUM

| SEQUENCE (start_num [,increment])
| SYSDATE

| CONSTANT any_value

| position_spec

position_spec (optional) Position of the data field in a logical record, name and
length of the data type, condition that loads a null value or a default
value into a column. You can specify position_spec clauses in any
order. The format is:

[POSITION (position | * [+num 1)]
[datatype_spec]

[NULLIF field_condition]

[DEFAULTIF field_condition]

datatype_spec (optional) Name of the data type and length of the column or field in
the logical record. Depending on the data type, you can also
specify a character set or a delimiter for an individual data field.

4-76 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

Providing a field name

If you used a field name in a condition (like in a WHEN clause), then you must
provide a field_spec for that field. For instance, for the following WHEN clause:

WHEN RECORD_CODE ="A'

you would provide this field_spec:
‘RECORD_CODE POSITION (1) CHAR
Remember that:

= A field name in a WHEN clause does not start with a colon.

= A field name in a field_spec must start with a colon.

» Fields aren't loaded, only columns are loaded into user tables.

= If afield name is delimited, the preceding colon (in the field_spec) must be
outside the quotes, for example, :“RECORD CODE” POSITION (1) CHAR

Providing a column name

When generating data or describing data fields to be loaded, you must provide a
column name in a field_spec. Note the following:

= Column names must match the names assigned on the CREATE TABLE
statement. For instance, if a column name in the CREATE TABLE statement
iS ORDER_NUM, then specify ORDER_NUM (not ORDER_NUMBER or
ORDERNUMBER) in the field_spec.

= Column names are not case sensitive unless quoted.

FileTek MVS Data Loader Utility Manual 4-77

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

Loading a record number into a column

Use the RECNUM keyword after a column name to load a column with the
record number of the logical record from which that row was loaded. Record
numbers start at 1 and increment for each logical record, including discarded
records. You can load this record number into a table column of data type
SMALLINT or INTEGER.

For example, to generate record numbers for a column called
RECORD_NUMBER, specify:

RECORD_NUMBER RECNUM

Generating a sequence of values

Use the SEQUENCE clause after a column name to generate a sequence of
unique values for each logical record that is not discarded. You can load these
values into a table column of data type SMALLINT or INTEGER.

The format of SEQUENCE is:

SEQUENCE (start_num [,increment])

Argument Description

start_num (required) Starting value, which must be a positive integer or 0.

increment (optional) Number to increment subsequent logical records that are
not discarded. If you omit the increment, the default is 1.

For example, to generate unique values for a column named CUSTOMER_NUM,
starting with 1 for the first logical record not discarded and incrementing by 1 for
each subsequent logical record not discarded, type:

CUSTOMER_NUM SEQUENCE (1,1)

4-78 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

Loading the current date into a column

Use the SYSDATE keyword after a column name to load the current date into a
column, specifically, the date that the load or restart operation began (even if the
load continues past midnight). The table column must be of data type CHAR,
CLOB, DATE, or VARCHAR.

For example, to load the current date into a column called ORDER_DATE,
specify:

ORDER_DATE SYSDATE

Loading a constant value into a column

Use the CONSTANT clause after a column name to load a constant value into a
column. Note the following:

= The constant value can be a quoted character string or hexadecimal string, an
unquoted identifier, or a number.

= The table column can be any data type.

= The server data loader treats the constant value as a string and converts it to
the data type of the table column,

= If you specify a character string and the data field has a fixed position

(specified by a POSITION clause), the server data loader pads or truncates
that string if it is shorter or longer than the fixed position.

FileTek MVS Data Loader Utility Manual 4-79

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

The format of CONSTANT is:

CONSTANT any_value

Argument Description

any_value Value to load into the column. The format is:

any_string | identifier | num

any_string Character string enclosed in single or double quotes or
hexadecimal string preceded with X and enclosed in quotes

identifier Unquoted string

n Unsigned integer optionally followed by K (x1024) or M (xKK)

For example, to load the value CA into a column called STATE, specify:

STATE CONSTANT 'CA'

Specifying the position of a data field

To load a column or use a field, the server data loader must know where to locate
it in a logical record. You specify the location of a data field by including a
POSITION clause in a field_spec. You can specify:

= A fixed position with a starting (and optional ending) column number
= A relative position as a continuation or an offset from the previous data field

The POSITION clause is optional. If you omit it, the default is POSITION (*) or
relative position as a continuation from the previous data field. Typically, you
omit the POSITION clause when the input data contains VAR-type or delimited
data fields. You must use relative positioning (the default POSITION (*)) for
BLOB and CLOB data fields.

For VARCHAR or VARBINARY data fields, the position must include the 2-byte
field containing the actual length of the data field. Any relatively positioned data

4-80 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

fields (using * or *+num) after a VARCHAR data field will start at varying positions
based on the actual length of the VARCHAR data field in each logical record.

The format of POSITION is:

POSITION (position | *[+hum])

Argument Description

position Starting (required) and ending (optional) column numbers of the
data field in the logical record. The format is:

start_column [{: |-} end_column]

start_column Starting position of the data field in the logical record. The first
position in a logical record is 1.

Jor- Character that separates the starting column from the ending
column. Either character is valid.

end_column Ending position of the data field in the logical record. If you omit the
ending column, the length comes from the datatype_spec of the
data field. If you include the ending position, the length of the
datatype_spec is ignored.

* The data field immediately follows the previous data field. When you
include *, the length comes from the datatype_spec of the data field.

+num An offset from the previous data field, where num is the number of
positions. Use +num with *.

For example:

To specify the starting column number of a data field:
POSITION (1)

In this example, the data field starts in position 1 of the logical record. The
length comes from the datatype_spec of the data field. For instance, if the
data type is SMALLINT, which has a length of 2 bytes, then the data field
starts in position 1 and ends in position 2.

FileTek MVS Data Loader Utility Manual 4-81

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

= To specify the starting and ending column numbers of a data field:

POSITION (1:3)

In this example, the data field starts in position 1 and ends in position 3 of
the logical record. Another way to specify this is POSITION (1-3). If you also
specify the length of the data type, the length is ignored.

= To specify continuation from the previous data field:
POSITION (*)
In this example, the data field is located one record position after the previous
data field. So if the previous data field ends in position 15, then this data field
starts in position 16 of the logical record. The length of the data field comes
from the datatype_spec. POSITION (*) is the default.
Note: When a LOAD DATA statement contains multiple INTO TABLE
clauses, the position used when the first field_spec of an INTO TABLE clause

is relative is:

— column 1 of the logical record if no prior INTO TABLE clauses have been
selected for loading (as determined by their WHEN clauses),

— or the column following the last data field in the last INTO TABLE clause
that was selected for loading.

See page 4-118 for an example of relative positioning with multiple INTO
TABLE clauses.

= To specify an offset from the previous data field:

POSITION (*+5)

In this example, the data field is located 5 positions plus 1 position after the
previous data field. Therefore, if the previous data field ends in position 10,

4-82 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

then this data field starts in position 16 of the logical record. POSITION (*+0)
is the same as POSITION (*). The length of the data field comes from the
datatype_spec.

Specifying the data type

A datatype_spec provides the data type name and length of a data field in a
logical record. The server data loader uses this information to interpret a data
field. For some data types, you can also specify a character set and a delimiter.
Note that:

= The data type name is always required in a datatype_spec.
= The length, character set, and delimiters are optional in a datatype_spec.

See page 4-99 for more information about how the server data loader calculates
the length of a data field if you omit the length in a datatype_spec.

The data type of an input data field does not have to match the data type of the
column in the user table, but those data types must be compatible. The server
data loader automatically performs any necessary conversions. See page 4-99 for
a summary of compatible data types.

In a datatype_spec, the data type must be one of the data types supported by the
server data loader. Those data types are described in the following tables.

FileTek MVS Data Loader Utility Manual 4-83

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

Definitions of the data type specifications are as follows:

Definitions of data type specifications

LOAD DATA syntax

Format of the data type in a LOAD DATA datatype_spec

Input field size

Length, default length, length ranges of the input data

Input field format

Acceptable format and/or contents of the input data

Range

Minimum and maximum data values allowed for the data type

Storage size

Amount of space when stored on StorHouse. Note that null data
takes no space (in the corresponding CREATE TABLE data type).

Target types

Valid CREATE TABLE data types for this input type, in other
words, the supported conversions. See page 4-99 for a summary
of conversions.

BINARY data type

LOAD DATA syntax

BINARY [(length)]

RAW [(length)]

BYTE [(length)]

CHAR[ACTER] [(length)] CHARSET 65535

Input field size

Default length: CREATE TABLE length if BINARY or CHAR, else 1
Length range: 1 to 32765

Input field format

Any bytes

Storage size

CREATE TABLE length (1 to 256)

Target types

BINARY, BLOB, CHAR, CLOB, VARBINARY, VARCHAR

Notes

» If the LOAD length is greater than the CREATE TABLE length,
the excess characters are silently truncated, that is, the server
data loader does not report or log whether any data is trimmed.

= The input data is copied directly. There is no conversion, even
when the target type is CHAR, CLOB, or VARCHAR.

4-84 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

BINARY EXTERNAL data type

LOAD DATA syntax BINARY EXTERNAL [(length)] [CHARSET ccsid] [delimiter_spec]
RAW EXTERNAL [(length)] [CHARSET ccsid] [delimiter_spec]
BYTE EXTERNAL [(length)] [CHARSET ccsid] [delimiter_spec]

Input field size Default length: 512 (with delimiter_spec) or else CREATE TABLE
length*2 if BINARY or CHAR, else 2

Length range: 1 to 32765

Input field format Hexits (0-9, a-f, A-F), where 2 hexits=1 byte

Target types All except TIME, DATE, TIMESTAMP, and DECIMAL

Notes = If an odd number of hexits is supplied, a leading 0 is added.

= If the LOAD length/2 is greater than the CREATE TABLE length,
the excess characters are silently truncated.

FileTek MVS Data Loader Utility Manual 4-85

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

BLOB data type

LOAD syntax

BLOB [(max_length [K|M|G])]
CLOB [(max_length [K|M|G])] CHARSET 65535

Input field size

Contents of 64-bit length field
Length range: 0+8 (minimum) to 2G-9+8 (maximum)
Default max_length = CREATE TABLE max_length + 8

Input field format

64-bit length field followed by the data

Storage size

In-line LOB: Size of BLOB plus 4 bytes

Out-of-line LOB: Size of BLOB in the LOB subsegment file plus 22
bytes for the object identifier (OID) in the table data file

Target type

BLOB, CLOB

Notes

» The length of the data is read from a 64-bit field preceding the
data. The native values key affects the interpretation of these
bytes.

» If a BLOB data value exceeds the LOAD DATA max_length, the
load fails.

« If a BLOB data value exceeds the CREATE TABLE length, the
data is silently truncated.

= When the target type is CLOB, there are no conversions, that is,
the input characters are copied directly rather than converted to
hexits or from any data character set.

= See “Specifying a BLOB or CLOB data type” on page 4-104 for
additional considerations.

4-86 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

CHARACTER data type

LOAD DATA syntax

CHAR[ACTER] [(length)] [CHARSET ccsid] [delimiter_spec]

Input field size

Default length: MIN (CREATE TABLE length, 32705) if BINARY,
BLOB, CHAR, CLOB, VARBINARY, or VARCHAR,; or else 256
(with a delimiter_spec) or else 1

Length range: 1 to 32765

Input field format

Any characters

Storage size

CREATE TABLE length (1 to 256)

Target types

All

Notes

If the ccsid is not 819, then the data will be converted.

If ccsid=65535, the data type is changed to BINARY and any
delimiter_spec is ignored.

The CHAR length is not enforced on the LOAD DATA
statement. This is helpful if you need to load delimited data with
a size greater than 256 into a VARCHAR table column. In this
case, you must use a CHAR data type to define that delimited
data.

If the LOAD length is greater than the CREATE TABLE length,
the excess characters are silently truncated.

If the target type is [VAR]BINARY, there is no conversion, that is,
the input characters are copied directly.

When the target is a numeric type, a data field of only blanks is
an error.

FileTek MVS Data Loader Utility Manual 4-87

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

CLOB data type

LOAD syntax CLOB [(max_length [K|M|G])] [CHARSET ccsid]

Input field size Contents of 64-bit length field
Length range: 0+8 (minimum) to 2G-9+8 (maximum)
Default max_length = CREATE TABLE max_length + 8

Input field format 64-bit length field followed by the data

Storage size In-line LOB: Size of CLOB plus 4 bytes

Out-of-line LOB: Size of CLOB in the LOB subsegment file plus 22
bytes for the object identifier (OID) in the table data file

Target type CLOB, BLOB
Notes « If a CLOB data value exceeds the LOAD DATA max_length, the
load fails.

» If a CLOB data value exceeds the CREATE TABLE length, the
value is silently truncated.

If the ccsid is 65535, the data type is changed to BLOB.

» When the target type is BLOB, there is no conversion, that is, the
the input characters are copied directly rather than interpreted as
hexits.

» See “Specifying a BLOB or CLOB data type” on page 4-104 for
additional considerations.

4-88 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

DATE or DATE EXTERNAL data type

LOAD DATA syntax DATE [EXTERNAL] [(length)] ['mask"] [CHARSET ccsid]
[delimiter_spec]

Input field size Default length: 10 (without delimiter_spec or 256 (with
delimiter_spec)

Length range: 1 to 32765

Input field format Character representation of a date. Leading and trailing blanks are
allowed. Refer to the StorHouse SQL Reference Manual for valid
input formats for dates.

Storage size 4

Range 1/1/0001 to 12/31/9999

Target types DATE

Note The mask (its length or content) is currently not used.

FileTek MVS Data Loader Utility Manual 4-89

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

DECIMAL or NUMERIC data type

LOAD DATA syntax DEC[IMAL] [PACKED]
NUMERIC [PACKED]
DEC[IMAL] (precision][, scale])
NUMERIC (precision[, scale])

Input field size (precision + 2) / 2
Default precision and scale: CREATE TABLE precision and scale
Default scale (if precision supplied): O
Precision range: 1 to 31

Scale range: 0 to precision

Input field format Number in the form ddd...ds, where d is a decimal digit
represented by 4 bits and s is a 4-byte sign value (where a plus
sign (+) is represented by A, C, E, or F and a minus sign (-) is
represented by B or D)

Storage size (precision +2)/ 2
Target types DECIMAL, INTEGER, SMALLINT
Note If you omit the precision but include a starting and ending column

in the POSITION clause for the data field, the server data loader
will calculate the precision from the POSITION clause.

4-90 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

DECIMAL EXTERNAL data type

LOAD DATA syntax

DEC[IMAL] EXTERNAL (length[, scale]) [CHARSET ccsid]
[delimiter_spec]
NUMERIC EXTERNAL (length[, scale]) [CHARSET ccsid]
[delimiter_spec]

Input field size

Default length: 256 (with delimiter_spec) or else CREATE TABLE
precision + 3 if DECIMAL, else 11

Default scale: 0
Length range: 1 to 32765

Input field format

String of characters that represents a number, with or without a
sign or a decimal point. E-notation (floating-point literal) is also
accepted. Leading and trailing blanks are allowed. Refer to the
StorHouse SQL Reference Manual for E-notation format.

Target types

DECIMAL, INTEGER, SMALLINT

Notes

» If no decimal point exists in the input and E-notation is not
used, there is an implied decimal point at the position indicated
by the scale (after any trailing blanks are trimmed).

» A data field of only blanks is an error.

DOUBLE data type

LOAD DATA syntax

FLOAT
FLOAT (bits)
DOUBLE [PRECISION]

Input field size

8

Input field format

Double precision floating-point binary number

Storage size 8

Range IEEE limits

Target types REAL, DOUBLE, INTEGER, SMALLINT
Notes » FLOAT with no length is FLOAT(53).

» bits =22 to 53
= Floating-point is interpreted as Proprietary S/370.

FileTek MVS Data Loader Utility Manual 4-91

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

FLOAT (REAL) data type

LOAD DATA syntax FLOAT
FLOAT (bits)
REAL

Input field size 4

Input field format

Single precision floating-point binary number

Storage size 4

Range IEEE limits

Target types REAL, DOUBLE, INTEGER, SMALLINT

Notes =« When bits = 1 to 21, the number is single precision.

» When bits = 22 to 53, the number is double precision.
» FLOAT with no length is double precision (FLOAT(53)).
= Floating-point is interpreted as Proprietary S/370.

FLOAT EXTERNAL data type

LOAD DATA syntax

FLOAT EXTERNAL [(length)] [CHARSET ccsid] [delimiter_spec]

Input field size

Default length: 24 (without delimiter_spec) or 256 (with
delimiter_spec)

Length range: 1 to 32765

Input field format

Integer value, decimal value, or character representation of a
floating-point number (E-notation). Refer to the StorHouse SQL
Reference Manual for E-notation format. Leading and trailing
blanks are allowed.

Target types

REAL, DOUBLE, DECIMAL, INTEGER, SMALLINT

Note

A data field of only blanks is an error.

4-92 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

INTEGER data type

LOAD DATA syntax

INT[EGER]

Input field size

2 if nvk=DOS, else 4

Input field format

Signed binary integer

Storage size

4

Range -2147483648 to 2147483647
Target types INTEGER, SMALLINT
Note The byte order is interpreted as most significant byte first, big-

endian.

INTEGER EXTERNAL data type

LOAD DATA syntax

INT[EGER] EXTERNAL [(length)] [CHARSET ccsid]
[delimiter_spec]

Input field size

Default length: 11 (without delimiter_spec) or 256 (with
delimiter_spec)

Length range: 1 to 32765

Input field format

Array of characters that represents a number, with or without a
sign, without a decimal point. Leading and trailing blanks are
allowed.

Target types

INTEGER, SMALLINT

Note

A data field of only blanks is an error.

FileTek MVS Data Loader Utility Manual 4-93

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

SMALLINT data type

LOAD DATA syntax

SMALLINT

Input field size

2

Input field format

Signed binary integer

Storage size

2

Range

-32768 to 32767

Target types

INTEGER, SMALLINT

Note

The byte order is interpreted as most significant byte first, big-
endian.

TIME EXTERNAL data type

LOAD DATA syntax

TIME EXTERNAL [(length)] [CHARSET ccsid] [delimiter_spec]

Input field size

Default length: 12 (without delimiter_spec) or 256 (with
delimiter_spec)

Length range: 1 to 32765

Input field format

Character representation of a time. Leading and trailing blanks are
allowed. Refer to the StorHouse SQL Reference Manual for valid
input formats for time.

Storage size

4

Range

0:0:0.000 through 24:0:0.000 (leap seconds (up to 62 seconds) are
also allowed)

Target types

TIME

Note

The server data loader accepts a time data field without
milliseconds.

4-94 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

TIMESTAMP EXTERNAL data type

LOAD DATA syntax

TIMESTAMP EXTERNAL [(length)] [CHARSET ccsid]
[delimiter_spec]

Input field size

Default length: 26 (without delimiter_spec) or 256 (with
delimiter_spec)

Length range: 1 to 32765

Input field format

Character representation of a timestamp. Leading and trailing
blanks are allowed. Refer to the StorHouse SQL Reference
Manual for valid input formats for timestamp.

Storage size

8

Range

See TIME and DATE, except TIMESTAMP contains microseconds

Target types

TIMESTAMP

FileTek MVS Data Loader Utility Manual 4-95

FileTek Proprietary and Confidential

4 SYSSQL dataset

Describing data fields

VARBINARY data type

LOAD DATA syntax

VARBINARY [(max_length)]

VARRAW [(max_length)]

VARBYTE [(max_length)]

VARCHAR [(max_length)] CHARSET 65535

Input field size

Contents of SMALLINT length field + 2

Default max_length: CREATE TABLE max_length if VARBINARY
or VARCHAR, else 256

Length range: 1 to 32765

Input field format

SMALLINT field followed by any bytes

Storage size

Length of data + 2 (unless compressed)

Target types

BINARY, BLOB, CHAR, CLOB, VARBINARY, VARCHAR

Notes

= The length of the data is read from the SMALLINT field
preceding the data.

If the data exceeds the LOAD max_length or runs off the end of
the record, an error is generated and the load is terminated.

If the data exceeds the CREATE TABLE length, the data is
silently truncated.

If the CREATE TABLE length is greater than 4096, the data is
compressed before being written.

If the target type is [VAR]JCHAR, there is no conversion, that is,
the input characters are copied directly.

4-96 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

VARCHAR data type

LOAD DATA syntax

VARCHAR [(max_length)] [CHARSET ccsid]

Input field size

Contents of SMALLINT length field + 2

Default max_length: CREATE TABLE max_length if VARCHAR or
VARBINARY, else 256

Length range: 1 to 32765

Input field format

SMALLINT field followed by any characters

Storage size

Length of data + 2 (unless compressed)

Target types

All

Notes

The length of the data is read from the SMALLINT field
preceding the data.

If the data exceeds the LOAD max_length or runs off the end of
the record, an error is generated and the load is terminated.

If the data exceeds the CREATE TABLE length, the data is
silently truncated.

If CHARSET=65535, the data type is changed to VARBINARY.

If the CREATE TABLE length is greater than 4096, the data is
compressed before being written.

If the target type is [VAR]BINARY, there is no conversion, that is,
the input characters are copied directly.

When the target is a numeric type, a data field of only blanks is
an error.

FileTek MVS Data Loader Utility Manual 4-97

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

Converting data types

The data type in a datatype_spec does not have to match the data type in the
column definition of a CREATE TABLE statement, but the data types must be
compatible. The server data loader automatically performs any necessary
conversions, but you need to be sure that the data type you provide in a
datatype_spec can be converted to the data type of the user table.

For instance, if the data type of the input data is SMALLINT, but the data type of
the column in the user table is INTEGER, then the server data loader converts the
input data from SMALLINT to INTEGER.

The server data loader trims input data fields that are longer than the length
provided in a column definition of a CREATE TABLE statement. The server data
loader also rescales DECIMAL or NUMERIC columns. For example, if the input
data is DECIMAL(7,3) but the column definition for the user table is
DECIMAL(7,2), then the server data loader rescales the input data and stores it as
DECIMAL(7,2) in the user table.

The following table identifies the allowable data type conversions. In the table:
= The Input type is the data type of the input data (LOAD data type).

= The Target type is the data type of the table being loaded (CREATE TABLE
data type).

4-98 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Describing data fields

Synonyms are not listed but are supported. For instance, BYTE, a synonym for
BINARY, has the same conversions as BINARY.

Data type conversions for loading

Target type

Input type

DOUBLE PRECISION
NUMERIC (DECIMAL)

DATE
INTEGER
REAL
SMALLINT
TIME
TIMESTAMP

BINARY

BINARY EXTERNAL
BLOB
CHARACTER
CLOB

DATE X
DECIMAL
DECIMAL EXTERNAL
DOUBLE X
FLOAT(REAL) X
FLOAT EXTERNAL X
INTEGER
INTEGER EXTERNAL
SMALLINT

TIME EXTERNAL X
TIMESTAMP EXTERNAL X
VARBINARY
VARCHAR XXX X|X|X]|X]|X|X]|X|X]|X|X]|X

X | X | BINARY

X [X | CHARACTER
X | X | VARBINARY
X [X | VARCHAR

X
X
X
X
X
X
X
X
X
X
X
X

X | X |X|X|X| BLOB
X |X|X|X|X| CLOB
X
x
X
x

XXX |X | X[X|X|X
XXX |X|X|X|X|X

x
x
x
x
x
x

Calculating the length of a data field

In a datatype_spec, you can optionally provide explicit lengths for most of the
data types. For example, CHAR(10) describes a data field that consists of 10
bytes. Specifying CHAR without a length is also valid.

FileTek MVS Data Loader Utility Manual 4-99

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

The data types DOUBLE, INTEGER, REAL, and SMALLINT have implied
lengths. You don't specify lengths for these data types. Your host determines the
size of these implied lengths. For example, INTEGER for an IBM S/370 or a
SPARC implementation has an implied length of 4 bytes; for a DOS
implementation, 2 bytes.

The server data loader calculates the length of a data field:

= With the starting and ending column numbers in the POSITION clause of a
field_spec

= With the explicit or implied length of the data type in a datatype_spec

Because you can provide both a POSITION clause and a datatype_spec, it’s
possible that those lengths can conflict. You will receive a warning message when
there is a conflict with the length of a data field. The server data loader
determines the length of a data field in one of the following ways, in the order
listed:

= For FLOAT, DOUBLE, INTEGER, REAL, and SMALLINT, the implied length
is used. For instance, the implied length of SMALLINT is 2.

» If you specify a length for VARCHAR, VARBINARY, VARBYTE, or VARRAW,
for instance, VARCHAR(25), then that length is the maximum number of
characters or bytes in the data field; but, the actual length is in the 2-byte
SMALLINT field preceding the data. The total length of a data field in a
logical record is the actual data length plus 2. If you specify starting and
ending column numbers in a POSITION clause, be sure to include the 2-byte
SMALLINT field containing the actual length.

= For delimited data, if you specify a length for the data type or if you specify
starting and ending column numbers, then that length is the maximum
length of the data field. The actual length may vary based on the presence of
the delimiter, but it cannot exceed the maximum length.

4-100 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

= Ifyou dont specify an ending column number in the POSITION clause, then
the length of the data type is used.

For example, the length of the following data field is 18 characters:
REP_LASTNAME POSITION (4) CHAR(18)

» If you specify starting and ending column numbers in the POSITION clause
and the length of a data type, then the starting and ending column numbers
are used. The length of the data type is ignored. For instance, the length of
the following data field is 15 characters:

REP_LASTNAME POSITION (4:18) CHAR(18)

= If you don't specify an ending column number in the POSITION clause, and
you specify a data type name but not an explicit length, then depending on
the data type either the CREATE TABLE length or the default length of the
loader data type determines the length of the data field. See the data type
specifications to determine when the CREATE TABLE or default length is
used.

For instance, the default length of the INTEGER EXTERNAL loader data
type—which is 11—would determine the length of the following data field:

ORDER_NUM POSITION (4) INT EXTERNAL

The CREATE TABLE length would determine the length of the following data
field if the column data type is CHAR or BINARY:

REP_LASTNAME POSITION (4) CHAR

= If you omit both the POSITION clause and the datatype_spec, the CREATE
TABLE data type determines the data type and length.

Caution: In all cases, if the length of a data field in a datatype_spec is greater

than the length of the data type defined in the CREATE TABLE statement, then
that data field will be trimmed. For example, if a column is defined as CHAR(10)

FileTek MVS Data Loader Utility Manual 4-101

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

in a CREATE TABLE statement, but the length of a data type in a datatype_spec
is 11 characters, then the last character of the data field will not be loaded.

Specifying a character set for an individual data field

For CHAR, CLOB, VARCHAR, and EXTERNAL data fields, you can specify a
character set for an individual data field by using the CHARSET keyword with a
CCSID value in a datatype_spec. This character set overrides the character set in
the CHARACTERSET clause of the LOAD DATA statement and in the CCSID
keyword on the LOAD control statement. Use the CHARSET keyword only when
you want to override one of these character sets or the default character set
(EBCDIC) for an individual data field.

The CCSIDs you can specify with the CHARSET keyword are as follows:

= 500 for EBCDIC
= 819 for 1ISO 8859-1
= 3850 for PC

For CHAR and VARCHAR data fields, you can also specify CCSID 65535 with
the CHARSET keyword. Specifying CCSID 65535 with the CHARSET keyword
for these data fields is a synonym for BINARY and VARBINARY, respectively.
Specifying CCSID 65535 with any of the EXTERNAL data types is invalid.

For example, assume the character set in the CHARACTERSET clause is 819 (1SO
8859-1), but the character set of an ORDER_NUM data field in the input data is

EBCDIC. In the datatype_spec, you would include this CHARSET keyword to
specify a different character set for this data field only:

ORDER_NUM POSITION (1) INT EXTERNAL(4) CHARSET 500

4-102 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

Specifying a delimiter for an individual data field

For CHAR and any of the EXTERNAL data fields, you can you can include a
delimiter_spec in a datatype_spec to:

= Specify a delimiter for an individual data field
= Override the default delimiter in a FIELDS clause for an individual data field
= Supplement the FIELDS clause for a particular data field

See “Generating field_specs, identifying NULL flags, specifying default
delimiters and other defaults” on page 4-50 for the format of the delimiter
specification.

For example, assume that the data fields are terminated. The default delimiter in
the FIELDS clause is a comma, but an INTEGER EXTERNAL column called
TRANSNUMBER is terminated by a colon instead of a comma. In this case, you
would include a delimiter_spec in the datatype_spec to override the default
delimiter in the FIELDS clause. Here’s the FIELDS clause that sets the default
delimiter to a comma:

FIELDS TERMINATED BY ',

Here’s the field_spec that overrides the FIELDS clause for the TRANSNUMBER
column only:

TRANSNUMBER INT EXTERNAL(8) TERMINATED BY "'

Now assume the FIELDS clause is the same (comma as a terminator), but the
TRANSNUMBER data field is also enclosed by double quotes. In this case, the
FIELDS clause would specify the terminator delimiter and the delimiter_spec in
the datatype_spec would specify the enclosure delimiter. Here’s the field_spec
that supplements the FIELDS clause for the TRANSNUMBER column only:

TRANSNUMBER INT EXTERNAL(8) ENCLOSED BY ™

FileTek MVS Data Loader Utility Manual 4-103

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

Specifying a BLOB or CLOB data type

When specifying a BLOB or CLOB data type to describe LOB data fields in the
input data file, note the following guidelines:

= LOB data fields must be specified last in a field specification list of a LOAD
DATA statement.

= Only BLOB and CLOB column (target) data types are valid for the BLOB and
CLOB loader data types.

= LOB data fields must be relatively positioned, that is, POSITION(*).

= The CONTINUEIF and CONCATENATE clauses are supported if LOB data
records are present, but these clauses do not apply to LOB records.

= LOB records are not collected in discard files.

= LOB data fields cannot be sent to multiple output segments, that is you can't
specify a fixed start position with multiple INTO TABLE clauses for different
tables. This also applies to using the same table name with the DIFFERENT

SEGMENT clause. For example, if you have LOB data in the input data file,
you can't specify the following:

LOAD
INTO TABLE table_1 (f1 POSITION(1) char(5), lobcol CLOB(20M))

INTO TABLE table_2 (fAPOSITION(1) char(5), anotherlobcol CLOB(20M)
= You cannot use the NULLIF and DEFAULTIF clauses to specify a condition
for LOB data fields. For instance, you cannot specify the following:

INTO TABLE X
(not_a_lob POSITION(5) CHAR(1),

4-104 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Describing data fields

lobcol CLOB(4M) NULLIF lobcol = "abc',

But you can include a NULLIF or DEFAULTIF clause for a LOB data field if
the condition specifies a non-LOB data field or a NULL flag. For example, you
can specify the following:

INTO TABLE x
(not_a_lob POSITION(5) CHAR(),
lobcol CLOB(4M) NULLIF not_a_lob = 'N',

Loading a column with a null value

You can set a column’s value to a null value by using the NULLIF clause and
specifying a field condition in a field_spec. A column is loaded with a null value
if the condition is true. The column in the user table must be defined as NULL,
otherwise the load operation will fail.

The field condition that you specify with the NULLIF clause is the same as the
field condition described at “Format of WHEN clause” on page 4-43. For clarity,
you can optionally enclose the field condition in parentheses.

Note: The NULLIF clause differs from the TRAILING NULLCOLS clause
described on page 4-59. Use the NULLIF clause to replace the value of a data field
that’s in a logical record. Use the TRAILING NULLCOLS clause when that data
field is missing. A NULLIF clause in a FIELDS clause applies to any data field that
doesn't have its own NULLIF clause in a field_spec.

For example, suppose you want to load a null value into the INITIAL column of a
user table whenever a data field consists of blanks. You could specify the
following field_spec, using the column name and the BLANKS keyword with the
NULLIF clause:

INITIAL POSITION (15) CHAR NULLIF INITIAL=BLANKS

FileTek MVS Data Loader Utility Manual 4-105

FileTek Proprietary and Confidential

4 SYSSQL dataset
Describing data fields

Or you could specify the starting column number and the BLANKS keyword
with the NULLIF clause:

INITIAL POSITION (15) CHAR NULLIF (15)=BLANKS

Setting a column to the default value

When creating a user table, you can optionally define a default value for each
column. If no default value was specified, the default is a null value. A default
value can be:

= A literal—string, numeric, or binary—for a column of like data type

= A null value for a column of any data type

= The current date

= The current time

= The StorHouse account ID used to load the data for CHAR or VARCHAR
columns

The server data loader loads a column’s default value when you use the
DEFAULTIF clause in a FIELDS clause or in a field_spec or when you omit the
field_spec for the data field. A DEFAULTIF clause describes a field condition that
when true, sets the column to the default value. The field condition is the same
as the one described at “Format of WHEN clause” on page 4-43. For clarity, you
can enclose the DEFAULTIF field condition in parentheses.

For example, suppose you want to load a default value into a STATE column
whenever a data field consists of blanks. You could specify the column name and
the BLANKS keyword with the DEFAULTIF clause:

STATE POSITION (20:21) CHAR DEFAULTIF (STATE=BLANKS)

Or you could specify the column numbers and the BLANKS keyword with the
DEFAULTIF clause:

STATE POSITION (20:21) CHAR DEFAULTIF (20:21)=BLANKS

4-106 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Using multiple into_table_specs

Using multiple into_table specs

By using multiple into_table_specs in a LOAD DATA statement, you can:

= Create multiple logical records from one physical record

= Load data from the same input dataset into different user tables

= Load different segments of the same user table or multiple user tables (see
page 4-61)

Creating multiple logical records from one
physical record

You can create multiple logical records from one physical record by using
multiple into_table_specs in a LOAD DATA statement. For instance, suppose you
want to split each physical record into two logical records. Each logical record
will contain a TRANSNUMBER column and an ACCOUNT_NUMBER column.

6/22/1 [1/42/212[3 3099 611190 — physicalrecord
2/350 [4/8831/7 6243 423286
106704 [1/5/2/70/0 27/70/ 9906410
5/59/9 [1/2/5/09/8 [1/5/83 690042

logical record logical record

You could use the following into_table_specs to split each physical record into
two logical records and load them into one user table called
ATM.TRANSACTIONS:

LOAD

INTO TABLE ATM.TRANSACTIONS

(TRANSNUMBER POSITION (1) INT EXTERNAL(4),
ACCOUNT_NUMBER POSITION (6) INT EXTERNAL(6))

FileTek MVS Data Loader Utility Manual 4-107

FileTek Proprietary and Confidential
4 SYSSQL dataset
Using multiple into_table_specs

INTO TABLE ATM.TRANSACTIONS
(TRANSNUMBER POSITION (13) INT EXTERNAL(4),
ACCOUNT_NUMBER POSITION (18) INT EXTERNAL(6));

Using the same input dataset to load multiple
user tables

You can load multiple user tables with the same or different records in an input
dataset by including multiple into_table_specs in one LOAD DATA statement.
For instance, suppose:

= You'e loading data into two user tables: JACK.ORDERS and SUE.ORDERS.
= Input data records contain a field in position 1 called RECORD_CODE.

= You'll load all input data records into Jack’s table.

= You'll load only those records with a RECORD_CODE of B into Sue’s table.

Below are some of the input data records:

Al2isi3iolmeiGlulifriel [[aalelkl L
B/2/3/8 8/clorinflilalkie | | [| [swule[[[

Altjaidiomciculifrel | || dalelk [

B[3/0/9 5[clorinif[1lalke | | [[| [swulel [[

You would use the following LOAD DATA statement to load these two user
tables:

LOAD

INTO TABLE &&0.ORDERS

(ORDER_NUM POSITION (2:5) INT EXTERNAL,
REP_LASTNAME POSITION (6:20) CHAR,
REP_FIRSTNAME POSITION (21:35) CHAR)

4-108 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Example LOAD DATA statements

INTO TABLE &&1.ORDERS
WHEN RECORD_CODE = 'B'
(:RECORD_CODE POSITION (1) CHAR,
ORDER_NUM POSITION (2:5) INT EXTERNAL,
REP_LASTNAME POSITION (6:20) CHAR,
REP_FIRSTNAME POSITION (21:35) CHAR);

Note the following:

Each INTO TABLE clause contains a symbolic variable for the owner name.
In the LOAD control statement, you would supply the following substitution
string in the Pn keyword:

LOAD P0O=JACK P1=SUE

The WHEN clause contains the field name RECORD_CODE. The field_spec
describes the :RECORD_CODE field.

The starting and ending column numbers in the POSITION clauses
determine the lengths of the data fields.

Example LOAD DATA statements

This section contains examples of the LOAD DATA statement.

Example 1 describes how to load all data records into one user table. This
LOAD DATA statement contains one into_table_spec.

Example 2 describes how to combine a fixed number of records and then load
some of them into one user table. This LOAD DATA statement contains a
CONCATENATE clause, one WHEN clause, and one into_table_spec.

Example 3 describes how to load delimited data into two different user tables.

This LOAD DATA statement contains two into_table_specs and two FIELDS
clause.

FileTek MVS Data Loader Utility Manual 4-109

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

= Example 4 explains how to combine a variable number of records and then
load all of them into one user table. This LOAD DATA statement contains the
following clauses and keyword: CONTINUEIF, INTO TABLE, TRAILING
NULLCOLS, and NULLIF.

= Example 5 illustrates how to load SMALLINT, DECIMAL, and VARCHAR
data. This LOAD DATA statement explains how to use relative positioning
and illustrates numeric and variable-length data fields in data records.

= Example 6 describes how to use relative positioning to load delimited data
into multiple user tables. This LOAD DATA statement contains four
into_table specs and three WHEN clauses.

= Example 7 illustrates how to use multiple selection criteria to load specific
records into multiple user tables. This LOAD DATA statement contains three
into_table_specs and three WHEN clauses with the AND and OR keywords.

= Example 8 explains how to replace a segment without loading data. This
LOAD DATA statement contains three INTO TABLE clauses and three
REPLACE SEGMENT clauses.

= Example 9 shows how to include SQL statements in the SYSSQL dataset. This
example includes one CREATE TABLE statement, two CREATE INDEX
statements, and one LOAD DATA statement.

» Example 10 describes how to load two segments of the same user table,
selecting subspaces for each component type. This LOAD DATA statement
contains two into_table_specs, six SUBSPACE number clauses, one DIFF
SEGMENT clause, and two WHEN clauses.

= Example 11shows how to load LOB data fields using a default field list and
specifying the NULLFLAGS keyword.

4-110 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

CREATE TABLE
statement

Data records

LOAD DATA
statement

SYSSQL dataset 4
Example LOAD DATA statements

Example 1: Loading all records into one user
table

Suppose you're loading all data records into a user table called JACK.ORDERS.

CREATE TABLE JACK.ORDERS
(ORDER_NUM SMALLINT NOT NULL,
REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(15) NOT NULL)
TABLE SPACE ORDERS2000

The data is fixed-length format. Each physical record corresponds to a row in the
user table.

283 /9/mic alulifrlel [[[[[[[[afalef] [[1111111
SHHTARNASRANEANNAC OGN ANRANRARN
1/4/3 9Mjc Guli|r| e Jia|c k

3/0/9/5/clolrin|t]11alkle] | [| | [[siulel [[1 11101 [[]

LOAD
INTO TABLE JACK.ORDERS

(ORDER_NUM POSITION (1) INT EXTERNAL(4),
REP_LASTNAME POSITION (5) CHAR(15),
REP_FIRSTNAME POSITION (20) CHAR(15));

In this example:

= ORDER_NUM in the CREATE TABLE statement is SMALLINT, but
ORDER_NUM in the LOAD DATA statement is INT EXTERNAL(4). The
server data loader will convert the input data to SMALLINT.

= Because the position_specs contain the starting column number only, the

datatype_spec determines the length of the data field. For instance, the length
of ORDER_NUM is INT EXTERNAL(4), which has a length of 4 bytes.

FileTek MVS Data Loader Utility Manual 4-111

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

Example 2: Combining a fixed number of
records and loading some of them into one
user table

Assume you're loading data into a user table called SUE.ORDER_DETAILS. Each
pair of physical records must be combined. You'll load only those records that
contain a REP_LASTNAME of Cornflake.

CREATE TABLE =~ CREATE TABLE SUE.ORDER_DETAILS
statement ~ (ORDER_NUM SMALLINT NOT NULL,

REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(10) NOT NULL,
BUYER_LASTNAME CHAR(15) NOT NULL,
BUYER_FIRSTNAME CHAR(10) NOT NULL,
STATE CHAR(2) NOT NULL)
TABLE SPACE ORDERS2000

Datarecords Two physical records make up one logical record.

2/839Meiclulifrie | [[kl [
winlitelel [T L Islainidlyl [L] 11 cla
2/388cCoirinifiliakie | | || suel |||

A DR ehalrfd] N
143 omMeGluiirie | [3aelkl 1]

Blaly iiiginle[[0 1] maurfeleln || [PlA

LOAD DATA LOAD
statement ~ CONCATENATE 2

INTO TABLE SUE.ORDER_DETAILS
WHEN REP_LASTNAME = 'Cornflake’
(ORDER_NUM POSITION (1) INT EXTERNAL(4),
REP_LASTNAME POSITION (5) CHAR(5),
REP_FIRSTNAME POSITION (20) CHAR(10),
BUYER_LASTNAME POSITION (30) CHAR(15),
BUYER_FIRSTNAME POSITION (45) CHAR(10),
STATE POSITION (55) CHAR(2));

4-112 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

CREATE TABLE
statements

Data records

LOAD DATA
statement

SYSSQL dataset 4
Example LOAD DATA statements

Example 3: Loading delimited data into
multiple user tables

Assume you're loading terminated data into two user tables: JACK.ORDERS and
SUE.ORDERS. You'll load all records into both tables.

CREATE TABLE JACK.ORDERS
(ORDER_NUM SMALLINT NOT NULL,
REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(15) NOT NULL)
TABLE SPACE ORDERS2000

CREATE TABLE SUE.ORDERS
(ORDER_NUM SMALLINT NOT NULL,
REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(15) NOT NULL)
TABLE SPACE ORDERS2000

The data fields are terminated by a comma.

2(8/3/9 . McGlulilrie,Jaclk

2.3/8/8 . Clojrinfiljake, /Slue
1/4/3/9 . MclGlulilrie,3aclk
3lo/9]s . (Colrinif[Ilakle, Sule

LOAD
INTO TABLE JACK.ORDERS
FIELDS TERMINATED BY '’
(ORDER_NUM INT EXTERNAL(4),
REP_LASTNAME CHAR(15),
REP_FIRSTNAME CHAR(15))

INTO TABLE SUE.ORDERS
FIELDS TERMINATED BY '’

(ORDER_NUM POSITION(1) INT EXTERNAL(4),
REP_LASTNAME CHAR(15),

REP_FIRSTNAME CHAR(15));

FileTek MVS Data Loader Utility Manual 4-113

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

CREATE TABLE
statement

Data records

logical
record 1

Example 4. Combining a variable number of
records and loading null values

Assume that you're loading all data records into a user table called
SUE.ACCOUNTS.

CREATE TABLE SUE.ACCOUNTS
(ACCOUNT_NUM SMALLINT NOT NULL,
LASTNAME CHAR(15) NOT NULL,
FIRSTNAME CHAR(10) NOT NULL,
INITIAL CHAR(L),

ADDRESS CHAR(20) NOT NULL,

CITY CHAR(8) NOT NULL,

STATE CHAR(2),

FIRST_ORDER DATE,

LAST_ORDER DATE)

TABLE SPACE ORDERS2000

A variable number of physical records make up one logical record. Some data
fields in logical records 1 and 3 contain blanks. Some data fields in logical record
2 are missing.

313/ isinlyldelr] [[[[[Quay [|| |
12135 [Flo[x| [Ho[1[tolw Dir| | | [Flalilr[l awn*
O[H[1[2 /11 0[/[1/9/9/41/0 /[1]2// 1995

logical {EEEEEEEEED]DD]DD]DEEEE@EE]DE

record 2

logical
record 3

Di42] Firlencihition [Pliacle | Delnvielr ||
SRl ol JBlToa T Db FR T
H|i6 2 2 9 Sloju(t hie rn Bl vid Deis t|i n *

FlLlalol /o al/[afefofs [[| [

4-114 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4

LOAD DATA
statement

Example LOAD DATA statements

LOAD
CONTINUEIF (30) =

INTO TABLE SUE.ACCOUNTS

TRAILING NULLCOLS

(ACCOUNT_NUM POSITION (1) INT EXTERNAL(4),
LASTNAME POSITION (5) CHAR(15),

FIRSTNAME POSITION (20) CHAR(10),

INITIAL POSITION (30) CHAR(1) NULLIF INITIAL=BLANKS,
ADDRESS POSITION (31) CHAR(20),

CITY POSITION (51) CHAR(S),

STATE POSITION (59) CHAR(2),

FIRST_ORDER POSITION (61) DATE EXTERNAL(10) NULLIF
FIRST_ORDER=BLANKS,

LAST_ORDER POSITION (71) DATE EXTERNAL(10) NULLIF
LAST_ORDER=BLANKS);

In this example:

= CONTINUEIF THIS is the default, which means that the current physical
record will be combined with the next one.

= The INITIAL data field in logical record 1 is blank; but a null value will be
loaded because the NULLIF condition is true.

» Logical record 2 has three missing data fields—STATE, FIRST_ORDER,
LAST_ORDER—but null values will be loaded because of the TRAILING
NULLCOLS clause.

= The LAST_ORDER data field in logical record 3 is blank; but a null value will
be loaded because the NULLIF condition is true.

FileTek MVS Data Loader Utility Manual 4-115

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

CREATE TABLE
statement

LOAD DATA
statement

Example 5: Loading SMALLINT, DECIMAL,
and VARCHAR data

Suppose you're loading all data records into a user table called
SALES_BY_LOCATION.

CREATE TABLE SALES_BY_LOCATION
(LOCATION_ID SMALLINT,

COST DECIMAL(5,3),

LAST_NAME VARCHAR(64),
FIRST_NAME CHAR(12))

TABLE SPACE FY2000

LOAD DATA
INTO TABLE SALES_BY_LOCATION
(LOCATION_ID POSITION(1) SMALLINT,
COST POSITION(3) DECIMAL(4,2),
LAST_NAME POSITION(6) VARCHAR(60),
FIRST _NAME POSITION(*+2) VARCHAR(12));

Note these differences between the CREATE TABLE statement and the LOAD
DATA statement:

= In CREATE TABLE, COST is data type DECIMAL(5,3).
In LOAD DATA, COST is data type DECIMAL(4,2).

The server data loader will rescale the length of the input data to
DECIMAL(5,3).

= In CREATE TABLE, LAST_NAME is data type VARCHAR(64).
In LOAD DATA, LAST_NAME is data type VARCHAR(60).

A length in a LOAD DATA statement can be less than the length in a CREATE
TABLE statement.

4-116 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential
SYSSQL dataset 4
Example LOAD DATA statements

= In CREATE TABLE, FIRST_NAME is data type CHAR(12).
In LOAD DATA, FIRST_NAME is data type VARCHAR(12).

You can load a VARCHAR data field into a CHAR column as long as the data
field isn't longer than the target column.

Datarecords Data is represented in hex, two digits per column. Character data is represented
in EBCDIC (CCSID 500) coding. For simplicity, only the characters A (x'C1"), b
(x'82"), ¢ (x'83") and D (x'C4") are used. All data fields are small to simplify the

example.
column numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
record 1 ——————0/a[F 2/0/123/4/cl0[0/0 2/c/1/s 2 al0/a0l0[0/0/1[als |
record 2 —————— 0 0/1/20]5/678/c[o[0[0]4[c|4|8|382/8]2 404 0/0[00/2/c/1[C 1
Below are descriptions of the data fields in record 1:
Column/field name Position Input value Loaded value
LOCATION_ID 1and 2 04F2 1266
COST 3 through 5 01234C +12.340
LAST_NAME 6 through 9 0002C182 Ab
* 10 and 11 4040 not loaded

FIRST_NAME 12 through 14 000183 [

FileTek MVS Data Loader Utility Manual 4-117

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

CREATE TABLE
statements

Below are descriptions of the data fields in record 2:

Column/field name Position Input value Loaded value
LOCATION_ID land?2 0012 18

COST 3 through 5 05678 +56.780
LAST_NAME 6 through 11 0004C4838282 Dchb

* 12 and 13 4040 not loaded
FIRST_NAME 14 through 15 0002C1C1 AA

Notice that the cOST columns are rescaled to DECIMAL(5,3). Also notice the
relative positioning of FIRST_NAME. In record 1, LAST_NAME ends in column 9;
therefore, the relative position field * starts in column 10. So *+2 is column 12.
The length field of FIRST_NAME (hex 0001) begins in column 12. In record 2,
LAST_NAME ends in column 11; therefore, the length field of FIRST_NAME (hex
0002) begins in column 14.

Example 6: Using relative positioning to load
delimited data into multiple user tables

Assume you're loading data into two user tables: EMPLOYEE and PROJECT.

CREATE TABLE EMPLOYEE
(EMP_NUM SMALLINT NOT NULL,
EMP_INITIALS CHAR(3) NOT NULL,
DEPT_NUM SMALLINT NOT NULL)
TABLE SPACE EMPLOYEE

CREATE TABLE PROJECT
(EMP_NUM SMALLINT NOT NULL,
PROJ_ID SMALLINT NOT NULL)
TABLE SPACE EMPLOYEE

4-118 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Data records

LOAD DATA
statement

SYSSQL dataset 4
Example LOAD DATA statements

The following example contains four logical data records.

EMP_NUM EMP_NUM EMP_NUM EMP_NUM
EMP_INITIALS PROJ_ID PROJ_ID PROJ_ID
DEPT_NUM

e wre v ||

SO el el AT fler

Y 41 J/ED 0/1 41 9/0/8

vvivialzl kaKl (01 a2 sleal a2 [s[af1l a2 9lalz

In this example:

= Every record contains an employee definition (EMP_NUM, EMP_INITIALS,
and DEPT_NUM).

= Arecord may contain up to three project definitions (EMP_NUM and
PROJ_ID) related to the employee.

= The first three fields contain flags indicating if the associated project
definition is present. So a record with the maximum number of project
definitions starts with YYY.

= A project definition follows the employee definition or the previous project
definition.

» Each data field is terminated by whitespace.

The LOAD DATA statement contains four into_table_specs. The first
into_table_spec loads employee data (EMP_NUM, EMP_INITIALS, and
DEPT_NUM) into the EMPLOYEE table. The remaining into_table_specs load
project data (EMP_NUM and PROJ_ID) into the PROJECT table.

The first into_table_spec contains a fixed-position field_spec (EMP_NUM starts at

POSITION(4)). The remaining into_table_specs don't contain POSITION clauses;
therefore, they are relatively positioned.

FileTek MVS Data Loader Utility Manual 4-119

FileTek Proprietary and Confidential
4 SYSSQL dataset
Example LOAD DATA statements

LOAD

INTO TABLE EMPLOYEE

FIELDS TERMINATED BY WHITESPACE

(EMP_NUM POSITION(4) INTEGER EXTERNAL(2),
EMP_INITIALS CHAR(3),

DEPT_NUM INTEGER EXTERNAL(2))

INTO TABLE PROJECT

WHEN (1:1) ='Y"

FIELDS TERMINATED BY WHITESPACE
(EMP_NUM INTEGER EXTERNAL(2),
PROJ_ID INTEGER EXTERNAL(3))

INTO TABLE PROJECT

WHEN (2:2) ='Y"

FIELDS TERMINATED BY WHITESPACE
(EMP_NUM INTEGER EXTERNAL(2),
PROJ_ID INTEGER EXTERNAL(3))

INTO TABLE PROJECT

WHEN (3:3) ="

FIELDS TERMINATED BY WHITESPACE
(EMP_NUM INTEGER EXTERNAL(2),
PROJ_ID INTEGER EXTERNAL(3));

The server data loader checks each into_table_spec for each logical data record. If
the WHEN clause is true or there is no WHEN clause, data is loaded into the table
named in the INTO TABLE clause. The server data loader then sets the relative
position to the column number that follows the last field. The next selected
into_table_spec will (if relative) start at this position.

So in this example:

1. The server data loader processes the first data record.

a. The server data loader checks the first into_table_spec, which doesn't
contain a WHEN clause. Starting at column 4, the server data loader then

4-120 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Example LOAD DATA statements

loads the EMP_NUM (value of 39), the EMP_INITIALS (value of wTC), and the
DEPT_NUM (value of 12) into the EMPLOYEE table.

b. The server data loader checks the remaining three into_table_specs, whose
WHEN clauses are false (the record doesn't contain the Y flag in at least one of
the first three characters).

. The server data loader then processes the second data record.

a. The server data loader checks the first into_table_spec, which doesn't
contain a WHEN clause. Starting at column 4, the server data loader then
loads the EMP_NUM (value of 40), the EMP_INITIALS (value of SSC), and the
DEPT_NUM (value of 12) into the EMPLOYEE table.

b. The server data loader checks the second into_table_spec, whose WHEN
clause is true. Starting after the last field that was previously loaded (which
was a DEPT_NUM value of 12). the server data loader then loads the
EMP_NUM (value of 40) and the PROJ_ID (value of 944) into the PROJECT
table.

c. The server data loader checks the third and fourth into_table_specs,
whose WHEN clauses are both false.

. The server data loader then processes the third data record.

a. The server data loader checks the first into_table spec, which doesn't
contain a WHEN clause. Starting at column 4, the server data loader then
loads the EMP_NUM (value of 41), the EMP_INITIALS (value of JED), and the
DEPT_NUM (value of 01) into the EMPLOYEE table.

b. The server data loader checks the second into_table_spec, whose WHEN

clause is true. Starting after the last field that was previously loaded (which
was a DEPT_NUM value of 01), the server data loader then loads the

FileTek MVS Data Loader Utility Manual 4-121

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

EMP_NUM (value of 41) and the PROJ_ID (value of 908) into the PROJECT
table.

c. The server data loader checks the third and fourth into_table_specs,
whose WHEN clauses are both false.

4. The server data loader finally processes the fourth record.

a. The server data loader checks the first into_table spec, which doesn't
contain a WHEN clause. Starting at column 4, the server data loader then
loads the EMP_NUM (value of 42), the EMP_INITIALS (value of KAK), and the
DEPT_NUM (value of 01) into the EMPLOYEE table.

b. The server data loader checks the second into_table spec, whose WHEN
clause is true. Starting after the last field that was previously loaded (which
was a DEPT_NUM value of 01), the server data loader then loads the
EMP_NUM (value of 42) and the PROJ_ID (value of 968) into the PROJECT
table.

c. The server data loader checks the third into_table spec, whose WHEN
clause is true. Starting after the last field that was previously loaded (which
was a PROJ_ID value of 968), the server data loader then loads the EMP_NUM
(value of 42) and the PROJ_ID (value of 911) into the PROJECT table.

d. The server data loader checks the fourth into_table_spec, whose WHEN
clause is true. Starting after the last field that was previously loaded (which
was a PROJ_ID value of 911), the server data loader then loads the EMP_NUM
(value of 42) and the PROJ_ID value of 912) into the PROJECT table.

4-122 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

CREATE TABLE
statements

Data records

LOAD DATA
statement

SYSSQL dataset 4
Example LOAD DATA statements

Example 7: Using multiple selection criteria

Assume you're loading data into three user tables: TOLLFREE, TOLLCALL, and
JUSTLOCALS.

CREATE TABLE TOLLFREE
(FROMNUM BINARY(5) NOT NULL,
TONUM BINARY(5) NOT NULL,
ACCOUNT CHAR(12) NOT NULL)
TABLE SPACE MONTHLYCALLS

CREATE TABLE TOLLCALL
(FROMNUM BINARY (5) NOT NULL,
TONUM BINARY(5) NOT NULL,
ACCOUNT CHAR(12) NOT NULL)
TABLE SPACE MONTHLYCALLS

CREATE TABLE JUSTLOCALS
(FROMNUM BINARY (5) NOT NULL,
TONUM BINARY(5) NOT NULL,
ACCOUNT CHAR(12) NOT NULL)
TABLE SPACE MONTHLYCALLS

30155512348005551212accnt1234567
30125110004105554321acct12345679
60755598768881234567acct98765432
30150512346075154321acct76456732

This load data statement contains three into_table_specs. You can use any case
(except in quoted strings). This example illustrates lowercase.

load

into table tollfree

(fromnum position(1) binary external(10),
tonum binary external(10),

account char(12))

when (11:13) ='800' or (11:13) ='888'

FileTek MVS Data Loader Utility Manual 4-123

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

into table tollcall

(fromnum position(1) binary external(10),
tonum binary external(10),

account char(12))

when (11:13) !'='800" and (11:13) !='888"

into table justlocals

(fromnum position(1) binary external(10),

tonum binary external(10),

account char(12))

when ((1:3) ='301' or (1:3) ='410") and ((11:13) ='301"' or (11:13) = '410";

In this example:

= The first into_table_spec specifies that a record containing 800 or 888 in
positions 11 through 13 be loaded into the tolifree table.

= Thesecond into_table spec specifies that a record that does not contain 800 or
888 in positions 11 through 13 be loaded into the tolicall table.

= The third into_table_spec specifies that a record containing either 301 or 410
in positions 1 through 3 and containing either 301 or 410 in positions 11
through 13 be loaded into the justlocals table.

Load results The server data loader would load the following data into the three tables.

Table FROMNUM TONUM ACCOUNT
tollfree 3015551234 8005551212 accnt1234567
6075559876 8881234567 acct98765432
tollcall 3012511000 4105554321 acct12345679
3015051234 6075154321 acct76456732
justlocals 3012511000 4105554321 acct12345679

4-124 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Example LOAD DATA statements

Example 8: Replacing segments without
loading

To replace a segment without loading, you must create a LOAD DATA statement
with the following:

= LOAD keyword
= INTO TABLE clause(s)
= REPLACE clause(s)

Note: When replacing segments without loading data, the SYSREC DD
statement must name an empty dataset. You can use DD* followed by /*.

Assume you need to replace the segments created when the tollfree, tollcall, and
justlocals user tables were loaded with the LOAD DATA statement on page 4-123.
The server data loader created one segment for each user table. The SEGMENT
clause was omitted, so the load 1D is the default segment tag for all segments.
Assume the load 1D was 00343445081.

Note: Because the load ID starts with a digit, you must delimit it with double
guotes on the REPLACE clause.

LOAD DATA load
statement into table tollfree
replace segment "00343445081"

into table tollcall
replace segment "00343445081"

into table justlocals
replace segment "00343445081";

FileTek MVS Data Loader Utility Manual 4-125

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

SYSSQL dataset

Example 9: Including SQL statements in the
SYSSQL dataset

SQL statements in a SYSSQL dataset must precede the LOAD DATA, LOAD
INDEX, or MERGE statement. Each statement must end with a semicolon. For
example, the following SYSSQL dataset contains CREATE TABLE and CREATE
INDEX statements as well as a LOAD DATA statement. A StorHouse engine
executes and commits each SQL statement when it completes.

CREATE TABLE JACK.ORDERS
(ORDER_NUM SMALLINT NOT NULL,
REP_LASTNAME CHAR(15) NOT NULL,
REP_FIRSTNAME CHAR(15) NOT NULL)
TABLE SPACE ORDERS2000;

CREATE HASH INDEX ORDER_IDX
ON JACK.ORDERS
(ORDER_NUM);

CREATE HASH INDEX REP_IDX
ON JACK.ORDERS
(REP_LASTNAME, REP_FIRSTNAME);

LOAD
INTO TABLE JACK.ORDERS

(ORDER_NUM POSITION (1) INT EXTERNAL(4),
REP_LASTNAME POSITION (5) CHAR(15),
REP_FIRSTNAME POSITION (20) CHAR(15));

Example 10: Selecting subspaces for each
component type

Assume you're loading two segments of a user table called
CALLSDBA.BILLSUMMARY.

4-126 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Example LOAD DATA statements

CREATE TABLE The tablespace contains six subspaces, two for each component type.
SPACE
statement CREATE TABLE SPACE BILLING
(SUBSPACE 1 VSET TCAT1 FSET TCAT1 OBJECT_TYPET,
SUBSPACE 2 VSET HCAT1 FSET HCAT1 OBJECT_TYPE H,
SUBSPACE 3 VSET VCAT1 FSET VCAT1 OBJECT_TYPE V,
SUBSPACE 4 VSET TCAT2 FSET TCAT2 OBJECT_TYPE T,
SUBSPACE 5 VSET HCAT2 FSET HCAT2 OBJECT_TYPE H,
SUBSPACE 6 VSET VCAT2 FSET VCAT2 OBJECT_TYPE V)

CREATE TABLE The user table is assigned to the BILLING user tablespace.
statement

CREATE TABLE CALLSDBA.BILLSUMMARY
(BILL_ACCOUNT BINARY(5) NOT NULL,
BILL_DATE DATE NOT NULL,
BILL_CATEGORY CHAR(1) NOT NULL,
NUMBER_CALLS INTEGER)
TABLE SPACE BILLING

CREATE INDEX The indexes are assigned to the same user tablespace (BILLING) as the user table
statements (no TABLE SPACE clause on CREATE INDEX).

CREATE HASH INDEX BILLACCOUNT
ON CALLSDBA.BILLSUMMARY (BILL_ACCOUNT)

CREATE HASH INDEX BILLCATEGORY
ON CALLSDBA.BILLSUMMARY (BILL_CATEGORY)

CREATE VALUE INDEX BILLDATE
ON CALLSDBA.BILLSUMMARY (BILL_DATE)

Data records 301792833901/31/20001004,
703274028301/31/20001002,
703872283901/31/20002001,
301339439201/31/20001003,
301340920301/31/20001002,
703419408301/31/20002003,
703229383901/31/20002001,

FileTek MVS Data Loader Utility Manual 4-127

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

LOAD DATA This LOAD DATA statement creates two table data files, four hash index files, and
statement two value index files. Data records containing a BILL_CATEGORY of 1 are loaded
into the first segment and those containing a BILL_CATEGORY of 2 are loaded
into the second segment.

LOAD

INTO TABLE CALLSDBA.BILLSUMMARY
TABLE SUBSPACE 1

HASH SUBSPACE 2

VALUE SUBSPACE 3

(BILL_ACCOUNT BINARY EXTERNAL(10),
BILL_DATE DATE EXTERNAL(10),
BILL_CATEGORY CHAR(2),
NUMBER_CALLS INT EXTERNAL(3))
WHEN BILL_CATEGORY="1'

INTO TABLE CALLSDBA.BILLSUMMARY

DIFFERENT SEGMENT

TABLE SUBSPACE 4

HASH SUBSPACE 5

VALUE SUBSPACE 6

(BILL_ACCOUNT POSITION(1) BINARY EXTERNAL(10),
BILL_DATE DATE EXTERNAL(10),

BILL_CATEGORY CHAR(2),

NUMBER_CALLS INT EXTERNAL(3))

WHEN BILL_CATEGORY="2',

In this example, the server data loader uses the following subspaces for the first
segment:

= Subspace 1 for the first table data file
= Subspace 2 for the two hash index files
= Subspace 3 for the value index file

4-128 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Load results

CREATE TABLE
statement

SYSSQL dataset 4
Example LOAD DATA statements

The server data loader uses the following subspaces for the second segment:

= Subspace 4 for the table data file
= Subspace 5 for the two hash index files
= Subspace 6 for the value index file

Note: In this example, SUBSPACE ROTATE has the same effect.

The server data loader loads the following data into each segment:

ceament BILL_ BILL_ BILL_ NUMBER_
9 ACCOUNT DATE CATEGORY CALLS

1 3017928339 01/31/2000 1 004
7032740283 01/31/2000 1 002
3013394392 01/31/2000 1 003
3013409203 01/31/2000 1 002

2 7038722839 01/31/2000 2 001
7034194083 01/31/2000 2 003
7032293839 01/31/2000 2 001

Example 11: Loading LOB datafields using a
default field list and NULLFLAGS

This example shows how to load LOB data fields in the input data file using all
the LOAD DATA statement defaults and specifying the NULLFLAGS keyword.

The user table contains two CLOB columns and one CHAR column.
create table insteamlobs

(f1 clob, f2 clob, f3 char(5))
table space sm;

FileTek MVS Data Loader Utility Manual 4-129

FileTek Proprietary and Confidential

4 SYSSQL dataset
Example LOAD DATA statements

Data records

LOAD DATA
statement

The data is in var format. Binary data is displayed in hex and enclosed in
brackets.

[002d]FFFline1[000000000000000f]f1lob1
contents[0000000000000006]f2lob1

[0008]FFTline2

[0008][000000000000000f]

[0006]f1lob2

[0011] contents[0000000000000000]

[001e]TTF [0000000000000000][0000000000000006]f2row3

Note the following:

= The first record contains all of the data to be loaded into the first row of the
table. All values fit within the record.

= The data to be loaded into the second row of the table is spread across four
records. The first record contains the non-LOB field. The second, third, and
fourth records contain a LOB value. The fourth record also contains a
placeholder [0000000000000000] for a NULL value.

= The fifth record contains the data to be loaded into the third row of the table.
Two data fields are NULL. The record contains data (blanks and
[0000000000000000]) as a placeholder for those fields.

The LOAD DATA statement simply contains the FIELDS clause with the
NULLFLAGS keyword.

load data
into table instreamlobs
fields nullflags;

4-130 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset 4
Loading a deferred index

Load results Here’s the content of the loaded table. All blanks indicate NULL data.

instreamlobs table

f1 f2 f3

flloblcontents f2lobl linel

fllob2contents line2
2row3

Loading a deferred index

After creating a deferred index, you can load index entries for some or all of the
segments of the table. You use the LOAD INDEX statement in a SYSSQL dataset
to perform an index load operation. The default is to load all segments, after
which each loaded index is marked as complete or no longer deferred.

Note the following guidelines:

= You can load multiple indexes for the same table in one operation.

= You can specify a range or list of segments to load.

= All metadata inserts and updates are performed after each segment is
processed, rather than when the operation is confirmed.

= Only one LOAD INDEX statement is allowed in a SYSSQL dataset.
= Other non-load statements, such as CREATE INDEX, are allowed in a
SYSSQL dataset but must precede the LOAD INDEX statement. You can use

this feature to create the deferred indexes and then load them.

= You identify segments by segment 1D with the SEGMENTS clause. Segment
IDs are listed in the SYSSTHSEGMENTS system table. If you specify an

FileTek MVS Data Loader Utility Manual 4-131

FileTek Proprietary and Confidential

4 SYSSQL dataset
Loading a deferred index

invalid segment, the data loader ignores it. The SEGMENTS clause applies to
all types of indexes.

= The SUBSPACE ROTATE and SUBSPACE number clauses do not apply to
range indexes.

Format of LOAD INDEX statement

LOAD INDEXI|ES] index_name [,index_name]... [subspace_clause]
[SEGMENTS segment_list]

where subpsace_clause is:

SUBSPACE ROTATE |
[VALUE | HASH] SUBSPACE number

4-132 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Loading a deferred index

Argument Format

index_name (required) Name of the index to be loaded. You can specify
multiple index names to load multiple indexes (for the same
table) in one operation.

SUBSPACE ROTATE (optional) Clause to rotate value indexes or hash indexes
among subspaces.

» This clause is useful only when loading indexes for
multiple segments.

« SUBSPACE ROTATE does not apply to range indexes.

= If you omit this clause and the SUBSPACE number
clause, the server data loader uses the lowest-numbered
subspace for the index type.

SUBSPACE number (optional) Clause to select a specific subspace for the index
type, where number is the subspace number.

= If you omit the VALUE or HASH keyword, the server data
loader uses the same subspace number for both value
and hash indexes.

= If you omit this clause and the SUBSPACE ROTATE
clause, the server data loader uses the lowest-numbered
subspace for the index type.

SEGMENTS segment_list (optional) One or more segment IDs to load indexes for
specific segments. If you omit this clause, the server data
loader creates index entries for all segments of the table
and changes the status of the index from deferred to
complete.

The format of segment_list is:

segment_list_item [, segment_list_item]...
segment_list_item segment_range | segment

segment_range first_segment - last_segment

FileTek MVS Data Loader Utility Manual 4-133

FileTek Proprietary and Confidential
4 SYSSQL dataset
Merging segments of a table

Example LOAD INDEX statements

This section contains example LOAD INDEX statements.

To load index files for the ORDERS2000 index for all segments of the table:

LOAD INDEX ORDERS2000

The data loader uses the lowest-numbered subspace for the index type
because the SUBSPACE number and SUBSPACE ROTATE clauses are omitted.

= To load an index file for the ORDERS2000 index for the first segment of the
table, using subspace 2:

LOAD INDEX ORDERS2000 SEGMENTS 0 SUBSPACE 2

» To load index files for the ORDERS2000 index for a range of segments,
rotating among subspaces that are valid for the index type:

LOAD INDEX ORDERS2000 SEGMENTS 0-5 SUBSPACE ROTATE

= To load index files for the ORDERS2000 and ORDERSDETAIL indexes for all
segments of the table:

LOAD INDEX ORDERS2000, ORDERSDETAIL

Merging segments of a table

You can merge segments in a table by using the MERGE or COAELSCE statement
in a SYSSQL dataset. A merge, or coalesce, operation consolidates a group of
segments into one segment (possibly more) and invalidates the input segments.
You have full control over which segments are grouped, for instance, by specific
segment I1Ds or segment tags or by size criteria. Merging segments enhances

4-134 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Merging segments of a table

performance because it reduces the number of file and extent opens and closes
for a query.

Note the following guidelines:

= LOB subsegment files are not merged. The segment ID in a LOB file name,
then, will be different from the other files in the segment. LOB file names
have the original segment 1D, and the table data file and index files have the
new segment ID.

= The server data loader invalidates input segments after merging them but
does not remove the invalidated segments. See “Replacing a segment” on page
4-66 for more information about invalidated segments.

= The server data loader automatically commits the operation after creating the
result segment. You should still confirm the merge operation to delete the
checkpoint.

Format of MERGE statement

{MERGE | COALESCE} INTO TABLE table_name [subspace_clause]
[SEGMENT segment_tag] [SEGMENTS segment_list]
[EXCLUDE segment_list] [MAXINSIZE n] [MINOUTSIZE n]

Argument Format

table_name (required) Name of the table with the segments to be merged.

SUBSPACE ROTATE (optional) Clause to rotate the components (table data, value
indexes, hash indexes) among subspaces. This clause is
useful for merge operations that produce multiple result
segments. If you omit this clause and the SUBSPACE number
clause, the server data loader uses the lowest-numbered
subspace for the component type.

FileTek MVS Data Loader Utility Manual 4-135

FileTek Proprietary and Confidential

SYSSQL dataset

Merging segments of a table

Argument Format

SUBSPACE number (optional) Clause to select specific subspaces for components
in a result segment, where number is the subspace number.

«» If you omit the TABLE, VALUE, or HASH keyword, the
server data loader uses the same subspace number for all
components.

« If you omit this clause and the SUBSPACE ROTATE clause,
the server data loader uses the lowest-numbered subspace
for the component type.

SEGMENT (optional) Name of the result segment. A segment tag cannot

segment_tag exceed 40 characters and must follow SQL identifier
conventions (see page 4-4) or be quoted. If you omit this
clause, the server data loader uses the load ID as the
segment tag.

SEGMENTS (optional) One or more input segments to be merged. You can

segment_list identify the input segments by segment ID or segment tag. If
you omit this clause, the server data loader considers all
segments in the table. If you specify an invalidated or non-
existent segment, the data loader issues a warning message
but continues the operation.

The format of segment_list is:
IDS segment_list_item [, segment_list_item]... |
TAGS segment_tag [, segment_tag]...

segment_list_item segment_range | segment

segment_range first_segment - last_segment
EXCLUDE (optional) One or more segments to exclude from the merge
segment_list operation. You can identify excluded segments by segment ID

or segment tag. If you omit this clause, the server data loader
includes all segments in the table. The format of the
segment_list is the same as for the SEGMENTS clause.

4-136 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

SYSSQL dataset

Merging segments of a table

Argument Format

MAXINSIZE n (optional) Maximum size of input segments. This clause
excludes segments that are larger than the specified number
of bytes or a number followed by K(x1024), M(xKK), or
G(xKM). If you omit this clause, the server data loader
assumes no size limit on input segments.

MINOUTSIZE n (optional) Minimum size of the result segment. This clause
groups the input list into a result segment that is no smaller
than the specified value. If you omit this clause, the server
data loader assumes no minimum size limit on result
segments.

« If there aren't enough qualifying segments to create a group
of the minimum size, the data loader does not merge them.

= When grouping segments, once the size of the result
segment exceeds this value, the data loader starts to group
segments for another result segment.

= The size (n) is the number of bytes or a number followed by
K(x1024), M(xKK), or G(xKM).

Example MERGE statements

This section contains example MERGE statements.

= To merge all segments of the CALLSDETAIL table into one segment:
MERGE INTO TABLE CALLSDETAIL

= To merge the first five segments of the CALLSDETAIL table into one segment:
MERGE INTO TABLE CALLSDETAIL SEGMENTS IDS 0-4

= To merge all segments of the CALLSDETAIL table except segment ID O:

COALESCE INTO TABLE CALLSDETAIL EXCLUDE IDS 0

FileTek MVS Data Loader Utility Manual 4-137

FileTek Proprietary and Confidential
4 SYSSQL dataset
Merging segments of a table

= To merge all small segments that are less than 100MB of the CALLSDETAIL
table into segments of at least 1GB but ignore segments with the segment tag
late_entries:

MERGE INTO TABLE CALLSDETAIL MAXINSIZE 100M
MINOUTSIZE 1G EXCLUDE TAGS “late_entries”

4-138 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

5

Control statements

This chapter describes the control statements that supply runtime information to
the FileTek MVS Data Loader utility. Topics include:

= Control statement components and syntax

= Valid value types and their definitions

= LOAD control statement and its associated keyword/value pairs
= SMDEF control statement and its associated keyword/value pairs

About loader control statements

The FileTek MVS Data Loader utility reads two control statements from SYSIN
to determine the operating parameters for the current load.

= The LOAD control statement contains information about the operation.

= The SMDEF control statement contains StorHouse information, such as the
account ID used by the client data loader to connect to StorHouse and the
volume set and file set names for the temporary VRAM file used for the data
stream.

You can create these statements as instream data or in a host dataset. Both control
statements are required for data load, index load, and merge operations.

FileTek MVS Data Loader Utility Manual 5-1

FileTek Proprietary and Confidential
5 Control statements
About loader control statements

Statement components

The LOAD and SMDEF control statements consist of two components: a
command verb and a set of keyword/value pairs.

Command verb

A command verb identifies command action. LOAD and SMDEF are the
command verbs. A command verb must appear as the first non-blank string in
the first line of a control statement. It may be preceded by blanks and must be
followed by at least one blank.

Keyword/Value pairs

A keyword/value pair consists of a keyword, followed by an equal sign, followed
by a value. A keyword is a parameter that qualifies the command action according
to the keyword value. An example of a keyword/value pair is CHECKPOINT=50.

Note: No spaces are permitted before or after the equal sign.

If any keyword/value pairs are specified in a control statement, at least one
keyword/value pair must appear in the first statement line. You can specify
multiple keyword/value pairs in one statement by separating the pairs with a
comma.

Each keyword has an associated keyword value type. The format of a value
depends on its keyword value type.

Keyword value types. Keywords can have one of four value types: string,
quoted_string, numeric, and identifier. Command verb syntax descriptions on
page 5-5 and on page 5-10 indicate valid keywords and their value types.

= Astring value can contain any character except a quote (’, the apostrophe), a

comma, or a blank. You can enter characters in uppercase or lowercase letters.
Case is not converted and may therefore be significant.

5-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Control statements 5
About loader control statements

A quoted_string is a string surrounded with single quotes (). A quoted_string
can contain commas and blanks. To embed a quote within a string, use two
consecutive quotes as follows:

'‘Corporate "FINANCIAL" REPORT'

Note: These symbols " are not double quotation marks. They are two single
quotes (') or apostrophes. The enclosing quotes are delimiters; they are not
considered part of the value and do not count as characters in determining
the string length.

If a keyword specifies that a quoted_string value is acceptable, a string value is
also acceptable.

A numeric value contains only digits (characters O - 9). Periods, commas, and
signs are not allowed. The value may not be quoted. A numeric value may be
null, which is the same as specifying zero.

An identifier is a specific word such as YES or DIRECT. Identifiers may not be
quoted. For keywords that have an identifier value type, this manual shows
the valid identifiers rather than the word “identifier.”

If you specify a keyword without a value following the equal sign, then the value
defaults to “null.” For any string-type value, a “null” value is an all-blank string.
For a numeric, a “null” value is the same as specifying zero (digit 0).

Some keywords, such as ACCT (for the StorHouse account 1D), specify values
that have an associated password. You can specify the password by following the
value with a slash and then the password. Any string preceded by a slash is never
displayed in control statement processing listings.

FileTek MVS Data Loader Utility Manual 5-3

FileTek Proprietary and Confidential

5 Control statements
About loader control statements

General control statement syntax rules
The following syntax rules apply:

= You can code a control statement in a single SYSIN line or continue it across
several lines.

= Each SYSIN line is expected to contain 80 characters, but columns 73-80 are
reserved (for a possible sequence number). Information past column 72 is
ignored.

= Any line that begins with an asterisk (*) in column 1 is considered a comment
and is ignored.

= Verbs, keywords, and identifiers are recognized in uppercase, lowercase, or
mixed case; but it is best to enter them as uppercase. No values (quoted or
not) are changed from their entered case.

» Continuation is implied wherever a keyword/value pair is followed by a
comma and a blank. Comments may follow the blank.

Command descriptions for LOAD and SMDEF follow.

5-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Control statements 5

LOAD

LOAD

LOAD specifies information about the operation.

Command syntax

LOAD CCSl D=nurreri c,
CHECKPO NT=nuneri c,
DBNAME=Sst ri ng,

FNPREFI X=stri ng,
FROVDD=st ri ng,

LOADI D_OFFSET=nuneri c,
Pn=stri ng,

SQLDD=stri ng,

SKI P=nuneri c,
TAKE=nuneri c,

TEMP_FI LE=KEEP | DELETE

FileTek MVS Data Loader Utility Manual 5-5

FileTek Proprietary and Confidential

5 Control statements
LOAD

Keyword Definition

CCsSID (optional) Coded Character Set Identifier (from the IBM
Registry) for the input data. This CCSID must be one of the
following:

= 500 (EBCDIC code page)
= 819 (ISO 8859-1 code page)
= 850 (PC code page)

The client data loader does not edit this value. However, the
server data loader terminates the load operation if you specify
an unsupported CCSID.

If you omit CCSID, the default value is 500.

CHECKPOINT (optional) Amount of data, in megabytes, that is transferred to
StorHouse before the client data loader takes a checkpoint. This
value affects a restart during the copy phase of a load. Small
values minimize restart time but maximize checkpoint overhead.
Never set this value larger than the size of one volume surface
in the StorHouse volume set specified by VSET on SMDEF.
Consult the StorHouse system administrator at your site for
more information about StorHouse volume set surface sizes.

= A value of 0 indicates that checkpoints are to be taken every
100 megabytes.

= The maximum CHECKPOINT value is 100.

= If you specify CHECKPOINT on LOAD and SMDEF, the client
data loader uses the smaller of the two values.

= If you omit CHECKPOINT, the default is 100 megabytes.
= You can abbreviate CHECKPOINT as CKPT.

DBNAME (required if omitted on SMDEF) Name of the StorHouse
database. This database name must be in uppercase and
should conform to the rules of your local database. For
instance, a DB2 database name must be uppercase and cannot
exceed 16 characters.

You can supply the DBNAME on either the SMDEF or the LOAD
control statement. If specified on both, the values must match or
the operation fails. In addition, if you omit a DBNAME
specification, the operation fails.

You can abbreviate DBNAME as DBN.

5-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Control statements 5

LOAD

Keyword Definition

FNPREFIX (optional) File name prefix for the temporary StorHouse VRAM
file used by the server data loader. The default value is
STHLDR.TEMPF. Generally, you should use this default.

FROMDD (optional) DDname for the host input dataset. Note the following:
» If you omit FROMDD, the default value is SYSREC.

=« If you specify a DDname other than SYSREC, be sure to
match that DDname on the execution JCL.

« FROMDD should have a null value when you are submitting
SQL statements only (not loading), loading data already on
StorHouse, loading deferred indexes, and merging segments.

If you specify a null value, the client data loader copies no
data and the server data loader executes LOAD INDEX,
MERGE, and SQL statements from the SYSSQL dataset only
or loads data from a VRAM file specified on the INFILE
clause.

LOADID_OFFSET (optional depending on configuration) Number between 1 and
15 that is used to ensure uniqueness of load identifiers when
data loads are run to a single StorHouse from multiple hosts
that are not part of the same SYSPLEX. In this case, you should
assign a different LOADID_OFFSET value to each of the hosts.

= In a single processor or SYSPLEX-connected configuration,
this parameter is not required.

» If you omit LOADID_OFFSET, the default value is 0.
= You can abbreviate LOADID_OFFSET as LOADID.

FileTek MVS Data Loader Utility Manual 5-7

FileTek Proprietary and Confidential

5 Control statements
LOAD

Keyword Definition

Pn (optional) Substitution string that can be used to modify
statements in the host SQL dataset (DDname SYSSQL) when
those statements are copied to StorHouse for execution. Data in
the host dataset is not changed.

Maximum string length is 40 characters. No spaces are
permitted.

Any occurrence of the characters &&n (where n=0 through 8) in
the host SQL dataset are replaced by the substitution string
when a value is specified for Pn. If Pn is not defined, the &&n is
left in the SQL statement.

If you omit Pn, the default is “not specified.” Note that you can
specify Pn with a null value, but that is different from omitting
Pn. A null value for Pn replaces any occurrences of &&n in the
SQL with an empty string.

If you use multiple Pn keywords, separate them with a space.
Example:

= SQL dataset contains: LOAD DATA &&3.&&4

= LOAD contains: P3=MYID P4=JAN94

« Statement sent to StorHouse: LOAD DATA MYID.JAN94

SQLDD (optional) DDname for the host dataset that contains the LOAD
DATA, LOAD INDEX, or MERGE statement. If you omit SQLDD,
the default value is SYSSQL. If you specify a DDname other
than SYSSQL, be sure to match that DDname on the execution
JCL.

SKIP (optional) Number of records in the input dataset that will be
skipped, that is, not loaded. If you omit SKIP, the default number
of records is 0, which indicates that loading begins at the first
record in the input dataset.

5-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Control statements 5

LOAD

Keyword Definition

TAKE (optional) Number of records to be loaded from the input
dataset. The default is “not specified.” All records in the input
(except those skipped because of a non-zero SKIP value) are
loaded.

TEMP_FILE (optional) Disposition of the temporary VRAM file.

=« DELETE indicates the file is deleted when the operation
completes successfully.

= KEEP indicates the file is not deleted.

To reuse this file, you must retain information that correlates the
file name with the name of the user table.

If the operation fails, the VRAM file is always kept to allow a
subsequent restart.

If you omit TEMP_FILE, the default is DELETE.

FileTek MVS Data Loader Utility Manual 5-9

FileTek Proprietary and Confidential

5 Control statements
SMDEF

SMDEF

SMDEF supplies values for StorHouse parameters that are required for the
FileTek MVS Data Loader utility to connect to StorHouse and to write the data
stream to the VRAM file.

For more information about StorHouse concepts such as volume sets, file sets,
vulnerability time factor (VTF), accounts, and groups, refer to the Command
Language Reference Manual and the Concepts and Facilities Manual in the
StorHouse User Document Set.

Command syntax

SMDEF ACCT=stri ng,
DBNAME=st ri ng,
CHECKPO NT=nureri c,
FSET=stri ng,
CGROUP=stri ng,

SM NAME=stri ng,
SUBS=stri ng,
VSET=stri ng,
VTF=string

5-10 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Control statements 5

SMDEF

Keyword Description

ACCT (required) StorHouse account ID and password used by the client
data loader to connect to StorHouse. The maximum length of the
account ID is 12 characters, and the maximum length of the
password is 32 characters. You provide the account ID and
password as follows:

Format: ACCT=string/password_string
Example: ACCT=JACK/DAN987

DBNAME (required if omitted on the LOAD control statement) Name of the
StorHouse database. This database name must be in uppercase
and should conform to the rules of your local database. For
instance, a DB2 database name must be uppercase and cannot
exceed 16 characters.

You can supply the DBNAME on either the SMDEF or the LOAD
control statement. If specified on both, the values must match or
the load operation fails.

You can abbreviate DBNAME as DBN.

CHECKPOINT (optional) Amount of data, in megabytes, that is transferred to
StorHouse before the client data loader takes a checkpoint. This
value affects a restart during the copy phase of a load. Small
values minimize restart time but maximize checkpoint overhead.
Never set this value larger than the size of one volume surface in
the StorHouse volume set specified by VSET. Consult your
StorHouse system administrator for more information about
StorHouse volume set surface sizes.

= A value of 0 indicates that checkpoints are to be taken after
every 100 megabytes.

= The maximum CHECKPOINT value is 100.

» If you specify CHECKPOINT on LOAD and SMDEF, the client
data loader uses the smaller of the two values.

» If you omit CHECKPOINT, the default is 100 megabytes.
= You can abbreviate CHECKPOINT as CKPT.

FSET (optional) Name of the file set to use for the temporary VRAM file
on StorHouse. Maximum FSET name length is 8 characters. If you
omit FSET, the default is the default FSET for the account ID
specified in ACCT.

FileTek MVS Data Loader Utility Manual 5-11

FileTek Proprietary and Confidential

5 Control statements
SMDEF

Keyword Description

GROUP

(optional) Name of the StorHouse file access group to use for the
temporary VRAM file. Maximum GROUP length is 8 characters. If
you omit GROUP, the default is the default GROUP for the
account ID specified in ACCT.

SM_NAME

(optional) StorHouse identifier that is used whenever a StorHouse
session is started. Maximum SM_NAME length is 6. If null, the
default StorHouse name is used. If you omit SM_NAME, the
default is blanks.

SUBS

(optional) StorHouse subsystem name. Maximum subsystem
name length is 4 characters. If you omit SUBS, the default is
blanks.

VSET

(optional) Name of the volume set to use for the temporary VRAM
file. Maximum VSET name length is 8 characters. If you omit
VSET, the default is the default VSET for the account ID specified
in ACCT.

VTF

StorHouse vulnerability time factor (VTF) value that determines
the StorHouse backup priority for the temporary VRAM file. Valid
values are:

« NEXT indicates to back up the temporary VRAM file during the
next scheduled backup.

» DIRECT indicates to bypass the StorHouse performance buffer
and write the temporary VRAM file directly to its resident file set.

» DEFAULT indicates to use the value of the StorHouse VTF
system parameter.

If you are loading small amounts of data, either specify NEXT or
omit VTF. If you are loading large amounts of data, always specify
DIRECT.

If you omit VTF, the StorHouse VTF system parameter value is
used.

5-12 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Chapter

6

Runtime

This chapter explains how to run the FileTek MVS Data Loader utility, including
how to submit, restart, and abort data load, index load, and merge operations.
This chapter also describes:

= What to do before running the FileTek MVS Data Loader utility
= Types of operations

= EXEC statement for the FileTek MVS Data Loader utility JCL

= DD statements

= Return codes

Preparing to run the utility

You can run the FileTek MVS Data Loader utility after:
= Installing it and initializing the checkpoint dataset (DDname CHKPT)

= Creating a sequential dataset (DDname SYSREC) containing the rows of data
to load into one or more StorHouse user tables (for a load operation only)

= Creating a dataset (DDname SYSSQL) with a LOAD DATA, or LOAD INDEX,
or MERGE statement

= Preparing the LOAD and SMDEF control statements instream or in a dataset
(DDname SYSIN)

= Completing the StorHouse tasks described on page 1-7

FileTek MVS Data Loader Utility Manual 6-1

Runtime

FileTek Proprietary and Confidential

Types of operations

Types of operations

You can run the following operations with the FileTek MVS Data Loader utility:

Initialization operation — Described in Chapter 2, “Installation,” you run the
FileTek MVS Data Loader utility as an initialization operation to create a
checkpoint record in the checkpoint dataset. You should run this
initialization operation once.

Data load operation — You typically run a load operation to submit a normal
production load job. The FileTek MVS Data Loader utility checks the
checkpoint dataset first to ensure that the last load operation ended normally.
You can run multiple data load operations concurrently, but each operation
requires its own checkpoint dataset.

Index load operation — This operation builds index entries for deferred
indexes. For an index load, you omit the SYSREC DD statement and specify a
null value for FROMDD on the LOAD control statement.

Merge or replace operation — This operation consolidates existing segments or
invalidates segments. You submit a merge or replace operation just like an
index load operation. A replace operation may also be part of a data load
operation.

Restart operation — If a previous operation ended with a return code greater
than 0, you can run a restart operation to complete the failed job. During a
restart operation, the FileTek MVS Data Loader utility checks the checkpoint
dataset to verify that the last operation ended abnormally and to obtain the
checkpoint value, and then it continues where that operation left off.

Abort operation — If an operation ends with a return code greater than 0, you
can abort the operation to clean up the prior operation. An abort operation
resets the checkpoint value in the checkpoint dataset, resets the checkpoint
status on StorHouse, and for a data load, deletes and removes any segment
files written to StorHouse.

6-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Runtime
EXEC statement

EXEC statement

The EXEC statement of the FileTek MVS Data Loader utility JCL contains:
= The program name (PGM=), which is LDLSLDR

= One of six parameters (PARM=), enclosed in single quotes:

INIT — run an initialization operation, as described in Chapter 2

— LOAD - submit an operation (data load, index load, replace-only, or
merge) and/or a StorHouse SQL statement

— RESTART - restart a failed load operation

— RESTART_IGNORE - force reset the checkpoint record without loading
data

— RESTART_RELOAD - force reset the checkpoint record and reload the
data

— ABORT - terminate an operation
= A recommended region size (REGION=) of 4 megabytes
Below is a sample EXEC statement for submitting a data load operation:
/| STEP EXEC PGMELDLSLDR, PARME' LOAD , REG ON=4M
You can use the following EXEC statement to restart a data load operation:
/| STEP EXEC PGVELDLSLDR, PARME' RESTART' , REG ON=4M
Note: You can provide a substitution string in the PARM and symbolic variables

in the SYSSQL dataset to perform symbolic substitution. See page 4-40 for more
information about symbolic substitution.

FileTek MVS Data Loader Utility Manual 6-3

FileTek Proprietary and Confidential

Runtime

DD statements

DD statements

The JCL for the FileTek MVS Data Loader utility contains the following DD
statements:

DDname Required for Description

STEPLIB All EXEC Refers to the FileTek MVS Data Loader utility load
parameters library (LDLLOAD) and the StorHouse load library
(LSMLOAD). This DD statement is optional if the
load libraries reside in the system LINKLIST.

CHKPT All EXEC Refers to the checkpoint dataset that the client data
parameters loader uses to preserve operation state information.
SYSTERM All EXEC Receives SAS/C error messages. Typically, this DD
parameters statement is directed to a SYSOUT dataset.
SYSPRINT All EXEC Receives run statistics and runtime messages,
parameters including the messages described in Appendix A.
Typically, this DD statement is directed to a SYSOUT
dataset.
SYSERR All EXEC Receives error messages for those jobs with a return
parameters code greater than 0. See Appendix A for descriptions

of these messages.

SYSSQL LOAD and Refers to the dataset that contains the LOAD DATA
RESTART statement and any SQL statements.

SYSREC LOAD and Refers to the input sequential dataset that contains
RESTART the rows of data you are loading into the user table.

This DD statement is optional if the FROMDD
keyword in the LOAD control statement has a value
of null (for index load, merge, and replace
operations)

SYSIN All EXEC Refers to the dataset or the instream data containing
parameters the SMDEF and LOAD control statements. Both
control statements are required.

6-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Runtime

Return codes

Return codes

When an operation completes, the FileTek MVS Data Loader utility issues a
message with one of the following return codes:

Code Description

0 The operation completed successfully.

4 The initialization operation completed; no data was loaded.

8 Error during an operation. Error messages in SYSPRINT and SYSERR
identify the specific failure. Some of the types of errors are as follows:

= Cannot open, read from, or write to datasets
= Ambiguous restart state

= Mismatched checkpoint state

= Invalid SQL statements

= No database name

= Too many database names

= No SMDEF control statement matching a LOAD control statement

12 Error returned by StorHouse. Refer to the StorHouse Messages and Codes
Manual for more information.

16 Error in control statement processing. Error messages in SYSPRINT and
SYSERR identify the specific failure. Some of the types of errors are as
follows:

= The PARM value or syntax is incorrect

» LOADID_OFFSET is incorrect during a restart operation

= The SYSIN does not contain LOAD or SMDEF control statements
= Invalid keyword for a verb

» Checkpoint failures

20 Error in control statements (LOAD and SMDEF) in the SYSIN.

24 Missing DDname SYSERR. Add the DD statement to the JCL and then re-run
the job.

28 Missing DDname SYSPRINT. Add the DD statement to the JCL and then
re-run the job.

FileTek MVS Data Loader Utility Manual 6-5

FileTek Proprietary and Confidential

Runtime
Submitting an operation

Submitting an operation

To submit an operation—data load, index load, merge, or replace—prepare the
JCL and then submit the job.

v To customize the JCL for submitting an operation

1

2.

Complete the JOB statement.

Specify PARM='LOAD' on the EXEC statement.

. At the CHKPT DD statement, provide the name (DSN=) of the checkpoint

dataset.

. At the SYSSQL DD statement, provide the name (DSN=) of the dataset

containing the LOAD DATA, LOAD INDEX, MERGE, and/or SQL
statement(s).

At the SYSREC DD statement, provide the name (DSN=) of the input
sequential dataset containing the data you are loading.

When replacing segments without loading data, the SYSREC DD statement
must name an empty dataset. You can use DD* followed by /*.

Omit the SYSREC DD statement when submitting an index load and merge
operation, or submitting SQL statements only, or if the input data already
resides in a VRAM file on StorHouse. In other words, if the FROMDD
keyword in the LOAD control statement is null, then don't include the
SYSREC DD statement.

Prepare the dataset or instream data with the LOAD and SMDEF control
statements, as described in Chapter 5, “Control statements.”

6-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Runtime

Submitting an operation

Below is sample JCL for submitting a data load operation.

/1 LOAD JOB
/¥
/1* LOAD OPERATI ON
/¥
/1 LOAD EXEC PGVELDLSLDR, PARME' LOAD , REA ON=4M
/¥
/| STEPLI B DD DSN=LDLLQOAD, DI SP=SHR
/1 DD DSN=LSM_QOAD, DI SP=SHR
/ | CHKPT DD DSN=checkpoi nt . dat aset . nane, DI SP=0LD
/| SYSTERM DD SYSQUT=*
/1 SYSPRI NT DD SYSQUT=*
/1 SYSSQL DD DSN=l oad. dat a. dat aset , DI SP=SHR
/| SYSREC DD DSN=i nput . dat aset, DI SP=SHR
/ | SYSERR DD SYSQUT=*
/1 SYSI N Db~
Sample instream —— SMDEF ACCT=account / passwor d,
control DBNAME=dat abase_nane,
statements VSET=vol setid, FSET=fi | eset
LOAD
/ *

FileTek MVS Data Loader Utility Manual 6-7

FileTek Proprietary and Confidential

Runtime

Restarting an operation

The following JCL is an example for an index load operation. The SYSSQL DD
identifies the dataset containing the LOAD INDEX statement, the SYSREC DD is
omitted, and the FROMDD keyword on the LOAD control statement contains a

null value.

/1 LOAD JOB

/1=

/1* 1 NDEX LOAD OPERATI ON

/1=

/1 LOAD EXEC PGVELDLSLDR, PARVE' LOAD , REA ON=4M
/1=

/| STEPLI B DD DSN=LDLLOAD, DI SP=SHR

/1 DD DSN=LSM_OAD, DI SP=SHR

/| CHKPT DD DSN=checkpoi nt. dat aset . nane, DI SP=CLD
[/ SYSTERM DD SYSQUT=*

[/ SYSPRINT DD SYSOQUT=*

/1 SYSSQL DD DSN=l oad. i ndex. dat aset, DI SP=SHR
/I SYSERR DD Ssysout=*

/1 SYSIN DD *

SVDEF ACCT=account / passwor d,
DBNAME=dat abase_nane,
VSET=vol seti d, FSET=fi | eset

LOAD FROVDD=

/*

Restarting an operation

To restart an operation that failed, prepare the JCL and then submit the job.
Typically, you run a restart operation when the original operation fails after you
receive the message LDL757, Beginning Load Operation. If StorHouse is shut down
while any operations are in progress, you can restart or abort the operation after
StorHouse is started. Note the following:

» If the SYSSQL dataset contains a LOAD DATA statement with multiple

into_table_specs or SQL statements, then recovery begins with the statement
after the last successfully executed statement in the prior run.

6-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Runtime
Restarting an operation

If you try to restart an operation but there is no checkpoint for that load ID,
the FileTek MVS Data Loader utility treats the operation like a load instead of
a restart.

You must abort an operation if there are syntax errors in the SYSSQL dataset
or an error occurs when loading LOB data.

When restarting an operation, you can’t change any of the records in the
SYSSQL dataset. For instance, you cant:

— Add or delete records. The SYSSQL dataset must contain the same number
of records as the original operation.

— Change the order of records. They must be in the exact order as the
original operation.

— Change a type of record, for instance, change a CREATE TABLE statement
to a DROP TABLE statement.

If you need to make any of the above changes, then you must abort the
operation.

v To prepare the JCL for restarting an operation

1.

2.

Complete the JOB statement.

Specify the desired PARM value on the EXEC statement. Valid values are:
— PARM='RESTART'

— PARM='RESTART_RELOAD'

— PARM='RESTART_IGNORE'

Use PARM='"RESTART" unless a FileTek MVS Data Loader utility message—
such as LDL778l—specifically tells you to use one of the other values.

Use the same input dataset, LOAD DATA, LOAD INDEX, or MERGE
statement, and control statements as the failed operation. The JCL setup of a

FileTek MVS Data Loader Utility Manual 6-9

FileTek Proprietary and Confidential

Runtime

Aborting an operation

restart operation must match the setup of the original operation. If the JCL
setup does not match, then abort the operation and start over.

Sample JCL for restarting a data load operation follows.

/| RESTART JOB

/1=

//* RESTART A LQAD OPERATI ON

/1=

/1 LOAD EXEC PGVELDLSLDR, PARME' RESTART' , REG ON=4M
/1=

[/ STEPLIB DD DSN=LDLLOAD, DI SP=SHR

I DD DSN=LSM.QAD, DI SP=SHR

/| CHKPT DD DSN=checkpoi nt. dat aset . nane, DI SP=CLD
[/ SYSTERM DD SYSQUT=*

[/ SYSPRINT DD SYSOQUT=*

/1 SYSSQL DD DSN=col umm. defi ni ti on. dat aset, DI SP=SHR
/| SYSREC DD DSN=i nput . dat aset, DI SP=SHR

/I SYSERR DD Ssysout=*

/1 SYSIN DD *

SMVDEF ACCT=account / passwor d,
DBNAME=dat abase_nane,
VSET=vol seti d, FSET=fi | eset

LOAD

/ *

Aborting an operation

Instead of restarting an operation you can abort it. Aborting an operation deletes
all checkpoints and removes any partially written segment files. You must abort
an operation when you need to:

» Fix syntax errors in the SYSSQL dataset

= Change, add, or remove any SQL statements or LOAD DATA, LOAD INDEX,
or MERGE clauses in the SYSSQL dataset

6-10 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Runtime

Aborting an operation

= Add or remove data records from the SYSREC dataset

You must also abort a data load if a segment file exceeded the maximum size or

an error occured when loading LOB data. To abort an operation that ended with

a non-zero return code, prepare the JCL and then submit the job.

To prepare the JCL for aborting an operation

1. Complete the JOB statement.

2. Specify PARM="ABORT" on the EXEC statement.

3. Keep all other DD statements as the previous operation with the exception of
SYSREC and SYSSQL. These DD statements are not required for an abort

operation.

Below is sample JCL for aborting a data load operation.

/| ABORT JOB

[1*

[1* ABORT A LOAD OPERATI ON

[1*

/| LOAD EXEC PGVELDLSLDR, PARMVE' ABORT'
/1=

[/ STEPLIB DD DSN=LDLPLQAD, DI SP=SHR
I DD DSN=LSM.QAD, DI SP=SHR

/| CHKPT DD DSN=check. poi nt. dat aset . nane, DI SP=0LD
[/ SYSTERM DD SYSQUT=*

[/ SYSPRINT DD SYSOQUT=*

/| SYSERR DD sysoUT=*

/1 SYSIN Db *

SMDEF ACCT=account/ password,
DBNAME=dat abase_nane,
VSET=vol setid, FSET=fi | eset

LOAD

/*

FileTek MVS Data Loader Utility Manual 6-11

FileTek Proprietary and Confidential

Runtime
Aborting an operation

6-12 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Messages

LDL680I

LDL681I

This appendix contains FileTek MVS Data Loader utility error, warning, and
informational messages. Messages are listed in sequential order by message
number. Each message entry includes:

= The message number

= The message text (lowercase words indicate message variables)
= A brief explanation of why the utility issued the message

= The system action as a result of the error

= How you should respond to the message

DDNAME ddname: OPEN FAILED

Explanation: An OPEN request failed for the dataset indicated by ddname.
System Action: Terminates the job and exits with a nonzero return code. If the
failing DDname is SYSERR, the return code is 24. If the DDname is SYSPRINT,
the return code is 28. If both of these DD statements are missing, this message
cannot be written and only the return code (28) is available.

User Response: Add the required DD statement to the JCL, then re-run the job.

FILETEK MVS DATA LOADER UTILITY V1R1MO LOAD START DATE yyyy/
mm/dd TIME hh:mm:ss

Explanation: The date and time you ran the operation.

System Action: Starts the operation.

FileTek MVS Data Loader Utility Manual A-1

FileTek Proprietary and Confidential

Messages

LDL682I
User Response: None

LDL682I INPUT DDN=ddname REPOSITIONED: operation type RECORD record
number
Explanation: For a restart operation, the input dataset is positioned to the correct
record, or you specified the SKIP keyword on the LOAD control statement to
bypass input data records.
System Action: None
User Response: None

LDL683I END INPUT REPOSITIONING, ELAPSED TIME=hh:mm:ss
Explanation: The input dataset has been repositioned in the hh:mm:ss indicated.
System Action: None
User Response: None

LDL684I RESTARTING AT SERVER LOAD PHASE
Explanation: The FileTek MVS Data Loader utility is restarting the operation.
The prior load operation terminated while the server data loader was loading the
user table on StorHouse.
System Action: Restarts the server load job.
User Response: None

LDL685I END SERVER LOAD PHASE, ELAPSED TIME=hh:mm:ss

Explanation: The server data loader finished loading the user table on
StorHouse. The hh:mm:ss indicates the duration of the server load phase.

System Action: None

A-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL686I

LDL687I

LDL68SI

Messages A
LDL686I

User Response: None

END DATA COPY PHASE, ELAPSED TIME=hh:mm:ss

Explanation: The client data loader finished copying data from the host to
StorHouse VRAM file. The hh:mm:ss indicates the duration of the copy phase of
the load operation.

System Action: None

User Response: None

INPUT DDN=ddname COPIED RECORD COUNT=number of records
Explanation: The client data loader finished copying the number of records from
the SQL input dataset to the StorHouse VRAM file. The ddname is the value of
the SQLDD keyword of the LOAD control statement.

System Action: None

User Response: None

INVALID SQL STATEMENT

Explanation: The dataset with the LOAD DATA statement (DDname SYSSQL or
other specified DDname for the SQLDD keyword in the LOAD control
statement) contains an SQL statement named BEGINDATA. This record is not a
valid LOAD DATA statement and not a valid StorHouse SQL statement.

System Action: Terminates the operation.

User Response: Remove the SQL statement from the dataset and then re-run the
job.

FileTek MVS Data Loader Utility Manual A-3

Messages

FileTek Proprietary and Confidential

LDL689I

LDL689I

LDL690I

LDL694|

DID NOT DELETE TEMP SM FILE file name

Explanation: The temporary StorHouse VRAM file used to transport SQL and
data to StorHouse for loading has not been deleted. This file is usually deleted
after a load operation completes normally. The file was not deleted because you
specified TEMP_FILE=KEEP on the LOAD control statement.

System Action: None

User Response: None. To make future use of this file, keep a log to correlate the
name of the user table loaded and the StorHouse file name.

END LOAD RUN, MAXIMUM RETURN CODE=return code

Explanation: This message is the last one issued by the FileTek MVS Data Loader
utility; it indicates that the operation has completed. Return codes are:

[| O - OK

= 4 —Warning issued for an initialization operation

= 8- Error in utility control (usually PARM) processing
= 12 — Error returned by StorHouse

= 16 — Error in control statement processing

= 20 - Error in control statements (DDname SYSIN)

= 24 — DDname SYSERR missing

= 28 — DDname SYSPRINT missing

System Action: None

User Response: None if the return code is 0. For non-zero return codes, previous
error messages indicate the processing failures.

MEMORY ALLOCATION FOR storage_type FAILED length

Explanation: The client data loader was unable to allocate virtual memory
because the region size is insufficient.

System Action: Terminates the job.

A-4 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Messages A
LDL698I

User Response: Increase the REGION size on the EXEC statement, then re-run
the job.

LDL698I storHouse message id, storHouse message
Explanation: This message is from StorHouse.
System Action: None

User Response: Refer to the StorHouse Messages and Codes Manual for more
information.

LDL7101 NO CONTROL STATEMENTS IN SYSIN
Explanation: The SYSIN dataset does not contain any control statements. At
least one input record is required for all operations, with the exception of an
initialization operation.
System Action: Terminates the job.

User Response: Ignore this message for an initialization operation. Otherwise,
provide the control statement in the SYSIN and then re-run the job.

LDL711l REQUIRED PARAMETER NOT SPECIFIED

Explanation: A control statement does not contain a keyword/value pair required
by the verb.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct the control statement and then re-run the job.

FileTek MVS Data Loader Utility Manual A-5

Messages

FileTek Proprietary and Confidential

LDL712I

LDL712]

LDL713D

LDL713Q

LDL714l

string NOT A VALID type

Explanation: The string is not a valid identifier for an object. The type may be
VERB, KEYWORD, or VALUE. The control statement may contain a
typographical error.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Verify the syntax and data in the control statement and then re-
run the job.

INVALID LENGTH OR TERMINATION IN DBCS STRING

Explanation: A control statement contains a DBCS string value that is too long
or that does not have the required termination character.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Ensure that DBCS strings are enclosed in SOSI and then re-run
the job.

INVALID LENGTH OR TERMINATION IN QUOTED STRING

Explanation: A control statement contains a quoted string value that is too long
or that does not have the required termination character.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Ensure that a quoted string contains a close quote. Note that two
consecutive quotes count as a single data character that is a quote (apostrophe).

MISSING DELIMITER OR TERM DOES NOT END BEFORE COLUMN 73

Explanation: A control statement does not contain any delineating character
(comma or equal sign).

A-6 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL715I

LDL716l

LDL717I

Messages A
LDL715I

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct any errors in the control statement and then re-run the
job.

NO VERB FOUND IN INPUT STATEMENT

Explanation: A control statement does not contain a valid verb or any verb. Valid
verbs are LOAD, SMDEF, and SHOW. Note that SHOW is not supported in this
release.

System Action:; Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Check the spelling of the command verb on the control
statement. Correct any errors and then re-run the job.

SKIPPING TO NEXT INPUT STATEMENT

Explanation: The client data loader cannot continue scanning the current line
because of errors.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct any errors in the control statement and then re-run the
job.

CANNOT LOCATE NEXT KEYWORD

Explanation: The client data loader cannot locate the next keyword following a
value. A control statement may contain a typographical error.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

FileTek MVS Data Loader Utility Manual A-7

Messages

FileTek Proprietary and Confidential

LDL718lI

LDL718I

LDL719I

LDL720I

User Response: Correct any errors in the control statement and then re-run the
job.

EXPECTED CONTINUATION NOT FOUND

Explanation: A control statement line following a line that indicated
continuation did not begin with a recognized keyword. Any keyword/value pair
that is followed by a comma and a blank indicates continuation.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Check that the last keyword/value pair is correctly terminated in
the control statement. Correct any errors and then re-run the job.

DATASET NAME SYNTAX ERROR
Explanation: A dataset name is invalid.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Review the MVS dataset name requirements. Note that you
cannot enclose dataset names in quotes.

STRING IS TOO LONG

Explanation: A string in a control statement is too long or a control statement
may contain a typographical error.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct any errors in the control statement and then re-run the
job.

A-8 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL721l

LDL722]|

LDL723|

Messages A
LDL7211

Explanation: An integer value field contains a non-digit character in a control
statement, or a control statement contains a typographical error. Note that
numeric values must be decimal and cannot contain commas, decimal points, or
signs.

NON-DIGIT IN INTEGER

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct any errors in the control statement and then re-run the
job.
VALUE TOO LARGE

Explanation: An integer value exceeded the maximum allowed by the associated
keyword, or a control statement contains a typographical error.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct any errors in the control statement and then re-run the
job.

DUPLICATE KEYWORD

Explanation: A keyword appears twice in the same control statement. You cannot
change a value by specifying the keyword twice on the same control statement.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct the error in the control statement and then re-run the
job.

FileTek MVS Data Loader Utility Manual A-9

FileTek Proprietary and Confidential

Messages

LDL725!

LDL725I NULL VALUE NOT ALLOWED
Explanation: A control statement keyword was not followed by a value. The
particular keyword does not allow a null value specification.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct the error in the control statement and then re-run the
job.

LDL726l CONTROL STATEMENT OR PARM ERRORS, RUN TERMINATED
Explanation: The control statement contains syntax errors in the SYSIN or there’s
an error with the PARM. Other messages identify the specific failures; this one
just indicates that no loading is performed.
System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.
User Response: Respond to other messages that identify the specific error(s).
Correct the errors and then re-run the job.

LDL7271 INVALID LOAD/RESTART VALUE IN PARM: parameter

Explanation: The first field of the PARM in the EXEC statement contains a non-
blank value other than one of the following: INIT, LOAD, RESTART,
RESTART_IGNORE, RESTART_RELOAD, or ABORT.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the PARM and then re-run the job. If the PARM contains
a substitution string, the first substitution value must be separated from the next
substitution value by a blank.

A-10 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL728I

LDL730I

LDL731l

Messages A
LDL728I

INVALID SUBSTITUTION STRING IN PARM: invalid string

Explanation: The substitution string in the PARM of the EXEC statement does
not start with the string Pn=, where n is a digit 0-8.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the PARM and then re-run the job. Remember that
substitution values in a substitution string must be separated by a blank.

keyword= CANNOT BE SPECIFIED FOR statement type

Explanation: The listed keyword in the SYSIN is not supported for the type of
control statement—LOAD or SMDEF.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Provide a valid keyword and then re-run the job.

VALUE SPECIFIED FOR PARALLEL IS NOT YES OR NO

Explanation: The value for the keyword PARALLEL is not one of the allowed
values. Possible values are YES or NO. This keyword is not supported in this
release.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Provide a valid value for the keyword PARALLEL and then re-run
the job.

FileTek MVS Data Loader Utility Manual A-11

Messages

FileTek Proprietary and Confidential

LDL732I

LDL732I

LDL733I

LDL734|

VALUE SPECIFIED FOR VTF IS NOT NEXT, NOW, DIRECT, OR DEFAULT
Explanation: The value for the keyword VTF on the SMDEF control statement is
not one of the allowed values. Possible values are NEXT, DIRECT, or DEFAULT
for the value of the StorHouse VTF system parameter.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Provide a valid value for the VTF keyword, then re-run the job.

MULITPLE TAGS SPECIFIED IN ONE SMDEF

Explanation: An SMDEF control statement contains more than one TAG. Only
one TAG is allowed per SMDEF control statement.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the SMDEF control statement and then re-run the job.

KEYWORD INCORRECTLY TERMINATED; USE = SIGN NOT BLANK

Explanation: A control statement contains a keyword followed by a blank rather
than by an equal sign (=). The correct syntax is keyword=value. No blanks are
allowed immediately preceding or following the equal sign.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Remove any blanks before or after the equal sign of the keyword
and then re-run the job.

A-12 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Messages A
LDL735I

Explanation: A control statement begins with a keyword=value pair, not a verb.
The prior line did not indicate continuation.

LDL735I PRIOR STATEMENT DID NOT INDICATE CONTINUATION

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct the error and then re-run the job.

LDL736I VERB INCORRECTLY TERMINATED; USE BLANK NOT = SIGN

Explanation: A control statement begins with a verb followed by an equal sign
(=). The correct syntax is a verb followed by one or more blanks.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct the control statement and then re-run the job.

LDL737I PRIOR STATEMENT MAY ERRONEOUSLY INDICATE CONTINUATION
Explanation: A control statement line begins with a verb, but the prior line
indicated continuation. The control statement may contain a typographical
error.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Correct the error and then re-run the job.

LDL7381 THIS PROGRAM SUPPORTS ONLY LOAD, SMDEF, AND SHOW
REQUESTS

Explanation: The client data loader received a control statement with a verb that

is not supported. The supported verbs are LOAD, SMDEF, and SHOW. The verb
SHOW is not supported in this release.

FileTek MVS Data Loader Utility Manual A-13

Messages

FileTek Proprietary and Confidential

LDL739I

LDL739I

LDL740I

LDL741l

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the verb in the control statement and then re-run the
job.

TOO MANY SMTAG ENTRIES FOR ONE LOAD

Explanation: You specified the SMTAG keyword more than four times on the
LOAD control statement. This control statement can be associated with a
maximum of four SMDEF control statements. Note that the SMTAG keyword is
not supported in this release.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the LOAD control statement and then re-run the job.

VALUE SPECIFIED FOR LIST IS NOT CKPT OR NO

Explanation: The LIST keyword of the SHOW command contains an invalid
value. Possible values are CKPT or NO. Note that the SHOW command is not
supported in this release.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Provide a valid value for the LIST keyword and then re-run the
job.

DUPLICATE TAG ID IN SMDEF

Explanation: The identifier supplied with the TAG keyword on an SMDEF
command duplicates a TAG used by another SMDEF control statement.

A-14 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL742]|

LDL743I

Messages A
LDL7421

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the identifier and then re-run the job.

DUPLICATE SM TAG ID IN LOAD

Explanation: A LOAD control statement contains an SMTAG that has the same
value as a prior tag. One SMDEF cannot be linked to a LOAD multiple times.
This would result in duplicate files under the same group on the same StorHouse
system.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Correct the LOAD control statement SMTAG list and then re-
run the job.

RESTART AT LOAD OPERATION NUMBER=number
SYSIN DOES NOT CONTAIN THAT MANY LOAD STATEMENTS

Explanation: The checkpoint dataset (DDname CHKPT) contains a checkpoint
record that indicates a restart is necessary (prior run failed) and that load
operation number is the restart point. However the current SYSIN dataset does
not contain that number of LOAD control statements.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Restart the job with the same SQL, data, and SYSIN data as the
prior failed run.

FileTek MVS Data Loader Utility Manual A-15

FileTek Proprietary and Confidential

Messages

LDL744I

LDL7441 CANNOT WRITE TO CHECKPOINT DATASET
Explanation: The client data loader encountered an error while writing to the
checkpoint dataset (DDname CHKPT).

System Action: Terminates the job without updating the checkpoint record.
User Response: Repair the checkpoint dataset by running an initialization
operation, and then re-run the job.

LDL745I CANNOT READ FROM CHECKPOINT DATASET
Explanation: The client data loader encountered an error while reading the
checkpoint dataset (DDname CHKPT).

System Action: Terminates the job without updating the checkpoint record.
User Response: Repair the checkpoint dataset by running an initialization
operation, and then re-run the job.

LDL746l DATA IN CHKPT DATASET IS NOT A VALID CHECKPOINT RECORD
Explanation: The checkpoint dataset (DDname CHKPT) contains an invalid
checkpoint record. Probably, the dataset was not initialized.
System Action: Terminates the job without updating the checkpoint record.
User Response: If the dataset has not been initialized, run the FileTek MVS Data
Loader utility with PARM="INIT’. Then re-run the load job.

LDL7471 CHECKPOINT RECORD STATE DICTATES RESTART

Explanation: You ran the FileTek MVS Data Loader utility with PARM=LOAD’,
but the checkpoint record indicates that the prior run failed and the correct
PARM is RESTART.

System Action: Terminates the job without updating the checkpoint record.

A-16 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL748I

LDL749I

LDL750I

Messages A
LDL748I

User Response: If a restart is required, then run the job with PARM="RESTART".
If the prior operation was at a checkpoint but is not to be restarted, run the job
with PARM="ABORT’, then rerun with LOAD. If RESTART or ABORT do not
work, then rebuild the checkpoint with PARM=INIT’ and then re-run the load
with PARM=‘LOAD’".

CHECKPOINT RECORD STATE DOES NOT ALLOW RESTART

Explanation: You ran the FileTek MVS Data Loader utility with
PARM=‘RESTART’, but the checkpoint record indicates that there was no prior
run (record was initialized) or the prior run ended correctly. You cannot run the
job with PARM="RESTART".

System Action: Terminates the job without updating the checkpoint record.

User Response: Change the PARM value to LOAD and then run the job.

LOAD STATEMENT=number LOADID OFFSET=offset value
INCONSISTENT WITH RESTART LOADID=offset value

Explanation: During a restart operation, the checkpoint record indicates that
you ran the LOAD control statement with the specified offset value. However, the
same LOAD control statement in the SYSIN has a different offset value. You
cannot change control statements in SYSIN between the failed run and the restart
run.

System Action: Terminates the job without updating the checkpoint record.

User Response: Correct the control statement and then re-run the job.

CHECKPOINT RECORD INITIALIZED. RETURN CODE FORCED TO 4, NO
DATA LOADING PERFORMED

Explanation: You ran the FileTek MVS Data Loader utility with PARM="INIT".
The checkpoint record has been initialized. However an initialization operation
never loads any data. The return code 4 simply indicates that initialization
operations do not load data.

FileTek MVS Data Loader Utility Manual A-17

FileTek Proprietary and Confidential

Messages

LDL751l
System Action: None
User Response: None

LDL751l SM DEFINITION “tag” ACCEPTED
Explanation: The FileTek MVS Data Loader utility parsed and analyzed the
SMDEF control statement with the specified tag. No errors were found. The
SMDEF control statement can be referenced by a LOAD control statement. If the
tag is blank, then the SMDEF control statement does not contain a tag. This is
acceptable if there is only one SMDEF control statement or if all other SMDEF
control statements specify tag.
System Action: None
User Response: None

LDL7521 OPERATION NUMBER id ASSIGNED TO THIS LOAD REQUEST
Explanation: The FileTek MVS Data Loader utility parsed and analyzed the
LOAD control statement and assigned this id to the load request. No errors were
found.
System Action: None
User Response: None

LDL753I RESTARTING AT OPERATION NUMBER id LOADID=load id phase

Explanation: The FileTek MVS Data Loader utility is restarting the LOAD
command identified by the operation number id with the load id value generated
by the prior failed job. The phase indicates the operation phase at which the load
is being restarted—COPY or SERVER.

System Action: None

User Response: None

A-18 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL754|

LDL755I

LDL756I

Messages A
LDL7541

Explanation: The SYSIN does not contain an SMDEF or LOAD control
statement. To perform a load operation, at least one SMDEF and one LOAD
control statement is required in the SYSIN.

NO command CONTROL STATEMENTS IN SYSIN

System Action: Terminates the job without updating the checkpoint record.

User Response: Correct the SYSIN and then re-run the job.

NO SM DEFINITION WITH TAG=tag

Explanation: A LOAD control statement specified SMTAG=tag, but there is no
SMDEF with that tag.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Verify that you specified the correct tag and then re-run the job.

DBNAME CONFLICT first_dbname second_dbname

Explanation: You used the DBNAME keyword in multiple control statements—
either LOAD and an associated SMDEF—or in multiple SMDEF control
statements associated with the same LOAD. These multiple definitions did not
specify the same database name.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Ensure that all DBNAME keywords are followed by the same
database name, then re-run the job.

FileTek MVS Data Loader Utility Manual A-19

Messages

FileTek Proprietary and Confidential

LDL7571

LDL757I

LDL758I

LDL759I

BEGINNING LOAD OPERATION number LOADID=load id
DBNAME=database name

Explanation: The FileTek MVS Data Loader utility is processing the LOAD
control statement for operation number. The load id and the database name are
informational. Note that the load id is a unique number generated by the FileTek
MVS Data Loader utility for restart purposes.

System Action: Processes the LOAD control statement.

User Response: None

END LOAD OPERATION number RETURN CODE=return code
Explanation: The load operation specified by the LOAD control statement with
operation number has completed with the indicated return code. A non-zero
return code indicates that the load failed, and prior messages describe the failure.
System Action: None

User Response: None, if the return code is zero. Otherwise, correct the problems
described by prior messages.

RETURN CODE-=return code FROM PROCESSING CONTROL
STATEMENTS IN SYSIN

Explanation: The FileTek MVS Data Loader utility parsed and analyzed the
control statements in the SYSIN, which contains errors. The indicated return code
is the highest return code value. Prior messages describe the errors.

System Action: Terminates the job.

User Response: Correct the problems described by prior messages and then re-
run the job. Do not run a restart operation.

A-20 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL760I

LDL761l

LDL762I

Messages A
LDL760I

RETURN CODE=status code FROM STORHOUSE api function
OPERATION

Explanation: A StorHouse operation has failed. The status code is a StorHouse
status code, and the api function is the specific API function called during the
process.

System Action: Terminates the job. The checkpoint record is in the “restart
required” state.

User Response: Refer to the StorHouse Messages and Codes Manual for more

information about the status code. After correcting the StorHouse problem, run
a restart operation (PARM='RESTART").

type STATEMENT, REQUIRED FIELD keyword MISSING

Explanation: A control statement in the SYSIN does not contain a required field.
The type is SMDEF or LOAD. The keyword is the missing keyword.

System Action: Analyzes all input control statements and parameters, but
terminates the job and exits without processing any load requests or updating the
checkpoint record.

User Response: Provide the missing keyword for the appropriate control
statement and then re-run the job.

RETURN CODE-=return code FROM SEQUENTIAL I/O FUNCTION name

Explanation: A read operation to a host dataset has failed with the specified
return code. The name is the IO function performed.

System Action: Terminates the job. If the function is OPEN, the checkpoint
record has not been changed. Otherwise, a restart operation may be required.

User Response: Correct the dataset and restart the job, specifying
PARM="RESTART’ if name is not OPEN.

FileTek MVS Data Loader Utility Manual A-21

Messages

FileTek Proprietary and Confidential

LDL763I

LDL763I

LDL764l

LDL765I

EOF ON DATA INPUT DURING REPOSITIONING

Explanation: The input dataset could not be positioned to the correct record for
a restart operation or as requested by a SKIP keyword. End-of-data was
encountered. For a restart operation, use the same input dataset as the original
job. For a skip request, the count is too high and is past end-of-file.

System Action: Terminates the job without updating the checkpoint record.

User Response: Specify the correct input dataset for a restart, or correct the skip
count.

RETURN STATUS=return code FROM CHECKPOINT WRITE;
ATTEMPTING TO CONTINUE

Explanation: A checkpoint update could not be completed because of a write
error. The client data loader is attempting to continue because all work may be
lost if it terminates. A restart operation may be impossible.

System Action: Attempts to continue processing.

User Response: Repair the checkpoint record by running an initialization
operation after the job completes.

ERROR WRITING TYPE record type RECORD, SM RETURN
CODE=status code

Explanation: An error occurred while writing the data stream to StorHouse. The
record type is the type of record being written—environment, SQL, data
delimiter, or data. The status code is a StorHouse status code.

System Action: Terminates the job. The checkpoint record is in the “restart
required” state.

User Response: Refer to the StorHouse Messages and Codes Manual for more
information about the status code.

A-22 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL766I

LDL767I

LDL768I

LDL770I

Messages A
LDL766I

Explanation: An SQL statement in the dataset associated with DDname SYSSQL
is too long for StorHouse. The maximum size of a StorHouse SQL statement is
5,000 bytes.

SQL STATEMENT IS TOO LONG

System Action: Terminates the job. The checkpoint record is in the “restart
required” state.

User Response: Correct the SQL statement and then restart the job with
PARM="RESTART".

VALUE SPECIFIED FOR TEMP_FILE IS NOT KEEP OR DELETE

Explanation: The TEMP_FILE keyword on the LOAD control statement has a
value other than KEEP or DELETE.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Correct the value for the TEMP_FILE keyword on the LOAD
control statement and then re-run the job.

CHECKPOINT RECORD DUMP FOLLOWS

Explanation: The header for the listing of a checkpoint record contents from the
SHOW command.

System Action: None

User Response: None

DATA COPY PHASE STATISTICS: RECORDS COPIED=number BYTES
TRANSFERRED=number

Explanation: The load operation has successfully copied the indicated number of

records and transferred the specified number of bytes to the VRAM file on
StorHouse.

FileTek MVS Data Loader Utility Manual A-23

Messages

FileTek Proprietary and Confidential

LDL771l

LDL771l

LDL772I

LDL773I

System Action: None

User Response: None

last function PRIOR=previous function STATUS=status code SM
FUNCTION=api function

Explanation: Error logging information produced by StorHouse for error
diagnosis. The last function is the name of support function last called, that is, the
support function that encountered the error. The previous function is the name of
the function that was called prior to the last function. Note that these are support
module functions, not StorHouse/RM API functions. The status code is a
StorHouse status code, and the api function is the name of the StorHouse/RM API
call that produced the error.

System Action: Terminates the job after logging the information.

User Response: Fix the StorHouse problem and then restart the job with
PARM=‘RESTART".

SM_NAME=name SUBSYS_ID=id ACCOUNT=aid GROUP=group name

Explanation: Additional logging information for a StorHouse error. This
message follows message number LDL7711.

System Action: Terminates the job after logging the information.

User Response: Fix the StorHouse problem and then restart the job with PARM=
‘RESTART".

SM FILE ATTRIBUTES: ATF=value VTF=value VSET=name FSET=name

Explanation: Additional logging information for a StorHouse error. This
message follows message number LDL772I.

System Action: Terminates the job after logging the information.

A-24 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL774l

LDL775I

LDL777I

Messages A
LDL7741

User Response: Fix the StorHouse problem and then restart the job with PARM=
‘RESTART".

SM FILE RECORD NUMBER=number FILENAME=file name
Explanation: Continuation of logging info from 771/772/773. This message
may not be produced or it may contain irrelevant information if the failing
operation doesn't involve a StorHouse file operation. Correct but irrelevant
information may be provided if there was a prior StorHouse file operation but
the specific failure was not in a file operation.

System Action: Terminates the job after logging the information.

User Response: Fix the StorHouse problem and then restart the job with PARM=
‘RESTART".

command text

Explanation: Continuation of messages 771-774. If the failing operation was
SM-CMD-INTF, then the command text is the command text sent to StorHouse.

System Action: Terminates the job after logging the information.

User Response: Fix the StorHouse problem and then restart the job with PARM=
‘RESTART".

SM NO-CHECKPOINT RESPONSE; FILE WILL BE RELOADED
Explanation: During a restart operation, the server data loader received a no-
such-checkpoint response from StorHouse. The operation was never started at
StorHouse or RESTART_RELOAD was specified in the PARM.

System Action: Continues the restart operation, assuming that the user table was
not loaded.

User Response: None

FileTek MVS Data Loader Utility Manual A-25

Messages

FileTek Proprietary and Confidential

LDL778I

LDL778I

LDL779I

LDL780I

SM NO-CHECKPOINT RESPONSE; RESTART IS NOT POSSIBLE
Explanation: During a restart operation, the server data loader received a no-
such-checkpoint response from StorHouse. The client data loader does not know
whether the data has or has not been loaded.

System Action: Terminates the job.

User Response: Inspect the user tables to determine the load status. Run an abort
operation or re-initialize the client checkpoint dataset. You may have to re-run

the load after correcting the checkpoint record. Report this failure to the
StorHouse system or database administrator.

RECORD NUMBER OF LAST RECORD COPIED TO SM=record number

Explanation: Message written after 778 to indicate the record number of the last
data record copied to StorHouse.

System Action: None

User Response: Decide whether to use a PARM value of RESTART_IGNORE or
RESTART_RELOAD and then restart the job.

SQL STATEMENT DID NOT END WITH ;

Explanation: An SQL statement in the SYSSQL dataset does not end with a
semicolon. The copy routine reached end-of-file but was still attempting to
collect all of the text for a statement.

System Action: Terminates the job. The checkpoint record is in the “restart
required” state.

User Response: Add a semicolon to the end of the SQL statement(s) in the
SYSSQL dataset and then re-run the job.

A-26 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

LDL8O6I

LDL807I

LDL8O08I

Messages A
LDL806I

Explanation: You specified the value for a keyword as a value list
(keyword=(item_1, item_2,...)). Another open parenthesis was encountered in
the list.

VALUE LIST CANNOT BE NESTED

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Fix the error and then re-run the job.

UNMATCHED RIGHT (CLOSING) PARENTHESIS

Explanation: You specified the value for a keyword as a value list, and the closing
parentheses is missing from that list.

System Action: Continues parsing the next keyword. The job fails when parsing,
control statement analysis, and PARM checking is completed.

User Response: Add the closing parenthesis to the list and then re-run the job.

MISSING RIGHT (CLOSING) PARENTHESIS

Explanation: An unmatched parenthesis was detected.

System Action: Continues parsing the next statement. The job fails when
parsing, control statement analysis, and PARM checking is completed.

User Response: Add the closing parenthesis and then re-run the job.

FileTek MVS Data Loader Utility Manual A-27

FileTek Proprietary and Confidential

A Messages
LDL8o8I

A-28 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

Index

Symbols

() in SQL syntax 4-3, 4-43
... in SQL syntax 4-3

{}in SQL syntax 4-3

| in SQL syntax 4-3

"in SQL syntax 4-3, 4-23

Numerics

500, 819, and 850 code pages 5-6
65535 CCSID 4-102
8859-1 code page 5-6

A

abort operation, description 6-2
ABORT PARM 6-3, 6-11

aborting a load operation 1-37, 6-11

ACCEPT process 2-6

access privileges 1-6

account ID 5-11
as owner name 4-40
for DB2 users 4-40
in SMDEF control statement 5-11
maximum length 4-40

ACCT keyword 5-11
administrator, StorHouse 1-7
ALDLLOAD dataset 2-4
allocating required datasets 2-4

AND keyword
in delimiter specification 4-54

ANSI-format tape 4-28

application program interface (API) 4-12
APPLY process 2-6

ASCII data 4-28

ATF command privilege 1-6

B

BINARY data type 4-84, 4-102
BINARY EXTERNAL data type 4-85

FileTek MVS Data Loader Utility Manual Index-1

FileTek Proprietary and Confidential

Index
C

BLANK keyword 4-55 character set, specifying 4-18

BLANKS keyword character strings 4-2
in CONTINUEIF clause 4-29
in DEFAULTIF clause 4-106 CHAdFZQETﬂEOF;SE_Tlg'a”SG
in WHEN clause 4-44 P
examples 4-19

BLOB data type 4-86 format 4-19
rules 4-18

CHARSET keyword in data type specification 4-102

block requirements 2-4
block sizes for datasets 2-4

. checkpoint dataset
braces in SQL syntax 4-3 building 2-6

brackets in SQL syntax 4-3 DD statement 6-4
DDname 6-1

building the checkpoint dataset 2-6 description 1-36

BY keyword in FIELDS clause 4-54 how it's used 2-6
initializing 2-6
C CHECKPOINT keyword
LOAD control statement 5-6
SMDEF control statement 5-11
case :
column names 4-4, 4-77 checkpoint record 1-36, 5-11
in keywords 5-4 checkpointing
in SYSSQL dataset 4-2 before copy phase 1-35
table names 4-4 during copy phase 1-36
during load phase 1-36
CCSID 65535 as a synonym for BINARY or uring foad phase
VARBINARY 4-102 CHKPT DD statement 6-4
CCSID keyword 5-6 choosing which rows to load
CCSIDs 4-19 format of WHEN clause 4-43

overview 4-42
channel connection 1-3 specifying multiple test values 4-49

. specifying starting and ending columns 4-45
CHAR field_specs 4-58 specifying the starting column 4-45
CHAR keyword 4-54 testing selection criteria for blanks 4-49

using a character string as selection criteria 4-48

CHARACTER data type 4-87 using a column name 4-46
character set names 4-19, 4-20 using a field name 4-47
using a hexadecimal string as selection criteria

Index-2 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

4-48
using AND 4-49
using OR 4-49
using OR and AND 4-50
when using SKIP and TAKE keywords 4-43

CKPT 5-6, 5-11

clauses
CHARACTERSET 4-18
CONCATENATE 4-19
CONSTANT 4-79
CONTINUEIF 4-21
DEFAULTIF 4-106
DIFFERENT SEGMENT 4-61
DISCARDDN 4-14
DISCARDFILE 4-14
DISCARDMAX 4-17
DISCARDS 4-17
EXCLUDE 4-136
FIELDS 4-52
INDDN 4-9
INFILE 4-9
INTO TABLE 4-38
MAXINSIZE 4-137
MINOUTSIZE 4-137
POSITION 4-80
PRESERVE BLANKS 4-30
REPLACE SEGMENT 4-66
SAME SEGMENT 4-61
SEGMENT 4-64, 4-136
SEGMENTS 4-133, 4-136
SEQUENCE 4-78
SUBSPACE number 4-68, 4-133, 4-136
SUBSPACE ROTATE 4-32, 4-133, 4-135
summary of 4-7
TRAILING NULLCOLS 4-59
WHEN 4-42

client data loader 1-3, 4-43

Index
C

client/server 1-1

CLOB data type 4-88

CLUSTER name 2-5

coalesce operation 4-134

code pages 5-6

coded character set identifier (CCSID) 5-6

collecting discarded records
limiting the number of discarded records 4-17
overview 4-14

column default values
account ID 4-106
current date 4-106
current time 4-106
literal 4-106
null value 4-106

column definition in CREATE TABLE 4-98

column name
case 4-4
in field specification 4-76, 4-77
in WHEN clause 4-44

column numbers
in CONTINUEIF clause 4-22
in POSITION clause 4-81

column, definition 3-3

combining a varied number of records
current one with next one 4-23
format of CONTINUEIF 4-21
next one with previous one 4-24
overview 4-21
specifying a comparison value 4-28
specifying the starting and ending column
numbers 4-27
specifying the starting column number 4-26

FileTek MVS Data Loader Utility Manual Index-3

FileTek Proprietary and Confidential

Index
C

using a hexadecimal string 4-28

using a not equal comparison operator 4-30
using blanks 4-29

using last non-blank column 4-25

command privileges 1-6

command syntax
LOAD control statement 5-5
SMDEF control statement 5-10

command verb of a control statement 5-2

commands
CREATE ACCOUNT 1-7
CREATE FILE 1-7
CREATE FSET 1-7
CREATE VSET 1-7
LOAD 5-5
SHOW FILE 4-10
SMDEF 5-10

comments, in SYSSQL dataset 4-2
comparison operators 4-22

comparison value
BLANKS 4-23, 4-29
character 4-23, 4-28
converting 4-30
converting character sets 4-28
definition 3-5
hexadecimal 4-28
hexdigits 4-23
last non-blank column 4-25
padding 4-27
trimming 4-27

CONCATENATE clause
description 4-19
example 4-20
format 4-20

concatenating a fixed number of records

Index-4 FileTek MVS Data Loader Utility Manual

example 4-20
format of CONCATENATE 4-20
overview 4-19

Concepts and Facilities Manual, StorHouse Xvii
concurrency 1-2

condition, field 4-44

conflict of data type lengths 4-100
consolidated software index (CSI) 2-1
CONSTANT clause 4-79

contiguous string in SQL identifiers 4-4

continuation field
definition 3-5
removing from physical records 4-22
specifying a comparison value 4-23, 4-44
specifying the location of 4-27

CONTINUEIF clause
arguments 4-22
description 4-21
examples 4-28
format 4-21
LAST keyword 4-25
NEXT keyword 4-24
THIS keyword 4-23

Control Center, description Xiv

control statement
MERGE 4-9

control statements
command verb 5-2
components 5-2
keyword value type 5-2
keyword/value pairs 5-2
LOAD 5-5
SMDEF 5-10

FileTek Proprietary and Confidential

syntax rules 5-4
types of 5-1

conventions Xvi

conversion
character set 4-48
comparison values 4-28
data type 1-2, 4-98

copy phase of a load operation 1-3
CREATE FILE, StorHouse command 1-7
CREATE FSET, StorHouse command 1-7
CREATE INDEX statement 1-7
CREATE TABLE SPACE statement 1-7
CREATE TABLE statement 1-7

CREATE VSET, StorHouse command 1-7

creating

account I1Ds 1-7

discard files 1-7

file sets 1-7

input datasets 3-1

multiple logical records from one physical record
4-107

user tables 4-1

volume sets 1-7

CSl 2-1, 2-5
CSI CLUSTER 2-5

customizing JCL
abort operation 6-11
installation 2-3, 2-4
load operation 6-6
restart operation 6-9
SMP/E JCL procedure 2-5

Index
D

D

data field
column 3-3
description 3-1
field 3-3
truncation 4-101

data type conversion 4-98

data type specification
providing the length of a data type 4-99
specifying a character set 4-102
specifying a delimiter 4-103

data types
BINARY 4-84
BINARY EXTERNAL 4-85
BLOB 4-86
CHARACTER 4-87
CLOB 4-88
DATE EXTERNAL 4-89
DECIMAL 4-90
DECIMAL EXTERNAL 4-91
DOUBLE 4-91
FLOAT EXTERNAL 4-92
FLOAT or REAL 4-92
INTEGER 4-93
INTEGER EXTERNAL 4-93
SMALLINT 4-94
TIME EXTERNAL 4-94
TIMESTAMP EXTERNAL 4-95
VARBINARY 4-96
VARCHAR 4-97

data types, specific
DATE EXTERNAL 4-99
TIMESTAMP EXTERNAL 4-99

database name 5-6, 5-11

datasets

FileTek MVS Data Loader Utility Manual Index-5

FileTek Proprietary and Confidential

Index
D

ALDLLOAD 2-4
checkpoint 2-6
CHKPT 6-4
LDLLOAD 2-4
LDLS110.F1 2-2
LDLS110.F2 2-2
PROCLIB 2-5
SAMPLES 2-3
SMP/E 2-5
SMPCSI 2-5
SMPMCS 2-2
SMPMTS 2-4
SMPPTS 2-5
SMPSCDS 2-5
SMPSTS 2-5
SYSIN 5-1, 5-4
SYSOUT 6-4
SYSREC 5-7
SYSSQL 4-1, 5-8

DATE EXTERNAL data type 4-89
DBA privilege 1-6
DBN 5-6, 5-11

DBNAME keyword
LOAD control statement 5-6
SMDEF control statement 5-11

DD statements
CHKPT 6-4
STEPLIB 6-4
SYSERR 6-4
SYSIN 6-4
SYSPRINT 6-4
SYSREC 4-9, 6-4
SYSSQL 4-1, 6-4
SYSTERM 6-4

DDDEEF statements 2-5

DDnames

Index-6 FileTek MVS Data Loader Utility Manual

CHKPT 6-1, 6-4
input dataset 5-7
STEPLIB 6-4
SYSERR 6-4
SYSIN 6-4
SYSPRINT 6-4
SYSREC 5-7, 6-4
SYSSQL 5-8, 6-4
SYSTERM 6-4

DECIMAL data type 4-90

DECIMAL EXTERNAL data type 4-91
default code page, EBCDIC 5-6

default lengths of data types 4-101
default StorHouse group 4-13

default subspace 1-12

default value, loading into a table 4-106
DEFAULT, VTF 5-12

DEFAULTIF clause 4-106
DEFAULTIF keyword 4-55

deferred index
definition 1-31
loading 1-31, 4-131

definitions
abort operation 6-2
blanks 3-7
CCSID 5-6
CHARACTERSET clause 4-7
checkpoint 5-6
checkpoint dataset 2-6
checkpoint record 2-6
client data loader 1-3
column (in input data) 3-3
command verb 5-2

FileTek Proprietary and Confidential

comparison value 3-5
CONCATENATE clause 4-7
condition 4-21

CONSTANT keyword 4-8
continuation field 3-5
CONTINUEIF clause 4-7
control file 1-4

copy phase of a load operation 1-3
data field 3-1

data file 1-4

default length 4-101

default subspace 1-12
DEFAULTIF clause 4-8

deferred index 1-31

delimited data 3-6

delimiter 3-6

DIFFERENT SEGMENT clause 4-61
DISCARDDN clause 4-7
discarded records 4-14
DISCARDFILE clause 4-7
DISCARDMAX clause 4-7
DISCARDS clause 4-7

enclosed data 3-7

enclosure delimiters 3-7
EXCLUDE clause 4-136

explicit length 4-99

field (in input data) 3-3

field specification 4-74

FIELDS clause 4-7

FileTek MVS Data Loader utility 1-4
fixed position 4-80

function management ID (FMID) 2-1
host input dataset 3-1

identifier 5-3

implied lengths 4-100

INFILE clause 4-7

initialization operation 6-2

in-line LOB 1-8

input data record 3-1

Index
D

input dataset 3-1

INTO TABLE clause 4-7

keyword 5-2

keyword/value pair 5-2

keyword/value type 5-2

leading blank 3-7

LOAD control statement 5-1

load operation 6-2

load phase of a load operation 1-3

logical record 3-4

MAXINSIZE clause 4-137
MINOUTSIZE clause 4-137

NULLIF clause 4-8

numeric value 5-3

out-of-line LOB 1-8

owner name 4-39

physical record 3-4

POSITION clause 4-8

PRESERVE BLANKS clause 4-7

quoted string 5-3

RECNUM keyword 4-8

relative position 4-80

restart operation 6-2

SAME SEGMENT clause 4-61
SEGMENT clause 4-8

segment tag 4-64

SEGMENTS clause 4-133, 4-136
SEQUENCE clause 4-8

server data loader 1-3

SMDEF control statement 5-1

space 3-7

SQL identifier 4-4
SQL_LDR_ENGINES system parameter 1-32
SQL_LDR_MAXINTO system parameter 4-38
SQL_LDR_MAXLOAD system parameter 1-32
SQL_SESSIONS system parameter 1-32
string value 5-2

subspace 1-11

SUBSPACE number clause 4-68

FileTek MVS Data Loader Utility Manual Index-7

FileTek Proprietary and Confidential

Index
D

SUBSPACE ROTATE clause 4-32
substitution string 4-40

symbolic variable 4-40

SYSDATE keyword 4-8

SYSSQL dataset 4-1

table name 4-39

target data types 4-98

terminated data 3-7

termination delimiter 3-7

trailing blank 3-8

TRAILING NULLCOLS clause 4-7
value 5-2

WHEN clause 4-7

whitespace 3-7

DELETE command privilege 1-6
delimited SQL identifiers 4-4

delimiter specification
AND keyword 4-54
character delimiter 4-54
examples 4-55, 4-56
hexadecimal delimiter 4-54
in a data type specification 4-103
in a FIELDS clause 4-53
WHITESPACE keyword 4-54

describing each column to load
generating a sequence of values 4-78
loading a constant value 4-79
loading a default value 4-106
loading a null value 4-105
loading a record number 4-78
loading the system date 4-79
providing a column name 4-77
providing the data type length 4-99
providing the data type name 4-83
specifying a character set 4-102
specifying a delimiter 4-103
specifying the position 4-80

Index-8 FileTek MVS Data Loader Utility Manual

dialogs, SMP/E 2-5

DIFFERENT SEGMENT clause 4-61
DIRECT, VTF 5-12

discard file, creating 1-7

discarded records
accessing 4-15
collecting 4-14
definition 4-14
limiting the number of 4-17
loading 4-13
overwriting 4-15
when they’re not saved 4-15

DISCARDFILE/DISCARDDN clause
description 4-14
discard file name 4-16
guidelines 4-16
StorHouse group name 4-16

DISCARDS/DISCARDMAX clause
description 4-17
example 4-17
format 4-17
guidelines 4-17

disk space requirements 2-2

disposition
checkpoint dataset 2-7
VRAM file 5-9

distribution tape 2-2
distribution zone load library 2-4
DOUBLE data type 4-91

FileTek Proprietary and Confidential

Index

E

EBCDIC character set 4-19

EBCDIC code page 5-6

ellipsis points in SQL syntax 4-3

empty data field 4-50

EMPTY keyword 4-55

enclosed data 3-7

ENCLOSED keyword in FIELDS clause 4-54
enclosure delimiter 3-7

engine 1-5

E-notation 4-91, 4-92

error messages
in SYSERR 6-5
in SYSPRINT 6-5
list of A-1
runtime 6-4
SAS/C 6-4

error reporting 1-2
ESCON 1-3

examples
CHARACTERSET clause 4-19
CHARSET keyword 4-102
CONCATENATE clause 4-20
CONSTANT clause 4-80
CONTINUEIF clause 4-23, 4-24, 4-25

delimiter specification for a data field 4-105

DIFFERENT SEGMENT clause 4-62
DISCARDS/DISCARDMAX clause 4-17
FIELDS clause 4-55, 4-56, 4-57, 4-58
INFILE clause 4-12

INFILE/INDDN clause 4-12, 4-13, 4-14

INTO TABLE clause 4-39, 4-40
LOAD DATA statement 4-109
LOAD INDEX statement 4-134
MERGE statement 4-137

multiple INTO TABLE specifications 4-107

NULLIF keyword 4-105
POSITION 4-81

PRESERVE BLANKS clause 4-31
RECNUM keyword 4-78

relative positioning 4-118
REPLACE SEGMENT clause 4-68
SAME SEGMENT clause 4-62
SEGMENT clause 4-65
SEQUENCE clause 4-78
SUBSPACE number clause 4-70
SUBSPACE ROTATE clause 4-34
SYSDATE keyword 4-79
TRAILING NULLCOLS clause 4-60
WHEN clause 4-45, 4-46, 4-47

exception processing 1-2
EXCLUDE clause 4-136

EXEC statement
contents 6-3
examples 6-3
PARM 6-3
PGM 6-3
REGION 6-3

executing
SMP/E ACCEPT 2-6
SMP/E APPLY 2-6
SMP/E RECEIVE 2-6

explicit lengths 4-99
extents 1-8

FileTek MVS Data Loader Utility Manual Index-9

E

FileTek Proprietary and Confidential

Index
F

F

features, FileTek MVS Data Loader utility 1-1

field
in input data record 3-3
specification 4-74

field condition 4-44

field name
in field specification 4-76, 4-77
in WHEN clause 4-44

field selection criteria
padding 4-45
specifying multiple test values 4-49
specifying starting and ending columns 4-45
specifying the starting column 4-45
testing for blanks 4-49
trimming 4-46
using a character string 4-48
using a column name 4-46
using a field name 4-47
using a hexadecimal string 4-48
with NULLIF keyword 4-105

field specification
format 4-75
generating data 4-78, 4-79
identifying the position of a data field 4-80
including a delimiter specification 4-103
providing the data type length 4-99
specifying a column name 4-76
specifying a field name 4-76
using the CHARSET keyword 4-102
using the DEFAULTIF clause 4-106
using the NULLIF keyword 4-105

FIELDS clause
AND keyword 4-57
BY keyword 4-54

Index-10 FileTek MVS Data Loader Utility Manual

ENCLOSED keyword 4-54, 4-56
examples 4-56

OPTIONALLY keyword 4-54, 4-57
overview 4-52

TERMINATED keyword 4-55
WHITESPACE keyword 4-56

file access group 5-12

file set name 5-11

file set, VRAM file 1-7

files on the distribution tape 2-2

FileTek MVS Data Loader utility
client component 1-3
control statements 5-1
creating a LOAD DATA statement 4-1
definition 1-4
features 1-1
installing 2-1
return codes 6-5
running 6-1
server component 1-3
what to do before running 1-7, 6-1

FLOAT (REAL) data type 4-92
FLOAT EXTERNAL data type 4-92
FMID 2-1

FNPREFIX keyword 5-7

format conventions 4-3

formats
CHARACTERSET 4-19
CHARACTERSET clause 4-19
CONCATENATE clause 4-20
CONSTANT clause 4-80
CONTINUEIF clause 4-21
datatype_spec 4-84
DEFAULTIF clause 4-106

FileTek Proprietary and Confidential

delimiter_spec 4-53

DIFFERENT SEGMENT clause 4-62
DISCARDFILE/DISCARDDN clause 4-16
DISCARDS/DISCARDMAX clause 4-17

field_spec 4-75

FIELDS clause 4-53

INTO TABLE clause 4-39
LOAD DATA statement 4-5
LOAD INDEX statement 4-132
MERGE statement 4-135
POSITION clause 4-81
RECNUM keyword 4-78
SAME SEGMENT clause 4-62
SEGMENT clause 4-62
SEQUENCE clause 4-78
SUBSPACE number clause 4-69
SUBSPACE ROTATE clause 4-34
SYSDATE keyword 4-79
WHEN clause 4-43

FREE=CLOSE 3-2
FROMDD keyword 5-7
FSET keyword 5-11

fully qualified table name 4-39
function identifier 2-1

function management ID (FMID) 2-1

G

generating a sequence of values 4-78
GET command privilege 1-6
GRANT statement 1-7

GROUP keyword 5-12

group name, StorHouse 4-11

Index
G

group, StorHouse 5-12

H

HASH keyword in SUBSPACE number clause 4-69
hexadecimal strings 4-2

hexdigits
in CONTINUEIF clause 4-23
in WHEN clause 4-44

host input dataset 3-1
host SQL dataset 5-8

IBM Registry 5-6
identifier of a keyword 5-3
identifiers, delimited 4-4

identifying the user table to load
omitting the owner name 4-40
overview 4-38
using a symbolic variable 4-40
using the fully qualified table name 4-39

implied lengths 4-100
in SQL syntax 4-3

index
deferred 1-31
loading 4-131

index load operation 4-131
index name 4-133
INFILE/INDDN clause

FileTek MVS Data Loader Utility Manual Index-11

FileTek Proprietary and Confidential

. -
|

loading data from a host data file 4-14

loading data from a previous load operation 4-11

loading data from a VRAM file 4-12
loading discarded records 4-13
NOENVIRON keyword 4-11, 4-13
obtaining a VRAM file name 4-10
StorHouse file name in 4-11

when to specify a group name 4-12

INIT PARM 6-3
INITCKPT member 2-4
initialization operation, description 6-2
initializing
SMP/E CSI 2-5
the checkpoint dataset 2-6

in-line LOB 1-8
in-line LOBs 4-86, 4-88

input data record
column 3-3
definition 3-1
field 3-3
logical 3-4
physical 3-4
record formats 3-2

input dataset
considerations 3-2
creating 3-1
DDname 5-7
definition 3-1
how to specify for a load 3-2
multiple 3-2
on tape 3-2

INSERT database component privilege 1-6
INSERT privilege on user table 1-7

installation procedure

Index-12 FileTek MVS Data Loader Utility Manual

. load the SAMPLES dataset 2-3

. allocate required datasets 2-4

. customize SMP/E JCL procedure 2-5
. initialize SMP/E CSI 2-5

. execute SMP/E RECEIVE 2-6

. execute SMP/E APPLY 2-6

. execute SMP/E ACCEPT 2-6

8. build the checkpoint dataset 2-6

~NOo O WN B

installing the utility
allocate required datasets 2-4
build the checkpoint dataset 2-6
customize SMP/E JCL procedure 2-5
execute SMP/E ACCEPT 2-6
execute SMP/E APPLY 2-6
execute SMP/E RECEIVE 2-6
initialize SMP/E CSI 2-5
load the SAMPLES dataset 2-3
overview 2-1
software function identifier 2-1
system requirements 2-2

instream dataset 6-4
INTEGER data type 4-93
INTEGER EXTERNAL data type 4-93

INTO TABLE clause
description 4-38
example 4-39
format 4-39
maximum number 4-38
multiple 4-38, 4-39
owner name 4-39
substitution 4-40
table name 4-39

INTO TABLE specification
multiple 4-107
syntax 4-5

ISO 8859-1 character set 4-19

FileTek Proprietary and Confidential

ISO code page 5-6
ISPF 2-5

J

JCL
in the SAMPLES dataset 2-2
sample abort operation 6-11

sample load operation 6-7, 6-8

sample restart operation 6-10

K

keyword value type
definition 5-2
identifier 5-3
numeric 5-3
quoted string value 5-3
string 5-2
keyword/value pairs 5-2
keywords, control statement
ACCT 5-11

CCSID (LOAD) 5-6
CHECKPOINT 5-6

CHECKPOINT (SMDEF) 5-11

DBNAME (LOAD) 5-6
DBNAME (SMDEF) 5-11
FNPREFIX (LOAD) 5-7
FROMDD(LOAD) 5-7
FSET (SMDEF) 5-11
GROUP (SMDEF) 5-12

LOADID_OFFSET (LOAD) 5-7

Pn (LOAD) 5-8
SKIP (LOAD) 5-8
SM_NAME (SMDEF) 5-12

Index
J

SQLDD (LOAD) 5-8
SUBS (SMDEF) 5-12
TAKE (LOAD) 5-9
TEMP_FILE (LOAD) 5-9
VSET (SMDEF) 5-12
VTF (SMDEF) 5-12

keywords, LOAD DATA statement

AND in FIELDS clause 4-54

BLANKS in WHEN clause 4-44

BY in FIELDS clause 4-54

CHAR in FIELDS clause 4-54

CHARSET in data type specification 4-102

CONCATENATE 4-20

CONSTANT 4-79

DEFAULTIF in a field specification 4-106

DEFAULTIF in FIELDS clause 4-55

DIFFERENT SEGMENT 4-62

DISCARDFILE/DISCARDMAX 4-16

DISCARDS/DISCARDMAX 4-17

ENCLOSED in FIELDS clause 4-54

HASH in SUBSPACE number clause 4-69

INFILE/INDDN 4-11

LAST in CONTINUEIF clause 4-22

NEXT in CONTINUEIF clause 4-22

NOENVIRON in INFILE/INDDN clause
4-11

NULLFLAGS in FIELDS clause 4-54

NULLIF in a field specification 4-105

NULLIF in FIELDS clause 4-55

OPTIONALLY in FIELDS clause 4-54

OR in WHEN clause 4-49

PRESERVE BLANKS 4-31

RECNUM 4-78

REPLACE SEGMENT 4-67

SAME SEGMENT 4-61

SEGMENT 4-64

SEQUENCE 4-78

SUBSPACE ROTATE 4-34

SYSDATE 4-79

FileTek MVS Data Loader Utility Manual Index-13

FileTek Proprietary and Confidential

Index

TABLE in SUBSPACE number clause 4-69
TERMINATED in FIELDS clause 4-54

THIS in CONTINUEIF clause 4-22
TRAILING NULLCOLS 4-60

VALUE in SUBSPACE NUMBER clause 4-69
WHEN 4-44

WHITESPACE in FIELDS clause 4-54

keywords, LOAD INDEX statement
SEGMENTS 4-133
SUBSPACE 4-133
SUBSPACE ROTATE 4-133

keywords, MERGE statement
EXCLUDE 4-136
MAXINSIZE 4-137
MINOUTSIZE 4-137
SEGMENT 4-136
SEGMENTS 4-136
SUBSPACE 4-136
SUBSPACE ROTATE 4-135

L

large objects (LOBs)
BLOB data type 4-86
CLOB data type 4-88
in-line 1-8
loading 3-5
out-of-line 1-8
subsegment file 1-8

LAST keyword in CONTINUEIF clause 4-22, 4-25
LDLLOAD dataset 2-4

LDLS110.F1 dataset 2-2

LDLS110.F2 dataset 2-2

LDLSLDR program name 6-3

Index-14 FileTek MVS Data Loader Utility Manual

LDLSLDR utility 2-1

LDRSMPE member 2-4, 2-5

limiting the number of discarded records 4-17
LINKLIST 6-4

LOAD control statement
general
command syntax 5-5
command verb 5-2
keyword value types 5-2
keyword/value pairs 5-2
purpose 5-1
syntax rules 5-4
keywords
CCSID 5-6
CHECKPOINT 5-6
DBNAME 5-6
FNPREFIX 5-7
FROMDD 5-7
LOADID_OFFSET 5-7
Pn 5-8
SKIP 5-8
SQLDD 5-8
TAKE 5-9
TEMP_FILE 5-9

LOAD DATA statement
examples
all records, one user table 4-110
binary and variable-length data 4-116
combining records, null values 4-114
combining records, one user table 4-112
delimited data, multiple user tables 4-113
multiple logical records from one physical record
4-107
multiple selection criteria, data in control file
4-123
same input dataset, multiple user tables 4-108
selecting subspaces 4-126
general
components 4-5

FileTek Proprietary and Confidential

Index

format 4-5
summary of clauses and keywords 4-7

specifications

data_spec 4-76
datatype_spec 4-76, 4-83
delimiter_spec 4-53
field_spec 4-74
into_table_spec 4-39
position_spec 4-76

syntax

CHARACTERSET clause 4-19
CONCATENATE clause 4-20
CONSTANT clause 4-79
CONTINUEIF clause 4-21
DEFAULTIF clause 4-106

DIFFERENT SEGMENT clause 4-61
DISCARDFILE/DISCARDDN clause 4-16
DISCARDS/DISCARDMAX clause 4-17
FIELDS clause 4-53

INFILE/INDDN clause 4-10
POSITION clause 4-81

PRESERVE BLANKS clause 4-31
REPLACE SEGMENT clause 4-67
SAME SEGMENT clause 4-62
SEGMENT clause 4-64

SEQUENCE clause 4-78

SUBSPACE number clause 4-69
SUBSPACE ROTATE clause 4-34
TRAILING NULLCOLS clause 4-60
WHEN clause 4-43

tasks

collecting discarded records 4-14

combining a varied number of records 4-21
concatenating a fixed number of records 4-19
describing data fields 4-74

generating a sequence of values 4-78
identifying the user table 4-38

limiting the number of discarded records 4-17
loading a constant value 4-79

loading a record number 4-78

loading missing data fields with null values 4-59

loading one or more segments 4-61
loading the system date 4-79

naming a segment 4-64

preserving blanks 4-30

rotating among subspaces 4-32

selecting logical records 4-42

selecting subspaces 4-68

setting a column to the default value 4-106
specifying a default delimiter 4-52
specifying the character set 4-18

specifying the position of a data field 4-80

using multiple INTO TABLE specifications
4-107

load 1D 4-64
load index operation 1-31

LOAD INDEX statement
examples 4-134
format 4-132
guidelines 4-131
purpose 4-131

load library 2-2
data loader 6-4
StorHouse 6-4

load operation
copy phase 1-3
description 6-2
load phase 1-3

LOAD PARM 6-3, 6-6

load phase of a load operation 1-3
LOADID 5-7
LOADID_OFFSET keyword 5-7

loading
a column with a null value 4-105
a constant value 4-79
a default value 4-106
a deferred index 4-131
a record number 4-78

FileTek MVS Data Loader Utility Manual Index-15

FileTek Proprietary and Confidential

Index
M

all records into one user table 4-111 SMPALLOC 2-4
data from a host data file 4-14 SMPAPPLY 2-6
data from a previous load 4-11 SMPDDDEF 2-5
delimited data into multiple user tables 4-113 SMPRECYV 2-6
different tables in multiple loads 1-33 SMPUCLIN 2-5
different tables in one load 1-32 SQLSAMP 2-4

discarded records 4-13

multiple segments of a table in one load 1-33 merge operation 1-11, 4-134

multiple segments of multiple tables in multiple MERGE statement
loads 1-34 examples 4-137

multiple segments of multiple tables in one load format 4-135
1-33 guidelines 4-135

multiple table segments 4-61 purpose 4-134

multiple user tables 4-108

null values 4-114. 4-118 merging segments 4-134

SAMPLES dataset during installation 2-3 message numbers
SMALLINT, DECIMAL, and VARCHAR data 6801 A-1
4-116 6811 A-1
some records into one user table 4-112 6821 A-2
the same table in multiple loads 1-34 6831 A-2
the system date 4-79 6841 A-2
6851 A-2
locks 1-35 6861 A-3
logical record 3-4 6871 A-3
. 6881 A-3
lowercase in SQL syntax 4-3 6891 A-d
6901 A-4
M 6941 A-4
6981 A-5
7101 A-5
MAXINSIZE clause 4-137 7111 A-5
member of a partitioned dataset 3-2 ;ig:DAA?G
members, SAMPLES dataset 713Q A-6
INITCKPT 2-7 7141 A-6
LDRSMPE 2-5 7151 A-7
list of 2-4 7161 A-7
RUNLOAD 2-4 7171 A-7
SMPACEPT 2-6 7181 A-8

Index-16 FileTek MVS Data Loader Utility Manual

FileTek Proprietary and Confidential

7191 A-8

7201 A-8

7211 A-9

7221 A-9

7231 A-9

7251 A-10
7261 A-10
7271 A-10
7281 A-11
7301 A-11
7311 A-11
7321 A-12
7331 A-12
7341 A-12
7351 A-13
7361 A-13
7371 A-13
7381 A-13
7391 A-14
7401 A-14
7411 A-14
7421 A-15
7431 A-15
7441 A-16
7451 A-16
7461 A-16
7471 A-16
7481 A-17
7491 A-17
7501 A-17
7511 A-18
7521 A-18
7531 A-18
7541 A-19
7551 A-19
7561 A-19
7571 A-20
7581 A-20
7591 A-20

Index
M

7601 A-21
7611 A-21
7621 A-21
7631 A-22
7641 A-22
7651 A-22
7661 A-23
7671 A-23
7681 A-23
7701 A-23
7711 A-24
7721 A-24
7731 A-24
7741 A-25
7751 A-25
7771 A-25
7781 A-26
7791 A-26
7801 A-26
8061 A-27
8071 A-27
8081 A-27

messages
error 6-4
in SYSERR 6-4
in SYSPRINT 6-4
list of A-1
runtime 6-4
SAS/C 6-4

Messages and Codes Manual, StorHouse Xxvii

metadata updates
data load operation 1-38
load index operation 1-39
merge operation 1-39
replace operation 1-38

MINOUTSIZE clause 4-137

multiple logical records in one physical record 4-107

FileTek MVS Data Loader Utility Manual Index-17

FileTek Proprietary and Confidential

Index
N

N

naming a table segment 4-64

NEXT keyword in CONTINUEIF clause 4-22, 4-
24

NEXT, VTF 5-12

NOENVIRON keyword in INFILE/INDDN clause
4-11

not equal comparison operators 4-30
NOT NULL 4-59
notational conventions xvi

null value
loading a column with (NULLIF keyword)
4-105
loading missing data fields (TRAILING
NULLCOLS clause) 4-59

NULLFLAGS keyword 4-54, 4-58
NULLIF keyword 4-55, 4-105
number, subspace 4-69

numeric value of a keyword 5-3

O

object identifier 4-86, 4-88
OBJECT_TYPE parameter 1-12
OID 4-86, 4-88

omitting the owner name 4-40
operations, types of 6-2

operators, comparison 4-22

Index-18 FileTek MVS Data Loader Utility Manual

OPTIONALLY keyword in FIELDS clause 4-54
OR keyword in WHEN clause 4-49

out-of-line LOB 1-8

out-of-line LOBs 4-86, 4-88

owner name
in REPLACE SEGMENT clause 4-67
length of 4-39
omitting 4-40
specifying 4-39
substituting 4-39
when longer than 12 characters 4-40

P

padding
comparison values 4-27
selection criteria 4-45

parallelism

loading different tables in multiple loads 1-33

loading different tables in one load 1-32

loading multiple segments of a table in one load
1-33

loading multiple segments of multiple tables in
multiple loads 1-34

loading multiple segments of multiple tables in
one load 1-33

loading the same table in multiple loads 1-34

querying a table while it’s being loaded 1-35

system parameters 1-31

parameters, EXEC statement 6-3

PARM
examples
abort operation 6-11
load operation 6-7, 6-8
restart operation 6-10

FileTek Proprietary and Confidential

Index

values
ABORT 6-3, 6-11
INIT 2-7, 6-3
LOAD 6-3, 6-6
RESTART 6-3, 6-9
RESTART_IGNORE 6-3,
RESTART_RELOAD 6-3,

6-9
6-9
partitioned dataset 3-2

password, StorHouse account 1-6, 5-11
PC character set 4-19

PC code page 5-6

PDS 3-2

performance buffer 5-12

PGM 6-3

phases of a load operation
copy 1-3
load 1-3

physical record 3-4
Pn keyword 5-8

POSITION clause
arguments 4-81
description 4-80
examples 4-81
format 4-81

prefix, VRAM file name 5-7
preparing input 1-4
preparing to run the utility 6-1

PRESERVE BLANKS clause
example 4-31
format 4-31

privileges for loading 1-6, 4-40

PROCLIB dataset 2-5
PUT command privilege 1-6

Q

quick reference xvii
quoted string of a keyword 5-3
quoted strings 4-2

quotes
in character strings 4-2
in control statement keywords 5-3
in delimited SQL identifiers 4-4
in hexadecimal strings 4-2
in PARM 6-3

R

RECEIVE process 2-6
RECNUM keyword 4-78
RECORD command privilege 1-6

record formats of input data records 1-2, 3-2

region size 6-3

relative positioning 4-118
REPLACE SEGMENT clause 4-67
replacing a segment 4-66

reserved words 4-4

RESOURCE privilege 1-6

restart operation, description 6-2
RESTART PARM 6-3, 6-9

FileTek MVS Data Loader Utility Manual Index-19

FileTek Proprietary and Confidential

Index
S

RESTART_IGNORE PARM 6-3, 6-9
RESTART_RELOAD PARM 6-3, 6-9
restarting a load operation 1-37, 6-8
return codes 6-5

rotating among subspaces 1-24, 4-32
run statistics 6-4

RUNLOAD member 2-4

running the utility
aborting a load operation 6-11
DD statements 6-4
EXEC statement 6-3
restarting a load operation 6-8
return codes 6-5
sample abort JCL 6-11
sample load JCL 6-7, 6-8
sample restart JCL 6-10
submitting a load operation 6-6
types of operations 6-2
what to do before 6-1

runtime information 5-1

runtime messages 6-4

S

SAME SEGMENT clause 4-61

sample JCL
abort operation 6-11
installation 2-2
load operation 6-7, 6-8
restart operation 6-10

SAMPLES dataset 2-2
INITCKPT member 2-7

Index-20 FileTek MVS Data Loader Utility Manual

LDRSMPE member 2-5
list of members 2-4
SMPACEPT member 2-6
SMPALLOC member 2-4
SMPAPPLY member 2-6
SMPDDDEF member 2-5
SMPRECYV 2-6
SMPUCLIN member 2-5
SQLSAMP member 2-4
unloading 2-3

SAS/C error messages 6-4
SEGMENT clause 4-64, 4-136
segment ID 1-38

segment list 4-133

segment tag 4-64, 4-67
segmentation 1-8

segments
description 1-8
loading multiple 4-61
merging 4-134
naming 4-64
replacing 4-66
size of 1-10

SEGMENTS clause 4-133, 4-136

SELECT statement 4-1
selecting subspaces 1-16, 4-68
SEQUENCE clause 4-78
sequential dataset 3-2, 6-4
server data loader 1-3, 4-43

SETGROUP command privilege 1-6

shared lock 1-35

FileTek Proprietary and Confidential

Index
S

short record 4-59 processes
ACCEPT 2-6
SHOW FILE, StorHouse command 4-10 APPLY 2-6
shutdown, restart after 6-8 RECEIVE 2-6
sizes, segment 1-10 SMPACEPT member 2-4, 2-6
SKIP keyword 4-43, 5-8 SMPALLOC member 2-4
skipping input data records 5-8 SMPAPPLY member 2-4, 2-6
SM_NAME keyword 5-12 SMPCSI dataset 2-5
SMALLINT data type 4-94 SMPDDDEF member 2-4, 2-5
SMALLINT in VARCHAR data fields 3-5 SMPMCS dataset 2-2
SMDEF control statement SMPMTS dataset 2-4
general SMPPTS dataset 2-5
command syntax 5-10
command verb 5-2 SMPRECYV member 2-4, 2-6

keyword value types 5-2

keyword/value pairs 5-2 SMPSCDS dataset 2-5

purpose 9-1 SMPSTS dataset 2-5
syntax rules 5-4
keywords SMPUCLIN member 2-4, 2-5

APECRPOINT 5-11 software

DBENAME 5-11 function identifier 2-1
release number 2-1

FSET 5-11 ’ 21

GROUP 5-12 version number 2-

SM_NAME 5-12 spaces in SYSSQL dataset 4-2

SUBS 5-12

VSET 5-12 specifying a default delimiter

VTF 5-12 describing data fields enclosed by different

delimiters 4-57

SMP processing 2-4 describing data fields enclosed by the same

SMP/E delimiter 4-56
general describing data fields terminated by blanks 4-56
CSI 2-5 describing data fields terminated with a character
DDDEF statements 2-5 4-55
description 2-1 describing data fields that are both terminated
dialogs 2-5 and enclosed 4-57

JCL procedure 2-5

overview 4-52
required datasets 2-5

FileTek MVS Data Loader Utility Manual Index-21

FileTek Proprietary and Confidential

Index
S

specifying keyword values
identifier 5-3
null 5-3
numeric value 5-3
quoted string 5-3
string 5-2

specifying the character set of the input data
overview 4-18
with the CCSID keyword 5-6
with the CHARACTERSET clause 4-19
with the CHARSET keyword 4-102

SQL
format conventions 4-3
host dataset 5-8
identifiers 4-4
in SYSSQL 4-1
reserved words 4-4

SQL statements
CREATE INDEX 1-7, 4-127
CREATE TABLE 1-7, 4-127
CREATE TABLE SPACE 1-7, 4-127
GRANT 1-7
SELECT 4-1

SQL syntax
braces { } 4-3
commas , 4-3
ellipsis points ... 4-3
lowercase terms 4-3
semicolon 4-2
single quotes ’ 4-28
uppercase terms 4-3
vertical bar | 4-3

SQL_LDR_ENGINES system parameter 1-32

SQL_LDR_MAXINTO system parameter 1-32,

4-38, 4-61

SQL_LDR_MAXLOAD system parameter 1-32

Index-22 FileTek MVS Data Loader Utility Manual

SQL_SESSIONS system parameter 1-32
SQLCOMMAND access privilege 1-6
SQLDD keyword 5-8

SQLEXECUTE access privilege 1-6
SQLSAMP member 2-4

STEPLIB DD statement 6-4
STHLDR.TEMPF 5-7

StorHouse 1-1, 3-1
account ID 5-11
group 5-12
group name 4-11, 4-16
identifier 5-12
password 5-11
privileges 1-6
product description Xiii
subsystem name 5-12
system parameters 1-32

StorHouse Database Administration Guide Xvi

StorHouse documentation
Concepts and Facilities Manual xvii
Messages and Codes Manual Xvii

StorHouse system administrator 1-7
StorHouse/RM Concepts Xvi
StorHouse/RM, description Xiv
StorHouse/SM, description Xiii
string value of a keyword 5-2
strings 4-2

submitting
a load operation 6-6
SQL statements 4-1

SUBS keyword 5-12

FileTek Proprietary and Confidential

Index

SUBSPACE 4-34

SUBSPACE number clause
description 4-68, 4-133, 4-136
examples 4-70
format 4-69

SUBSPACE ROTATE clause
description 1-24, 4-32, 4-133, 4-135
examples 4-34
format 4-34

subspaces
default 1-12
definition 1-11
number 4-69
rotating among 1-24, 4-32, 4-133, 4-135
selecting 1-16, 4-68

substituting
both owner and table names 4-41
owner name 4-40
part of a table name 4-41

substitution string 4-40, 5-8
symbolic variable 4-40

syntax
CHARACTERSET clause 4-19
CONCATENATE clause 4-20
CONSTANT clause 4-80
CONTINUEIF clause 4-21
datatype_spec 4-84
DEFAULTIF clause 4-106
delimiter_spec 4-53
DIFFERENT SEGMENT clause 4-62
DISCARDFILE/DISCARDDN clause 4-16
DISCARDS/DISCARDMAX clause 4-17
FIELDS clause 4-53
INTO TABLE clause 4-39
LOAD control statement 5-5
LOAD DATA statement 4-5

LOAD INDEX statement 4-132
MERGE statement 4-135
POSITION clause 4-81
PRESERVE BLANKS clause 4-31
RECNUM keyword 4-78
REPLACE SEGMENT clause 4-67
SAME SEGMENT clause 4-62
SEQUENCE clause 4-78

SMDEF control statement 5-10
SQL statements 4-3

SUBSPACE number clause 4-69
SUBSPACE ROTATE clause 4-34
SYSDATE keyword 4-79

SYSIN 5-4

TRAILING NULLCOLS clause 4-60
WHEN clause 4-43

SYSDATE keyword 4-79

SYSERR DD statement 6-4

SYSIN dataset 5-4

SYSIN DD statement 6-4
SYSINDEXES system table 1-39
SYSOUT dataset 6-4

SYSPLEX 5-7

SYSPRINT DD statement 6-4
SYSREC dataset 5-7

SYSREC DD statement 6-4

SYSSQL dataset 4-1, 4-2, 5-8

SYSSQL DD statement 6-4
SYSSTHFILES system table 1-38, 1-39
SYSSTHSEGMENTS system table 1-38
SYSTABLES system table 1-38

FileTek MVS Data Loader Utility Manual Index-23

FileTek Proprietary and Confidential

Index
T

System Modification Program Extended (SMP/E) 2-
1

system parameters
SQL_LDR_ENGINES 1-32
SQL_LDR_MAXINTO 1-32, 4-38, 4-61
SQL_LDR_MAXLOAD 1-32
SQL_MAX_EXT_VAL 1-36
SQL_SESSIONS 1-32
VTF 5-12

system requirements for installation 2-2
system table updates 1-38

SYSTERM DD statement 6-4
SYSTHSEGMENTS system table 1-38

T

table ID 1-38
TABLE keyword in SUBSPACE number clause 4-69

table name
case 4-4
fully qualified 4-39
in INTO TABLE clause 4-39
in MERGE statement 4-135
in REPLACE SEGMENT clause 4-67
partial 4-41
substituting 4-39

tables
block requirements and sizes of datasets 2-4
CHARACTERSET clause 4-19
CONCATENATE clause 4-20
CONTINUEIF clause 4-22
data type specifications 4-84
DD statements 6-4
DISCARDFILE/DISCARDDN clause 4-16

Index-24 FileTek MVS Data Loader Utility Manual

DISCARDS/DISCARDMAX clause 4-17
field specification 4-76, 4-78, 4-80
FIELDS clause 4-54

files on the distribution tape 2-2
INFILE/INDDN clause 4-11

INTO TABLE clause 4-39

LOAD control statement keywords 5-6
LOAD INDEX arguments 4-133
LOAD INDEX format 4-8

members of the SAMPLES dataset 2-4
MERGE arguments 4-135

MERGE format 4-9

POSITION clause 4-81

REPLACE SEGMENT clause 4-67
return codes 6-5

SEGMENT clause 4-64

SMDEF control statement keywords 5-11
SQL format conventions 4-3
StorHouse tasks 1-7

SUBSPACE number clause 4-69
summary of LOAD DATA clauses 4-7
WHEN clause 4-44

TAKE keyword 4-43, 5-9

taking input records 5-9

target zone load library 2-4

TEMP_FILE keyword 5-9

temporary VRAM file 1-4

terminated data 3-7

TERMINATED keyword in FIELDS clause 4-54
termination delimiter 3-7

THIS keyword in CONTINUEIF clause 4-22, 4-23
TIME EXTERNAL data type 4-94
TIMESTAMP EXTERNAL data type 4-95

FileTek Proprietary and Confidential

TLIB 2-5
TRAILING NULLCOLS clause 4-60

trimming
comparison values 4-27
data fields 4-101
selection criteria 4-45

types of operations
abort 6-2
initialization 2-7, 6-2
load 6-2
replace 4-66
restart 6-2

U

UCLIN 2-5
uppercase in SQL syntax 4-3

using data on StorHouse
format of INFILE/INDDN clause 4-10
loading data from a previous load 4-11
loading data in a VRAM file 4-12
loading discarded records 4-13
obtaining a VRAM file name 4-10

using the fully qualified table name 4-39

V

VALUE keyword in SUBSPACE number clause 4-69
VARBINARY data type 4-96, 4-102

VARCHAR data type
actual length 3-5
as selection criteria 4-48

Index
U

considerations 3-5
conversion 3-6
description 4-97
maximum length 4-100
starting column 4-80

Variable-Blocked-Spanned (VBS) 3-2
verb of a control statement 5-2
vertical bar in SQL syntax 4-3
volume set name 5-12

volume set, VRAM file 1-7

VRAM file
backup 5-12
default prefix name 5-7
deleting 5-9
discard file 4-15
file set name 5-11
group 5-12
keeping 5-9
prefix 5-7
volume set and file set 1-7
volume set name 5-12
VTF 5-12
what it is 1-4

VSET 5-12

VSET keyword 5-12

VTF command privilege 1-6

VTF keyword 5-12

vulnerability time factor (VTF) 5-12

W

WHEN clause

FileTek MVS Data Loader Utility Manual Index-25

FileTek Proprietary and Confidential

Index
z

charstring 4-44
column name 4-44
creating 4-42

field name 4-44
format 4-43
hexdigits 4-44
options 4-42
purpose 4-42

WHITESPACE keyword in FIELDS clause 4-54

Z

ZONE names 2-5
zones, CSI 2-5

Index-26 FileTek MVS Data Loader Utility Manual

	Online Guide
	Contents
	Welcome
	StorHouse family of products
	StorHouse/SM
	StorHouse/RM
	Control Center

	Purpose of this document
	Intended audience
	Contents
	Conventions
	For more information
	For quick reference

	Introduction
	Loading features
	Parallelism
	Multiple record formats
	Data type conversion
	Compatibility
	Exception processing
	Error reporting
	Restart capability
	SQL tool

	Client and server data loaders
	The data load process
	What you need to load data and indexes
	Before loading
	Loads and segments
	Segment size
	Segment replacement
	Segment merge

	Loads and subspaces
	Default selection of subspaces
	When there is one subspace for all component types
	When there is one subspace for each component type
	When there are multiple subspaces for each component type
	When indexes or LOB columns are assigned to multiple user tablespaces

	Explicit selection of subspaces
	When loading one segment
	When loading multiple segments
	When there are multiple indexes of the same type
	When indexes are assigned to different user tablespaces

	Rotation among subspaces
	When there are multiple subspaces for each component type
	When component types share a subspace
	When indexes or LOB columns are assigned to different user tablespaces

	Loads and indexes
	Load parallelism
	Loading different tables in one load
	Loading multiple segments of a table in one load
	Loading multiple segments of multiple tables in one load
	Loading different tables in multiple loads
	Loading the same table in multiple loads
	Loading multiple segments of multiple tables in multiple loads
	Querying a table while it’s being loaded

	Locking during loads
	If an operation fails
	Checkpoints
	Restart
	Abort

	System table updates
	Metadata updates for a data load operation
	Metadata updates for a replace operation
	Metadata updates for an index load operation
	Metadata updates for a merge operation

	Temporary VRAM file names

	Installation
	Installation overview
	Software function identifier
	System requirements
	Files on the distribution tape

	Installation procedure
	Step 1: Load the SAMPLES dataset
	Step 2: Allocate required datasets
	Step 3: Customize SMP/E JCL procedure
	Step 4: Initialize SMP/E CSI
	Step 5: Execute SMP/E RECEIVE
	Step 6: Execute SMP/E APPLY
	Step 7: Execute SMP/E ACCEPT
	Step 8: Build the checkpoint dataset

	Input data
	What’s an input dataset?
	What are input data records and data fields?
	How should you create a host input dataset?
	What record formats can you use?
	Are there any considerations for using the host input dataset?
	Where do you specify which input dataset you’re using?
	What’s the difference between a column and a field in an input data record?
	What’s the difference between a logical record and a physical record?
	Are there any considerations for VAR-type data?
	How do you load LOB data?
	What’s delimited data?
	Terminated data
	Enclosed data

	Are blank characters loaded?

	SYSSQL dataset
	About the SYSSQL dataset
	Character set of SYSSQL
	SYSSQL guidelines

	Statement formats
	Format conventions
	SQL identifiers
	LOAD DATA
	LOAD INDEX
	MERGE

	Loading data already on StorHouse
	Format of INFILE clause
	Example INFILE clauses
	To load data from a previous load operation
	To load data from any other VRAM file
	To load data from multiple VRAM files
	To load discarded records
	To load data from a host input dataset and collect discarded records

	Collecting discarded records in a discard file
	Format of DISCARDFILE clause
	Example DISCARDFILE clause

	Limiting the number of discarded records
	Format of DISCARDS clause
	Example DISCARDS clause

	Specifying the character set of the input data
	Format of CHARACTERSET clause
	Example CHARACTERSET clause

	Concatenating a fixed number of physical records into a logical record
	Format of CONCATENATE clause
	Example CONCATENATE clause

	Combining a varied number of physical records into a logical record
	Format of CONTINUEIF clause
	Example CONTINUEIF clauses
	To combine the current physical record with the next one
	To combine the next physical record with the previous one
	To use the last non-blank data column as the comparison value
	To specify the starting column number of a continuation field
	To specify starting and ending column numbers of a continuation field
	To use a character string as a comparison value
	To use a hex string as a comparison value
	To use blank characters as a comparison value
	To use a not equal comparison operator

	Preserving blanks
	Format of PRESERVE BLANKS clause
	Example PRESERVE BLANKS clause

	Rotating among subspaces
	Format of SUBSPACE ROTATE clause
	Example SUBSPACE ROTATE clauses
	To rotate among subspaces in a user tablespace
	To rotate among subspaces in multiple user tablespaces

	Identifying the user table to load
	Format of INTO TABLE clause
	Example INTO TABLE clauses
	To use the fully qualified table name
	To omit the owner name
	To use a symbolic variable to substitute an owner name, table name, or both
	To substitute an owner name
	To substitute both an owner name and a table name
	To substitute part of a table name

	Choosing which rows to load
	Format of WHEN clause
	Example WHEN clauses
	To specify the starting column number of the selection criteria
	To specify starting and ending column numbers of the selection criteria
	Padding selection criteria
	Trimming selection criteria

	To use a column name to identify the selection criteria
	To use a field name to identify the selection criteria
	To use a character string as selection criteria
	To use a hexadecimal string as selection criteria
	To test blanks
	To test multiple values (using AND)
	To test one value or another (using OR)
	To test one value or another and multiple values (using OR and AND)

	Generating field_specs, identifying NULL flags, specifying default delimiters and other defaults
	Guidelines for specifying a default delimiter
	Format of FIELDS clause
	Example FIELDS clauses
	To describe data fields terminated with a character
	To describe data fields terminated by a blank
	To describe data fields enclosed by the same delimiter
	To describe data fields enclosed by different delimiters
	To describe data fields that are both terminated and enclosed
	To generate CHAR field_specs
	To identify NULL flags in input data records
	To load NULL values for empty data fields

	Loading missing data fields with null values
	Format of TRAILING NULLCOLS clause
	Example TRAILING NULLCOLS clause

	Loading one or more segments
	Format of SAME and DIFFERENT SEGMENT clauses
	Example SAME and DIFFERENT SEGMENT clauses
	To load multiple segments of the same user table
	To load multiple segments of different user tables

	Naming a segment
	Format of SEGMENT clause
	Example SEGMENT clauses
	To use the load ID as the segment tag
	To assign different segment tags for multiple segments of the same user table

	Replacing a segment
	Format of REPLACE SEGMENT clause
	Example REPLACE SEGMENT clause

	Selecting subspaces
	Format of SUBSPACE number clause
	Example SUBSPACE number clauses
	To select subspaces when loading one segment
	To select subspaces when loading multiple segments
	To select subspaces in multiple user tablespaces

	Describing data fields
	Format of field_spec
	Providing a field name
	Providing a column name
	Loading a record number into a column
	Generating a sequence of values
	Loading the current date into a column
	Loading a constant value into a column
	Specifying the position of a data field
	Specifying the data type
	Converting data types
	Calculating the length of a data field
	Specifying a character set for an individual data field
	Specifying a delimiter for an individual data field
	Specifying a BLOB or CLOB data type

	Loading a column with a null value
	Setting a column to the default value

	Using multiple into_table_specs
	Creating multiple logical records from one physical record
	Using the same input dataset to load multiple user tables

	Example LOAD DATA statements
	Example 1: Loading all records into one user table
	Example 2: Combining a fixed number of records and loading some of them into one user table
	Example 3: Loading delimited data into multiple user tables
	Example 4: Combining a variable number of records and loading null values
	Example 5: Loading SMALLINT, DECIMAL, and VARCHAR data
	Example 6: Using relative positioning to load delimited data into multiple user tables
	Example 7: Using multiple selection criteria
	Example 8: Replacing segments without loading
	Example 9: Including SQL statements in the SYSSQL dataset
	Example 10: Selecting subspaces for each component type
	Example 11: Loading LOB data fields using a default field list and NULLFLAGS

	Loading a deferred index
	Format of LOAD INDEX statement
	Example LOAD INDEX statements

	Merging segments of a table
	Format of MERGE statement
	Example MERGE statements

	Control statements
	About loader control statements
	Statement components
	Command verb
	Keyword/Value pairs
	Keyword value types

	General control statement syntax rules

	LOAD
	Command syntax

	SMDEF
	Command syntax

	Runtime
	Preparing to run the utility
	Types of operations
	EXEC statement
	DD statements
	Return codes
	Submitting an operation
	Restarting an operation
	Aborting an operation

	Messages
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

