
StorHouse ESQL
Manual

StorHouse/RM Release 3.2

Publication Number
900121 Rev. H

March 21, 2002

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1996-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900121 Rev. H

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

NOTE: U.S. GOVERNMENT USERS

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
or the Commercial Computer Software - Restricted Rights clause at 48
CFR 52.227-19, as applicable. Unpublished-rights reserved under the
copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

FileTek

StorHous

FileTek Proprietary and Confidential
Contents

Welcome .. ix

StorHouse family of products .. ix
StorHouse/SM .. ix
StorHouse/RM .. x
Control Center ... x

Purpose of this document ... x

Intended audience ... xi

Contents .. xi

Related documentation ... xii

Format conventions ..xiv

Chapter 1: Introducing StorHouse ESQL1-1

Understanding the ESQL precompiler ...1-1

Learning basic concepts ...1-2
Embedded, or static, SQL ...1-3

Types of embedded SQL statements ...1-3
Static versus dynamic SQL ...1-4

NULL values ...1-5
Host language variables ...1-5

Locator variables ...1-6
File reference variables ..1-6
e ESQL Manual iii

Contents

FileTek Proprietary and Confidential
Indicator variables ...1-6
Data types ...1-7
Cursors ..1-7
Errors and warnings ..1-7

Guidelines for embedding SQL in C ...1-8
Comments ..1-8

SQL-style comment ..1-8
C-style comment ..1-9
C++-style comments ...1-9

Continuations ...1-10
Delimiters ...1-10
Host variable names ..1-10
Operators ..1-11
Statement labels ..1-11

Chapter 2: Satisfying program requirements2-1

Coding a Declare Section ...2-1

Declaring variables and types ...2-2
Declaring variables and types as StorHouse or C data types2-4

Mapping StorHouse data types to C language types2-4
Defining StorHouse data types ...2-6

Declaring variables with type definitions ...2-20
Declaring variables as host arrays ...2-21

ESQL format ..2-22
C format ...2-23
Declaring an array as a new data type ..2-24

Using host variables ...2-25

Using indicator variables ..2-27

Managing connectivity to StorHouse ...2-28
Connecting to a StorHouse database ...2-29
Changing the current connection ..2-30
Terminating a connection ...2-31
iv StorHouse ESQL Manual

Contents

FileTek Proprietary and Confidential
Chapter 3: Submitting queries in ESQL3-1

About queries ..3-1
Queries that return a single row ..3-2
Queries that return multiple rows ...3-3

Using cursors ...3-4
Associating a cursor with a query ...3-5
Opening a cursor ..3-6
Retrieving rows using a cursor ...3-7
Closing a cursor ..3-9

Using a cursor with host variable arrays ...3-9

Chapter 4: Handling errors and warnings4-1

Using the SQLCA ...4-1
SQLCA structure definition ..4-2

Checking the sqlcode for status codes ..4-4
Checking for warnings ..4-5

Using WHENEVER ...4-6
Scope of WHENEVER ...4-7

Chapter 5: Using dynamic SQL ..5-1

About dynamic SQL ..5-1

Storing dynamic SQL as a character string ...5-2

Understanding substitution markers ..5-3
Correlating substitution markers with host variables ...5-3
Example ..5-3

Scenarios for using dynamic SQL ..5-4
Scenario 1: Non-SELECT without markers ..5-5
Scenario 2: Non-SELECT with markers ...5-6

About PREPARE ...5-7
StorHouse ESQL Manual v

Contents

FileTek Proprietary and Confidential
About EXECUTE ..5-8
Associating markers with host variables ...5-8
Example ..5-9

Scenario 3: Fixed-list SELECTs ...5-10
Scenario 4: SELECT using an SQLDA ...5-12

About an SQL descriptor area (SQLDA) ..5-12
Storing information in an SQLDA ...5-13
Understanding the SQLDA structure definition5-14
Setting values of sqlvln32 and sqlvtype fields ..5-18
Resetting, or coercing, data types ..5-19
Checking space for SQLDA entries ..5-19
Checking space for variable name data ..5-20
Allocating an SQLDA ...5-21
Allocating variable entries in an SQLDA ..5-22
Initializing storage as an SQLDA ..5-22
Setting values in an SQLDA variable entry ...5-23
Freeing an SQLDA ...5-24
Checking the size of your SQLDA ..5-24
Allocating SQLDA buffers for data and indicator variables5-27

Calculating the buffer size (tpe_da_getbsize)5-27
Initializing buffer pointers (tpe_da_setptrs) ..5-28

Using multiple SQLDAs ...5-29
Reusing the same SQLDA ..5-29
Understanding the status value ...5-29
Reviewing the basics ...5-30
Satisfying individual program requirements ..5-31

Using an SQLDA for array fetches ...5-32
About the standard method ...5-32
About the pointer-fetch method ..5-33

Sample program ..5-34

Chapter 6: Accessing large objects ...6-1

Ways to access LOB values ..6-1
Locator variables ..6-2
vi StorHouse ESQL Manual

Contents

FileTek Proprietary and Confidential
File reference variables ...6-2
Sample LOB value ..6-3

Placing LOB data into a host variable ..6-3

Using a locator variable to select LOB data ..6-4
Declaring a locator variable ...6-5
Issuing the query ...6-6

Example using SELECT INTO ..6-6
Example using FETCH ..6-6

Manipulating a LOB value through a locator variable6-7
Releasing a locator variable ..6-8

Placing LOB data into a client file ...6-8
Declaring a file reference variable ..6-9
Initializing the client file variable ...6-9
Issuing the query ...6-10

Example using SELECT INTO ..6-10
Example using FETCH ..6-12

Chapter 7: Using the StorHouse extractor7-1

About the StorHouse extractor ..7-1

Types of eligible queries ...7-2
Simple queries ...7-2

Format ...7-2
Example ...7-2

Full segment queries ..7-3
Format ...7-3
Example ...7-3

Qualifying for extractor processing ..7-4

Checking the SQLCA ..7-5
StorHouse ESQL Manual vii

Contents

FileTek Proprietary and Confidential
Chapter 8: Managing transactions ...8-1

About transactions ...8-1

Starting a transaction ...8-2

Ending a transaction ..8-3
Committing a transaction ...8-3

Committing DDL statements ...8-4
Committing non-DDL statements ...8-4

Rolling back a transaction ...8-4
Automatic rollback ..8-5

Locking ..8-5
Types of locks ...8-5

Shared locks ..8-6
Exclusive locks ..8-6

Duration of a lock ...8-7

Chapter 9: Using the ESQL precompiler9-1

Setting environment variables ..9-1

Issuing the esqlc command ..9-3

Appendix A: Reviewing a sample program A-1

Appendix B: Converting and comparing data B-1

Appendix C: Developing ESQL applicationsC-1

Index
viii StorHouse ESQL Manual

FileTek

StorHous

FileTek Proprietary and Confidential

Ch
Welcome

The StorHouse Embedded Structured Query Language (ESQL) enables develop-
ment of C and C++ applications that contain embedded Structured Query Lan-
guage (SQL) statements. These applications can use StorHouse SQL to access
database data in StorHouse databases.

StorHouse family of products

StorHouse® is the FileTek® enterprise-wide solution for managing the capture,
storage, movement, and access of gigabytes (GB) to petabytes of relational and
non-relational detail data. StorHouse technology combines industry-leading,
scalable storage devices and Open System processors with specialized storage
management and relational database management system (RDBMS) software
components.

StorHouse/SM

StorHouse/SM, the storage management component, controls a hierarchy of
storage devices comprised of cache, redundant array of independent disk (RAID),
erasable and write-once-read-many (WORM) optical disk jukeboxes, and
automated tape libraries. StorHouse/SM is also responsible for automating
critical system management tasks, like data migration, backup, and recovery.
e ESQL Manual ix

Welcome

Purpose of this document

FileTek Proprietary and Confidential
StorHouse/RM

StorHouse/RM, the RDBMS component, works in conjunction with
StorHouse/SM to specifically administer the storage, access, and movement of
relational data. StorHouse/RM provides row-level SQL access to high volumes of
detail data on any layer in the StorHouse storage hierarchy, including tape. SQL
access is available from different platforms through a variety of industry-standard
protocols. StorHouse/RM runs on Sun™ Solaris™ and Hewlett-Packard HP-UX
platforms.

Control Center

StorHouse Control Center (CC) is the FileTek Windows®-based network
computing system for providing administrative control of the StorHouse family
of products. Control Center works with StorHouse/SM release 4.2 and higher
and consists of one or more Control Center servers that communicate with
Control Center clients over a TCP/IP network. The Control Center server, which
runs on Windows NT, 2000, and XP Pro platforms, provides network
connectivity to StorHouse. The Control Center clients, which run on Windows
95, 98, 2000, XP Pro, and NT platforms, consist of one or more graphical user
interface (GUI) modules for performing StorHouse system and database
administration tasks, configuring and managing Control Center servers, and
analyzing and monitoring StorHouse activity and performance.

Purpose of this document

The StorHouse ESQL Manual describes how to use SQL statements in a C or C++
application and how to prepare and execute those statements dynamically. Other
topics include error handling methods, the StorHouse precompiler, and the Stor-
House extractor feature. This manual also provides ESQL examples and a sample
program.
x StorHouse ESQL Manual

Welcome

Intended audience

FileTek Proprietary and Confidential
Intended audience

The StorHouse ESQL Manual is intended for the people who write StorHouse
database applications at your site. These applications may perform functions for
end-user departments or implement basic StorHouse database administration
tasks.

This manual is designed for experienced programmers. It assumes that the audi-
ence is already proficient in C and/or C++, database application design, database
administration, StorHouse fundamentals, and SQL.

Contents

This document is organized as follows:

■ Chapter 1, “Introducing StorHouse ESQL,” discusses basic concepts that you
need to understand before you begin developing ESQL applications. It also
provides guidelines for embedding SQL in C programs.

■ Chapter 2, “Satisfying program requirements,” explains the programming
techniques that enable communication between your ESQL application and
StorHouse.

■ Chapter 3, “Submitting queries in ESQL,” explains how to submit queries
using embedded SQL. It explains the SELECT INTO statement, cursors, and
array fetches.

■ Chapter 4, “Handling errors and warnings,” explains how to use the SQL
communications area (SQLCA) and the WHENEVER statement to manage
error and warning conditions.

■ Chapter 5, “Using dynamic SQL,” defines dynamic SQL and provides four
scenarios for using dynamic SQL in applications. It also explains how to
allocate and use an SQL descriptor area (SQLDA).
StorHouse ESQL Manual xi

Welcome

Related documentation

FileTek Proprietary and Confidential
■ Chapter 6, “Accessing large objects,” explains how to access large objects
(LOBs) using locator variables and file reference variables.

■ Chapter 7, “Using the StorHouse extractor,” defines the extractor feature and
explains the types of queries that are eligible for extractor processing.

■ Chapter 8, “Managing transactions,” explains how to start transactions and
end them with COMMIT WORK or ROLLBACK WORK.

■ Chapter 9,“Using the ESQL precompiler,” discusses the requirements for
precompiling, compiling, and linking ESQL programs and how to use the
esqlc command with the proper command options.

■ Appendix A, “Reviewing a sample program,” contains a sample program that
illustrates how to code static queries.

■ Appendix B, “Converting and comparing data types,” explains the StorHouse
API calls tpe_conv_data and tpe_compare_data.

■ Appendix C, “Developing ESQL applications,” contains useful tips and
guidelines for writing ESQL applications.

Related documentation

You should be familiar with these manuals in the StorHouse/RM User Docu-
ment Set:

■ The StorHouse SQL Reference Manual, publication number 900111, is the
comprehensive reference for StorHouse SQL. It defines StorHouse SQL
statements, functions, predicates, and data types. In addition, it contains
format descriptions, examples, and a list of all StorHouse status codes.
xii StorHouse ESQL Manual

Welcome

Related documentation

FileTek Proprietary and Confidential
■ The StorHouse SQL Quick Reference, publication number 900122, is a stand-
alone mini-manual that contains formats and examples of all StorHouse SQL
statements, functions, and predicates.

■ The StorHouse Database Administration Guide, publication number 900108,
defines StorHouse database concepts and explains how to perform StorHouse
database administration tasks like creating user tables and indexes, managing
accounts and privileges, and defining user tablespaces.

■ The StorHouse/RM Glossary, publication number 900112, defines terms used
in StorHouse/RM User Document Set.

In addition, if you are performing StorHouse system administration tasks, you
may find the following manuals helpful:

■ The StorHouse Glossary, publication number 900027, defines the terminology
used in FileTek StorHouse publications. This manual is intended for all users.

■ The StorHouse Concepts and Facilities Manual, publication number 900026,
defines the basic concepts, structures, and functions of StorHouse. This
manual is intended for all users.

■ The Command Language Reference Manual, publication number 900005,
contains descriptions of StorHouse Command Language commands and is
intended for all users.

■ The System Administrator’s Guide, publication number 900007, describes
system recovery, account administration, and storage management procedures
and concepts for StorHouse. This guide is intended for the StorHouse system
administrator.

■ The Messages and Codes Manual, publication number 900032, lists all
StorHouse system and host software messages. This manual is intended for all
users.
StorHouse ESQL Manual xiii

Welcome

Format conventions

FileTek Proprietary and Confidential
Format conventions

This manual uses the Courier font (this is Courier font) to represent
program code and the following format conventions to illustrate StorHouse SQL
syntax.

The following statement (a simplified query) uses the format conventions
defined in the preceding table:

SELECT column_name
FROM [owner.]{table_name | view_name}
[WHERE condition];

In this example:

■ SELECT, FROM, and WHERE are shown in uppercase because they are
StorHouse SQL keywords.

Convention Description

UPPERCASE Uppercase terms indicate keywords that are part of the syntax.
Type keywords in any case.

lowercase Lowercase terms refer to grammar elements and user-supplied
values. When supplying values, only quoted strings are case
sensitive.

() , / * - ; : . + ' These characters are part of the syntax. Type them as shown.

{ } Braces indicate that the item is required. When a list of items is
enclosed in braces and separated by a vertical bar, you must
choose one item.

[] Brackets indicate that the item is optional.

| Vertical bar separates alternatives. You can specify one of the
alternatives shown.

... Ellipsis points indicate that you can repeat the part of the statement
preceding them any number of times.
xiv StorHouse ESQL Manual

Welcome

Format conventions

FileTek Proprietary and Confidential
■ column_name, owner, table_name, view_name, and condition are shown in
lowercase because they are user-specified components.

■ table_name and view_name are enclosed in braces ({}) and separated by a
vertical bar (|) because one of them is required to complete the statement
syntax. The braces indicate a requirement, while the vertical bar indicates a
choice of items within the braces.

■ owner and the WHERE clause are enclosed in square brackets ([]) because they
are not required to complete this statement. They are optional.
StorHouse ESQL Manual xv

Welcome

Format conventions

FileTek Proprietary and Confidential
xvi StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
1

Introducing StorHouse ESQL

The StorHouse Structured Query Language (SQL) provides an Embedded SQL
Interface (ESQL) that supports coding SQL statements in C and C++ programs.
By embedding SQL statements in a host program, you can develop applications
that are more flexible than those developed in just the host language or SQL.

This chapter discusses:

■ The ESQL precompiler
■ Basic ESQL concepts
■ Guidelines for embedding SQL in C programs

Understanding the ESQL precompiler

The StorHouse ESQL precompiler lets you embed SQL statements in a C or C++
source program. StorHouse/RM uses the StorHouse ESQL precompiler to build
database applications in the SQL development environment.

The ESQL precompiler accepts your source program as input and then translates
the embedded SQL into host language statements that include StorHouse/RM
runtime subroutines. The output of this translation is a pure C or C++ program,
which you can compile, link, and execute. The ESQL precompiler also accepts C
or C++ object files and passes them to the C or C++ linker.
 ESQL Manual 1-1

1 Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
The following diagram illustrates the path from source code to executable for an
ESQL program.

Learning basic concepts

You should understand these basic concepts before you begin developing ESQL
applications:

■ Static (embedded) and dynamic SQL

■ Types of embedded SQL statements
■ Use of NULL values
■ Use of host language and indicator variables in ESQL programs
■ Database and host language data types

Linker

Compiler

ESQL
Precompiler

Object Program

All SQL statements have been
replaced by calls to StorHouse/
RM runtime subroutines

System
Editor

Source Program
Contains embedded SQL
statements

Modified
Source Program

Compiler’s
Runtime
Library

Executable
Program To resolve calls

RM
INCLUDE

files

StorHouse/RM
libraries
1-2 StorHouse ESQL Manual

1Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
■ The available tools for handling errors and warnings
■ Cursors

See other chapters in this manual for more detailed information about these top-
ics.

Embedded, or static, SQL

Embedded, or static, SQL statements are SQL statements that are coded within a C
or C++ application. The application that contains the SQL is the host program.
The language of the host program is the host language. You can mix SQL state-
ments and host language statements in an ESQL program. In addition, you can
use host language variables in embedded SQL statements.

It’s easy to recognize static SQL statements because they are always preceded by
the keywords EXEC SQL and followed by a semicolon, which is the statement
terminator for C. SQL statements bracketed by the keywords EXEC SQL and a
semicolon are called ESQL constructs.

The following sample code illustrates an SQL construct:

EXEC SQL
SELECT emp_no,dept_id
INTO :emp_num_v, :dept_id_v
FROM emptable ;

Types of embedded SQL statements

There are two types of embedded SQL statements: declarative and executable.
ESQL declarative statements bracket DECLARE SECTIONs, define host variables
and indicator variables, and provide branching instructions for error processing.
They do not generate any StorHouse/RM calls.
StorHouse ESQL Manual 1-3

1 Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
The StorHouse declarative SQL statements are:

■ BEGIN DECLARE SECTION
■ END DECLARE SECTION
■ WHENEVER

Executable statements generate StorHouse/RM calls and return codes. They exe-
cute instructions on a specified database at runtime. Executable statements access
the database and form the body of an ESQL program. They can change the state
of a database.

You can group executable statements into the following categories:

Static versus dynamic SQL

You use static SQL when you know your SQL statements at compile time. That
is, you know which statements you’re going to issue and the names of the tables
and columns you plan to select. The only things that may change from one exe-
cution to the next are the host variables in your search conditions.

Dynamic SQL is more complicated and harder to program than static SQL. You
use dynamic SQL when you don’t know which SQL statements you intend to exe-
cute or which columns and tables you plan to manipulate until runtime. You typ-
ically use a special structure called an SQL descriptor area (SQLDA) with dynamic
SQL. The SQLDA provides your program with information about the variables in

Statement type Used to

Data Manipulation (DML) Perform data manipulation operations like SELECT,
INSERT, UPDATE and DELETE. In StorHouse, INSERT,
UPDATE, and DELETE may only be used to manipulate
system tables and system table views.

Data Definition (DDL) Create and remove data definitions in a given database (for
example, create user tables, indexes for user tables, and
system table views).

Transaction Management Manage SQL transactions (for example, COMMIT WORK
and ROLLBACK WORK).
1-4 StorHouse ESQL Manual

1Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
your SQL statements. See Chapter 5, “Using dynamic SQL,” for more informa-
tion about an SQLDA.

NULL values

NULL means different things in SQL and C. In StorHouse, a NULL value is a
value that is unknown, not applicable, or missing. It’s not the same as a numeric
zero, a string of blanks, or a variable-length string of length zero.

A database column of any data type can have a NULL value. In fact, NULL is the
default value for a column, provided that column definition in CREATE TABLE
does not contain the DEFAULT definition clause or the NOT NULL column con-
straint. Refer to the StorHouse SQL Reference Manual for more information about
CREATE TABLE.

StorHouse/RM uses the NVL function, the IS [NOT] NULL comparison opera-
tor, and indicator variables to manage NULL values.

Host language variables

Host language variables enable communication between StorHouse SQL and
your application. A host language variable is an application variable that host lan-
guage statements and embedded SQL statement can reference. You declare host
variables in a required program component called a Declare Section.

■ Input host variables pass data to StorHouse/RM. They are typically used in
WHERE and HAVING clauses.

■ Output host variables pass data and status information to your program. They
are typically used in the INTO clauses of the SELECT and FETCH statements
as well as in the VALUES INTO statement.

You can refer to and manipulate LOB values using host variables just as you
would any other type of data. Host variables, however, use the client memory
StorHouse ESQL Manual 1-5

1 Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
buffer which may not be large enough to hold LOB values. StorHouse/RM pro-
vides two types of host variables for accessing and manipulating LOB values:

■ Locator variables
■ File reference variables

Locator variables

A locator variable is a type of host variable you use to identify and manipulate a
LOB value or part of a LOB value at the StorHouse server. When you use a loca-
tor variable, the LOB value remains on the server and the locator moves to the cli-
ent. The value associated with the locator is valid until you end the transaction
(COMMIT WORK or ROLLBACK WORK statement) or explicitly release the
locator (FREE LOCATOR statement). You define locator variables with the
BLOB_LOCATOR and CLOB_LOCATOR data types.

File reference variables

A file reference variable is a type of host variable you use to place a LOB value or
part of it in a client file without going through the application's memory. The file
reference variable contains the name of the client file. The file referenced by the
file reference variable must be accessible to the system on which the program
runs. Currently, you can use file reference variables as output only, that is, you
can transfer a LOB value from StorHouse/RM to a client file. You define file ref-
erence variables with the BLOB_FILE and CLOB_FILE data types.

Indicator variables

You can associate a host variable with an optional indicator variable. An indicator
variable is a short variable that detects NULL or truncated values. You declare
indicator variables in a required program component called a Declare Section.
1-6 StorHouse ESQL Manual

1Introducing StorHouse ESQL

Learning basic concepts

FileTek Proprietary and Confidential
Data types

StorHouse recognizes database and host language data types. Database data types
define how StorHouse/RM stores information in database columns. Host lan-
guage data types define the data storage format for host variables. C language
structures represent the StorHouse BLOB, BLOB_FILE, CLOB, CLOB_FILE,
DATE, DECIMAL (synonym for NUMERIC), TIME, and TIMESTAMP data
types. See “Defining StorHouse data types” on page 2-6 for descriptions of the
data types you can use in your applications.

Cursors

ESQL uses a cursor to process the rows that satisfy your queries. These rows are
called a result set, or active set. A cursor is a named structure that points to a spe-
cific row within a result set. The size of the result set depends on the number of
rows that satisfy the query search condition. The row currently being processed
by the cursor is called the current row.

You must process queries that retrieve more than one row by:

■ Explicitly declaring, or naming, a cursor for the SELECT statement
■ Opening the cursor to execute the query and identify the result set
■ Using the cursor to fetch, or retrieve, each row in the result set
■ Closing the cursor when there are no more rows to be fetched

Errors and warnings

StorHouse/RM provides two ways to handle errors and warnings: the SQL com-
munications area (SQLCA) and the WHENEVER statement. An SQLCA is a
structure that provides an application with status information about the most
recently executed SQL statement. C programs implement the SQLCA as a global
structure that the ESQL precompiler automatically declares and defines.
StorHouse ESQL Manual 1-7

1 Introducing StorHouse ESQL

Guidelines for embedding SQL in C

FileTek Proprietary and Confidential
You can check the SQLCA for information such as:

■ Warning flags
■ Error (status) codes
■ Diagnostic text
■ Number of rows processed

The SQLCA field, sqlcode, indicates status information as follows:

■ 0 – successful execution
■ Positive – no more rows to be fetched (value of 100 for SQL_NOT_FOUND)
■ Negative – an error occurred

The WHENEVER statement provides added flexibility because it lets you supply
specific instructions for error processing. With WHENEVER, you can stop pro-
gram execution, continue with the next program statement, or branch to a speci-
fied host language label depending on specific exceptions.

Guidelines for embedding SQL in C

This section provides guidelines for embedding StorHouse SQL statements in C
programs. These guidelines include syntax rules, restrictions, and coding conven-
tions. They are listed in alphabetical order for your convenience.

Comments

You can include SQL-style, C-style, and C++-style comments in StorHouse SQL
statements.

SQL-style comment

You can include SQL-style comments in embedded SQL wherever blanks are
allowed (except between EXEC SQL). These comments start with two hyphens
1-8 StorHouse ESQL Manual

1Introducing StorHouse ESQL

Guidelines for embedding SQL in C

FileTek Proprietary and Confidential
(--) and terminate by the end of the line. SQL-style comments are not allowed
within statements that are dynamically prepared (processed by PREPARE or EXE-
CUTE IMMEDIATE). The following example contains two SQL-style comments.

EXEC SQL
SELECT names, dates --select list
INTO :employee_name, :hire_date --output host variables
FROM employee_data ;

C-style comment

You can include C-style comments in embedded SQL and SQL that’s dynamically
prepared (processed by PREPARE or EXECUTE IMMEDIATE). You can place C-
style comments wherever blanks are allowed (except between EXEC SQL). These
comments begin with the characters /* and end with the characters */. For exam-
ple:

EXEC SQL
PREPARE sel_stmt FROM ‘SELECT col1, col2 /*select list*/
FROM table1’ ;

C++-style comments

You can include C++-style comments in embedded SQL wherever blanks are
allowed (except between EXEC SQL). These comments begin with the characters
// and terminate by the end of line. For example:

EXEC SQL
SELECT names, dates //select list
INTO :employee_name, :hire_date //output host variables
FROM employee_data ;
StorHouse ESQL Manual 1-9

1 Introducing StorHouse ESQL

Guidelines for embedding SQL in C

FileTek Proprietary and Confidential
Continuations

C dictates the rules for continuing SQL statements from one line to the next. To
continue a string literal in an SQL statement from one line to another, use a back-
slash (\) as the last character on the line.

Delimiters

The keywords EXEC SQL and the semicolon (;) delimit embedded SQL state-
ments. You must code the keywords EXEC SQL on the same line. The embedded
SQL statement following EXEC SQL may begin on the same line or on subse-
quent lines.

StorHouse supports the use of apostrophes (‘) to enclose string literals and quota-
tions (“) to delimit identifiers. In the following example, apostrophes enclose the
string literal 123, and quotations enclose the column identifier name.

EXEC SQL
SELECT “name”
FROM emp_table
WHERE emp_id = ‘123’;

Host variable names

You can use any valid C name as a host variable name. Refer to the documenta-
tion for your C compiler for your system’s exact requirements.
1-10 StorHouse ESQL Manual

1Introducing StorHouse ESQL

Guidelines for embedding SQL in C

FileTek Proprietary and Confidential
Operators

The following table shows the differences between SQL and C operators. You
cannot use these C operators in SQL statements:

Statement labels

You can include standard C statement labels in StorHouse SQL statements. The
format of a label name is:

label_name:

The following example uses the statement label finish_it:

EXEC SQL
WHENEVER NOT FOUND GO TO finish_it;

...
finish_it:

EXEC SQL
...

Refer to the documentation for your C compiler for your system’s exact require-
ments.

Use these operators in SQL Use these operators in C

NOT !

AND &&

OR ||

= ==
StorHouse ESQL Manual 1-11

1 Introducing StorHouse ESQL

Guidelines for embedding SQL in C

FileTek Proprietary and Confidential
1-12 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
2

Satisfying program requirements

This chapter explains the programming techniques that enable communication
between your ESQL application and StorHouse/RM. Topics include:

■ Coding a Declare Section
■ Declaring variables
■ Choosing data types for variable declarations
■ Using host and indicator variables
■ Handling NULL values
■ Managing database connections from your program

Coding a Declare Section

A Declare Section is a required ESQL program component that contains your host
language, indicator variable, and new type declarations. The ESQL precompiler
generates the corresponding host language declarations for these variables and
types so that you can use them at your convenience in SQL and C. ESQL does
not recognize variables or types that are defined in C language statements coded
outside a Declare Section.

StorHouse/RM uses the following ESQL constructs to mark the beginning and
end of a Declare Section:

EXEC SQL BEGIN DECLARE SECTION ;
/* your variable declarations go between these statements */
EXEC SQL END DECLARE SECTION ;
 ESQL Manual 2-1

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
Follow these rules when you code a Declare Section:

■ A Declare Section must be located before any other ESQL constructs. Only C
statements can precede a Declare Section.

■ A Declare Section may contain declarations for host variables and indicator
variables.

■ You may declare local and global variables. The location of a Declare Section
in your program determines a variable’s scope.

■ Your program may contain more than one Declare Section.

■ A Declare Section cannot reference names declared in typedef statements.

The following Declare Section declares five host variables as host language char
types and one indicator variable as host language short type:

EXEC SQL BEGIN DECLARE SECTION ;
char emp_num_v ;
char first_name_v [24] ;
char initial_v [1] ;
char last_name_v [40] ;
char dept_id_v [8] ;
short i_initial_v ;

EXEC SQL END DECLARE SECTION ;

Declaring variables and types

There are several ways to declare host and indicator variables in a Declare Sec-
tion. You can declare:

■ Variables as certain host language or StorHouse data types. StorHouse data
types for source or target columns and host data types for variables must be
2-2 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
compatible but they do not have to match (for example, SMALLINT and
long). See the table on page 2-4 for a list of compatible data types.

■ New data types with the characteristics of host language or StorHouse data
types; then declare host variables using your newly defined data type.

■ Variables as host arrays

You cannot declare:

■ Variables to be a structure type
■ Pointers as host variables
■ Variables as the StorHouse VARCHAR, BINARY, or VARBINARY data types

The following drawing summarizes the rules for variable declarations.

All StorHouse types except
BINARY, VARBINARY, VARCHAR

C type char, double, long, and
short

Guaranteed-size types for short and
long listed in the table on page 2-4

New data types based on valid
StorHouse and C types

Host arrays

StorHouse type SMALLINT

C type short

New data types based on
SMALLINT and short

Host arrays

Indicator variableHost variable

can be
declared as

can be
declared as
StorHouse ESQL Manual 2-3

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
Declaring variables and types as StorHouse
or C data types

You can declare host variables as the C data types char, double, long, and short
and all StorHouse types except for BINARY, VARBINARY, and VARCHAR.
StorHouse/RM rather than your application manages data conversions from one
representation to the other. You can declare indicator variables as the C type
short or the StorHouse type SMALLINT.

Depending on the platform, the C type int may be 16 or 32 bits and the C type
long may be 32 or 64 bits. ESQL makes the following guaranteed-size types avail-
able to applications. You can use these type definitions in place of the built-in C
types to ensure portability to new platforms.

Mapping StorHouse data types to C language types

The following table maps StorHouse data types to C language types and struc-
tures. Notice that the StorHouse data types BLOB, BLOB_FILE, CLOB,
CLOB_FILE, DATE, DECIMAL, TIME, and TIMESTAMP are represented inter-

Other types for int and long Description

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer
2-4 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
nally by C language structures. Descriptions of these data types include the C
structure definition.

1See the data type definitions of BINARY, VARBINARY, and VARCHAR for a list of restrictions
that apply to these data types.

C language
type

C language
structure

StorHouse data
type

char – BINARY1

– tpe_blob_t BLOB

– tpe_blob_file_t BLOB_FILE

int32_t BLOB_LOCATOR

char – CHARACTER

– tpe_clob_t CLOB

– tpe_clob_file_t CLOB_FILE

int32_t CLOB_LOCATOR

– tpe_date_t DATE

– tpe_num_t DECIMAL

double – DOUBLE

float2 – REAL

– tpe_num_t NUMERIC

int32_t – INTEGER

short – SMALLINT

– tpe_time_t TIME

– tpe_timestamp_t TIMESTAMP

char – VARBINARY1

char – VARCHAR1
StorHouse ESQL Manual 2-5

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
2In C, the float data type represents a single precision floating-point number. However, ESQL
always interprets the word “float” as the StorHouse data type DOUBLE (synonym FLOAT), which
indicates a double precision floating-point number. Always use the StorHouse data type REAL to
declare a variable as a single precision floating-point number.

Defining StorHouse data types

The following tables define StorHouse data types.

BINARY The BINARY data type defines bit data as a fixed-length array of bytes.

BLOB The BLOB data type defines bit data as a variable-length array of bytes up to 2
GB in size.

BINARY specification

C language representation unsigned char

Restrictions ■ Never declare host variables as the BINARY data
type. Instead, use an SQLDA and the DESCRIBE
statement. See Chapter 5 for more information
about SQLDAs and DESCRIBE.

■ The data in a BINARY field may contain 0 (NUL)
bytes. Therefore never handle binary data as a
null-terminated string.

BLOB specification

C language representation tpe_blob_t or TPE_BLOB_DECL(x,y)

Declare BLOB variables as BLOB(L) where (L) is the maximum length of the
BLOB in bytes, K, M, or G

Example EXEC SQL BEGIN DECLARE SECTION;
BLOB(40K) part_picture;

EXEC SQL END DECLARE SECTION;
2-6 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The structure definition for a BLOB host variable is (where <hvn> is the host vari-
able name and <sz> is the variable size):

struct {
int32_t <hvn>_reserved;
uint32_t <hvn>_length;
char <hvn>_data[<sz>];

} <hvn>;

BLOB_FILE The BLOB_FILE data type defines variable-length bit data stored in an external
file. This data type defines a file reference variable for a BLOB value. The file ref-
erence variable expands into a type definition with four parts.

Note: You cannot use the BLOB_FILE and CLOB_FILE data types with a multi-
row array-fetch operation. If these types are present, then the sqldnrow field of the
SQLDA must be 1; otherwise, an error occurs. Also, you cannot use these data
types with a pointer-fetch operation, even if sqldnrow is 1.

Field Description

<hvn>_reserved Reserved for future use (must be 0).

<hvn>_length The length of the BLOB value.

<hvn>_data The BLOB data.

BLOB_FILE specification

C language representation tpe_blob_file_t

Declare BLOB file reference variables as BLOB_FILE

Example EXEC SQL BEGIN DECLARE SECTION;
BLOB_FILE part_picture;

EXEC SQL END DECLARE SECTION;
StorHouse ESQL Manual 2-7

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The structure definition for tpe_blob_file_t is:

typedef struct {
 uint32_t name_length;
 uint32_t data_length;
 uint32_t file_options;
 char name[255];
} tpe_blob_file_t;

BLOB_
LOCATOR

The BLOB_LOCATOR data type defines a locator variable for a BLOB value. An
application may use this locator variable to manipulate BLOB values at Stor-
House.

Field Description

name_length The length of the file name that is stored in name.

data_length The length of the data value in the file.

file_options Options that control the use of the file. Valid values are:

■ TPE_FILE_CREATE – Creates a new file. An error occurs if the
file exists.

■ TPE_FILE_OVERWRITE – Replaces any existing file.

■ TPE_FILE_APPEND – Appends fetched data to an existing file
or creates a new file.

name The name of the file.

BLOB_LOCATOR specification

C language representation int32_t

Declare BLOB locator variables as BLOB_LOCATOR

Example EXEC SQL BEGIN DECLARE SECTION;
BLOB_LOCATOR part_picture;

EXEC SQL END DECLARE SECTION;
2-8 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
CHARACTER The CHARACTER (CHAR) data type corresponds to a fixed-length array of char-
acters.

CLOB The CLOB data type defines character data as a variable-length array of bytes up
to 2 GB in size.

The structure definition for a CLOB host variable is (where <hvn> is the host vari-
able name and <sz> is the variable size):

struct {
int32_t <hvn>_reserved;
uint32_t <hvn>_length;
char <hvn>_data[<sz>];

} <hvn>;

CHARACTER specification

C language representation char

Declare CHARACTER variables as char or CHAR

Example EXEC SQL BEGIN DECLARE SECTION ;
char city_v [19] ;
CHAR name_v [19] ;

EXEC SQL END DECLARE SECTION ;

CLOB specification

C language representation tpe_clob_t or TPE_CLOB_DECL(x,y)

Declare CLOB variables as CLOB(L) where (L) is the maximum length of the
CLOB in bytes, K, M, or G

Example EXEC SQL BEGIN DECLARE SECTION;
CLOB(40K) part_description;

EXEC SQL END DECLARE SECTION;
StorHouse ESQL Manual 2-9

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
CLOB_FILE The CLOB_FILE data type defines variable-length character data stored in an
external file. The file reference variable expands into a type definition with four
parts.

Note: You cannot use the BLOB_FILE and CLOB_FILE data types with a multi-
row array-fetch operation. If these types are present, then the sqldnrow field of the
SQLDA must be 1; otherwise, an error occurs. Also, you cannot use these data
types with a pointer-fetch operation, even if sqldnrow is 1.

The structure definition for tpe_clob_file_t is:

typedef struct {
 uint32_t name_length;
 uint32_t data_length;
 uint32_t file_options;
 char name[255];

} tpe_clob_file_t;

Field Description

<hvn>_reserved Reserved for future use (must be 0).

<hvn>_length The length of the CLOB value.

<hvn>_data The CLOB data.

CLOB_FILE specification

C language representation tpe_clob_file_t

Declare CLOB file reference variables as CLOB_FILE

Example EXEC SQL BEGIN DECLARE SECTION;
CLOB_FILE part_description;

EXEC SQL END DECLARE SECTION;

Field Description

name_length The length of the file name that is stored in name.

data_length The length of the data value in the file.
2-10 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
CLOB_
LOCATOR

The CLOB_LOCATOR data type defines a locator variable for a CLOB value. An
application may use a locator variable to manipulate a CLOB value at StorHouse.

DATE The DATE data type defines a date value with three parts: day-of-month, month,
and year.

file_options Options that control the use of the file. Possible values are:

■ TPE_FILE_CREATE – Creates a new file. An error occurs if the
file exists.

■ TPE_FILE_OVERWRITE – Replaces any existing file.

■ TPE_FILE_APPEND – Appends fetched data to an existing file
or creates a new file.

name The name of the file.

Field Description

CLOB_LOCATOR specification

C language representation int32_t

Declare CLOB locator variables as CLOB_LOCATOR

Example EXEC SQL BEGIN DECLARE SECTION;
CLOB_LOCATOR part_text;

EXEC SQL END DECLARE SECTION;

DATE specification

C language representation tpe_date_t

Declare DATE variables as date or DATE

Example EXEC SQL BEGIN DECLARE SECTION ;
date date_v ;

EXEC SQL END DECLARE SECTION ;
StorHouse ESQL Manual 2-11

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The structure definition for tpe_date_t is:

typedef struct {
 uint16_t year;
 uint8_t month;
 uint8_t day;
} tpe_date_t;

k

DOUBLE
(synonym FLOAT)

The DOUBLE data type defines data as a double precision floating-point num-
ber.

Field Description

year The year part of the date represented as a short data type ranging
in value from 1 to 9999.

month The month part of the date represented as an unsigned char data
type ranging in value from 1 to 12.

day The day part of the date represented as an unsigned char data
type ranging in value from 1 to the upper limit for the specific
month and year.

DOUBLE or FLOAT specification

C language representation double

Declare DOUBLE variables as double, DOUBLE, float, or FLOAT

Example EXEC SQL BEGIN DECLARE SECTION ;
double salary_v ;

EXEC SQL END DECLARE SECTION ;
2-12 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
INTEGER The INTEGER data type represents data as an integer with a 4-byte length.

NUMERIC
(or DECIMAL)

The NUMERIC data type (synonym DECIMAL) represents data as a number
with a given precision and scale.

INTEGER specification

C language representation int32_t

Declare INTEGER variables as INTEGER or int32_t

Range of values -2147483648 to +2147483647

Example EXEC SQL BEGIN DECLARE SECTION ;
long qty_v ;

EXEC SQL END DECLARE SECTION ;

NUMERIC or DECIMAL specification

C language representation tpe_num_t

The value for TPE_NUMERIC_SIZE in the
tpe_num_t structure definition is 16. The size of the
entire tpe_num_t structure is 24 bytes, which is the
space your program must allow and is the size
shown by the SQLDA.

Declare NUMERIC variables as numeric, NUMERIC, decimal, or DECIMAL

Restrictions When you declare a variable using the NUMERIC
type, you cannot specify precision and scale.

Example EXEC SQL BEGIN DECLARE SECTION ;
numeric commission_v ;

EXEC SQL END DECLARE SECTION ;
StorHouse ESQL Manual 2-13

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The structure definition for tpe_num_t is:

typedef struct {
 int16_t precision;
 int16_t scale;
 int16_t exp;
 int16_t dec_num;
 char dec_digits[TPE_NUMERIC_SIZE];

} tpe_num_t;

NUMERIC values are represented as binary coded decimal (BCD), with two deci-
mal digits per byte (4 bits per digit.) The last (rightmost) digit position contains
the sign of the value. The hexadecimal value C (bit pattern 1100) indicates a pos-
itive number and D (1101) represents a negative number. If the precision of a
NUMERIC value is even, an extra digit is added on the left to maintain align-
ment. For example, below are some values and their in-memory representations:

In the tpe_num_t data structure, StorHouse may eliminate leading zero bytes in
the value. This means that the precision of the value in the dec_digits field may

Field Description

precision The total number of decimal digits in the number.

scale The number of decimal digits to the right of the decimal point.

exp Reserved for future use and should be 0.

dec_num The number of bytes used in the dec_digits field.

dec_digits The numeric data in binary coded decimal (BCD) digits.

Precision and scale Value Representation (hexadecimal)

(5, 2) 134.25 | 13 | 42 | 5c |

(8, 3) -27125.21 | 02 | 71 | 25 | 21 | 0d |

(10, 2) 1935.22 | 00 | 00 | 01 | 93 | 52 | 2c |
2-14 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
be less than the precision indicated in the precision field. This effective precision
is calculated as follows:

(dec_num * 2) - 1

For instance, the value 1935.22 listed in the preceding table has the following
values in a tpe_num_t structure. The effective precision is 7.

REAL The REAL data type defines data as a single precision floating-point number.

Field Value

precision 10

scale 2

exp 0

dec_num 4

dec_digits | 01 | 93 | 52 | 2c |

REAL specification

C language representation float

Declare REAL variables as REAL or real

Example EXEC SQL BEGIN DECLARE SECTION ;
real val ;

EXEC SQL END DECLARE SECTION ;
StorHouse ESQL Manual 2-15

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
SMALLINT The SMALLINT data type defines data as a signed small integer with a 2-byte
length.

TIME The TIME data type represents data as a four-part time value: hours, minutes,
seconds, and milliseconds.

The structure definition for tpe_time_t is:

typedef struct {
 uint8_t hours;
 uint8_t mins;
 uint8_t secs;
 uint8_t reserved;
 uint16_t msecs;
} tpe_time_t;

SMALLINT specification

C language representation int16_t

Declare SMALLINT variables as SMALLINT, short, or int16_t

Range of values -32768 to +32767

Example EXEC SQL BEGIN DECLARE SECTION ;
short deptno_v ;

EXEC SQL END DECLARE SECTION ;

TIME specification

C language representation tpe_time_t

Declare TIME variables as time or TIME

Example EXEC SQL BEGIN DECLARE SECTION ;
time time_v ;

EXEC SQL END DECLARE SECTION ;
2-16 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
TIMESTAMP The StorHouse TIMESTAMP data type represents data as a date and time in a
7-part format.

Field Description

hours The hours portion of the time represented as an unsigned char
data type ranging in value from 0 to 24.

If hours equal 24, then mins, secs, and msecs must equal 00.

mins The minutes portion of the time represented as an unsigned char
data type ranging in value from 0 to 59.

secs The seconds portion of the time represented as an unsigned char
data type ranging in value from 0 to 62.

You can use seconds greater than 60 to indicate leap seconds.
However, time calculations do not consider leap seconds.

reserved Reserved for future use.

msecs The milliseconds portion of the time represented as an unsigned
short data type ranging in value from 0 to 999.

TIMESTAMP specification

C language representation tpe_timestamp_t

Declare TIMESTAMP variables as timestamp or TIMESTAMP

Example EXEC SQL BEGIN DECLARE SECTION ;
timestamp birth_info;

EXEC SQL END DECLARE SECTION ;
StorHouse ESQL Manual 2-17

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The structure definition for tpe_timestamp_t is:

typedef struct {
 uint16_t year;
 uint8_t month;
 uint8_t day;
 uint8_t hours;
 uint8_t mins;
 uint8_t secs;
 uint8_t reserved;
 uint32_t usecs;
} tpe_timestamp_t ;

Field Description

year The year part of the date represented as a short data type ranging
in value from 1 to 9999.

month The month part of the date represented as an unsigned char data
type ranging in value from 1 to 12.

day The day part of the date represented as an unsigned char data
type ranging in value from 1 to the upper limit for the specific
month and year.

hours The hours portion of the time represented as an unsigned char
data type ranging in value from 0 to 23.

If hours equal 24, then mins, secs, and usecs must equal 00.

mins The minutes portion of the time represented as an unsigned char
data type ranging in value from 0 to 59.

secs The seconds portion of the time represented as an unsigned char
data type ranging in value from 0 to 62.

You can use seconds greater than 60 to indicate leap seconds.
However, time calculations do not consider leap seconds.

usecs The microseconds portion of the time represented as an unsigned
long data type with values ranging from 0 to 999999.
2-18 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
VARBINARY The VARBINARY data type defines bit data as a variable-length array of bytes.

VARCHAR The VARCHAR data type defines data as a variable-length array of characters
including letters, numbers, spaces, and special characters.

VARBINARY specification

C language representation unsigned char

Restrictions ■ Never declare host variables as the
VARBINARY data type. Instead, use an SQLDA
and the DESCRIBE statement. See Chapter 5
for more information about SQLDAs and
DESCRIBE.

■ When StorHouse/RM returns a variable-length
binary value, the first two bytes contain the
actual length of the data. You should process
these two bytes as a short integer. Move (for
example, memcpy) these first two bytes to a
short variable because the returned field may
not be aligned.

■ Never handle VARBINARY data as a null-
terminated string because the data in a
VARBINARY field may contain 0 (NUL) bytes.

VARCHAR specification

C language representation char

Restrictions ■ Never declare host variables as the VARCHAR
data type. Instead, use an SQLDA and the
DESCRIBE statement. See Chapter 5 for more
information about SQLDAs and DESCRIBE.

■ When StorHouse/RM returns a variable-length
character value, the first two bytes are the actual
data length. These two bytes should be processed
as a short integer. Move (for example, memcpy)
these two bytes to a short variable because the
field may not be aligned.
StorHouse ESQL Manual 2-19

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
Declaring variables with type definitions

You can define a new data type (or alias) with the same characteristics as an exist-
ing host or StorHouse data type. Then you can declare host variables using the
new data type. You define new types with the TYPE IS OF TYPE statement in a
Declare Section.

The format of TYPE IS OF TYPE is:

TYPE new_type_name IS OF TYPE type_category

where type_category is defined as:

host_language_type | storhouse_type

Argument Description

new_type_name (required) Name of the new type being declared.

host_language_type (required for specifying a host language type) Name of the host
language type. ESQL supports the following C types:

[unsigned] char [unsigned] long

[unsigned] short double

In place of C type short or long, you can use a guaranteed-size
type listed in the table on page 2-4.

storhouse_type (required for specifying a StorHouse type) Name of the
StorHouse data type.

BLOB BLOB_FILE BLOB_LOCATOR

CHARACTER CLOB CLOB_FILE

CLOB_LOCATOR DATE DECIMAL

DOUBLE FLOAT INTEGER

NUMERIC REAL SMALLINT

TIME TIMESTAMP
2-20 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The following example declares the new type, customer_no, with the characteris-
tics of the C type long. It also declares the host variable input_v as the type
customer_no:

EXEC SQL BEGIN DECLARE SECTION ;
TYPE customer_no IS OF TYPE long ;
customer_no input_v ;

EXEC SQL END DECLARE SECTION ;

Declaring variables as host arrays

You can process a collection of data elements with one SQL statement by using
arrays. An array is a group of data items, or elements, assigned to one variable
name. You assign a host array to a host variable name and an indicator variable
array to an indicator variable name. You associate an indicator variable array with
a host variable array.

ESQL maps all arrays into the host language structure new_type_name. This
structure consists of the actual array and the current size of that array.

The C language definition of the new_type_name structure is:

struct new_type_name {
 long tpe_size;

element_type_name tpe_array[constant_id];
};

You can use C statements to process an array as long as you define the array as a
structure with the same name as the array name and with the two components
tpe_array and tpe_size. In addition, you must manually update tpe_size to the

Argument Definition

tpe_size The current size of the array.

tpe_array[constant_id] The actual array. Constant_id indicates the number of
elements in the array of type element_type_name.
StorHouse ESQL Manual 2-21

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
number of rows that are returned. In contrast, the SQL statement FETCH
updates tpe_size automatically. See Chapter 3, “Submitting queries in ESQL,”
for an explanation of FETCH.

You use the TYPE statement to declare and set the size of host arrays in a Declare
Section. There are three ways to declare an array with TYPE:

■ In ESQL syntax
■ In C syntax
■ As a new data type, then declare the host array variable using the new data

type

ESQL format

The ESQL format for declaring a host array is:

variable_name IS AN ARRAY OF type_name WITH SIZE constant_id

The following example uses the ESQL format to declare the host array my_array
of C type long. There are 12 elements in the array:

EXEC SQL BEGIN DECLARE SECTION ;
my_array IS AN ARRAY OF long WITH SIZE 12 ;

EXEC SQL END DECLARE SECTION ;

Argument Description

variable_name (required) The name of the array being declared.

type_name (required) The data type assigned to variable_name.

constant_id (required) The number of elements in variable_name.
2-22 StorHouse ESQL Manual

2Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
C format

The C format for declaring a non-char host array is:

host_language_type_name variable_name [constant_id]

The following example uses the C format to declare a host array of type long.
There are 12 elements in the array:

EXEC SQL BEGIN DECLARE SECTION ;
long my_array [12] ;

EXEC SQL END DECLARE SECION ;

The corresponding C language definition is:

struct my_array{
long tpe_size;
long tpe_array [12];

}

The C format for declaring a char host array is:

host_language_type_name variable_name [constant_id] [length]

Argument Description

host_language_type_name (required) The data type assigned to variable_name.

variable_name (required) The name of the array being declared.

constant_id (required) The number of elements in variable_name.

Argument Description

host_language_type_name (required) The data type assigned to variable_name.

variable_name (required) The name of the array being declared.
StorHouse ESQL Manual 2-23

2 Satisfying program requirements

Declaring variables and types

FileTek Proprietary and Confidential
The following example uses the C format to declare the array my_array of C type
char. There are 12 elements in the array. Each element is five characters long:

EXEC SQL BEGIN DECLARE SECTION ;
char my_array [12][5] ;

EXEC SQL END DECLARE SECTION ;

The corresponding C language definition is:

struct my_array {
long tpe_size:
char tpe_array [12] [5];

}

Declaring an array as a new data type

The format for declaring an array as a new data type is:

TYPE new_type_name IS AN ARRAY OF element_type_name
WITH SIZE constant_id

constant_id (required) The number of elements in variable_name.

length (required) The length of each char element in
variable_name.

Argument Description

Argument Description

new_type_name (required) Name of the new type you are declaring.

element_type_name (required) The host language data type or StorHouse data type
that appears in the array.

constant_id (required) The size of each element in the array.
2-24 StorHouse ESQL Manual

2Satisfying program requirements

Using host variables

FileTek Proprietary and Confidential
The following example declares a new type called array_type with the same char-
acteristics as the C data type char. This data type represents an array where each
element contains 20 characters:

EXEC SQL BEGIN DECLARE SECTION ;
TYPE array_type IS AN ARRAY OF char
WITH SIZE 20;

EXEC SQL END DECLARE SECTION;

The following example uses ESQL syntax to declare the host array my_array of
type array_type. There are 30 elements in the array:

EXEC SQL BEGIN DECLARE SECTION;
my_array IS AN ARRAY OF array_type WITH SIZE 30;

EXEC SQL END DECLARE SECTION;

Using host variables

You can use host variables in your ESQL program for input and output opera-
tions. For example, you can use:

■ One or more output host variables in a SELECT or FETCH statement INTO
clause to hold values returned by StorHouse/RM

■ A locator variable with a VALUES INTO statement to manipulate a LOB value
at the StorHouse server

■ An output file reference variable to transfer data from StorHouse to a client
file

Before StorHouse/RM executes any SQL statements that contain input host vari-
ables, your program must assign values to them. You may not use a host variable
to represent a table, view, or column name.
StorHouse ESQL Manual 2-25

2 Satisfying program requirements

Using host variables

FileTek Proprietary and Confidential
Locator variables and file reference variables follow the basic guidelines in this
section. See Chapter 6, “Accessing large objects” for specific information and
examples for using these types of host variables.

The format for specifying a host variable in an ESQL statement is:

:host_variable_name

When you use a host variable, you must:

■ Explicitly declare the host variable in a Declare Section
■ Declare the host variable before it is used in an ESQL program
■ Always precede the host variable by a colon (:) in an ESQL statement
■ Use the host variable in an ESQL statement only where you can use a constant

You must not:

■ Use host variables in CREATE, ALTER, and DROP statements
■ Precede a host variable by a colon when you use it in C language statements
■ Use SQL reserved words as host variable names

The following example uses the output host variables :emp_num_v and :dept_id_v
in a SELECT statement INTO clause. You must have previously declared these
host variables in a Declare Section as explained at “Coding a Declare Section” on
page 2-1.

EXEC SQL
SELECT emp_num, dept_id
INTO :emp_num_v, :dept_id_v
FROM emptable
WHERE emp_num = 3904933 ;
2-26 StorHouse ESQL Manual

2Satisfying program requirements

Using indicator variables

FileTek Proprietary and Confidential
Using indicator variables

You can use StorHouse indicator variables to test for null or truncated values.
You always associate an output indicator variable with an output host variable.

The format of an indicator variable in an ESQL statement is:

:host_variable_name :indicator_variable_name

When using indicator variables, you must:

■ Explicitly declare them in a Declare Section
■ Declare them as a short or SMALLINT data type
■ Precede them with a colon in ESQL statements
■ Precede them by their associated host variables in ESQL statements, separated

by a space

You must not:

■ Precede indicator variables with a colon in C language statements
■ Use SQL reserved words as indicator variable names
■ Use indicator variables in WHERE clauses

Valid values for indicator variables are:

Value Indicates that

0 A non-null value was placed in the host variable, and the host
variable was not truncated.

-1 The returned value is null and no value has been returned in the
host variable.

>0 The returned value was truncated because the host variable size
was too small. For non-LOB types, the indicator variable value is
the actual length of the returned value before truncation. For LOB
types, the indicator variable value is 1.
StorHouse ESQL Manual 2-27

2 Satisfying program requirements

Managing connectivity to StorHouse

FileTek Proprietary and Confidential
For locator variables, the meaning of the indicator variable values is slightly dif-
ferent. Because a locator variable cannot be NULL, a negative indicator variable
value indicates that the LOB value represented by the locator is NULL. The
NULL information is kept local to the client using the indicator variable value.
StorHouse/RM does not track NULL values with locator variables.

You can determine whether a returned value is NULL or truncated by using an
output host variable and its associated indicator variable in a SELECT statement
INTO clause. The following example checks the value of the indicator variable
projno_i to determine if the output host variable projno_v contains a NULL value.
If projno_i contains a -1, then projno_v contains a NULL value.

EXEC SQL
SELECT ename, job, deptno, projno
INTO :ename_v,:job_v,:deptno_v,:projno_v :projno_i
FROM employee
WHERE empron=1250;

if(projno_i==-1)
printf (“project number is NULL\n”);

...

Managing connectivity to StorHouse

Your program must connect to a StorHouse database before it can perform data-
base system administration tasks or submit queries. System-wide, the
SQL_SESSIONS system parameters controls the maximum number of connec-
tions. A single program can connect to up to 10 databases at a time; however,
you can execute SQL statements in only one database at a time. The database
where you execute SQL is your current connection.

The StorHouse SQL statements that help you manage database connectivity are:

■ CONNECT
■ SET CONNECTION
■ DISCONNECT
2-28 StorHouse ESQL Manual

2Satisfying program requirements

Managing connectivity to StorHouse

FileTek Proprietary and Confidential
Connecting to a StorHouse database

You connect to a StorHouse database by issuing the SQL CONNECT statement
and specifying the:

■ Name of the database you want to access expressed as a remote database name
■ StorHouse account ID and password to validate your access to StorHouse
■ Name you’re assigning to this connection

Caution: The StorHouse account password is optional (in the USING clause of
CONNECT); but, if you omit it, StorHouse will prompt stdin for the password.
If stdin is not a terminal, the CONNECT will fail.

CONNECT must be the first executable SQL statement in your program. Only
host language code and declarative SQL statements may logically appear before
CONNECT.

The format of the CONNECT statement is:

EXEC SQL
CONNECT TO database_name
[AS connection_name]
[[USER account_id [USING :host_variable_name]]] ;

Argument Description

database_name (required) Name of the StorHouse database, expressed as a
character literal or a host variable. When connecting to a
remote database, you must specify a connect string in the
following format:

filetek:T:remote_host_name:database_name

connection_name (optional) Name of the connection, expressed as a character
literal or host variable.
StorHouse ESQL Manual 2-29

2 Satisfying program requirements

Managing connectivity to StorHouse

FileTek Proprietary and Confidential
The following example specifies a connection string for the StorHouse remote
database salesdb. The name assigned to this connection is conn_2. The program
uses the account ID ssc and the account password represented by the host vari-
able :sscpswd to validate user access to StorHouse.

EXEC SQL
CONNECT TO 'filetek:T:remotehost:salesdb' AS 'conn_2'
USER 'ssc1' USING :sscpswd ;

The components of the connection string filetek:T:remotehost:salesdb are:

■ filetek:T is a constant
■ remotehost is the name of the remote machine containing salesdb

■ salesdb is the name of the remote database
■ conn_2 is the connection name

Changing the current connection

The SET CONNECTION statement resumes the connection associated with the
specified connection name and makes that connection the current one. It restores
the context of the current database to the same state that prevailed when the con-
nection was previously suspended.

account_id (required with the USER clause) StorHouse account ID,
expressed as a character literal or a host variable.

:host_variable_name (required with the USING clause) StorHouse account
password expressed as a host variable.

Argument Description
2-30 StorHouse ESQL Manual

2Satisfying program requirements

Managing connectivity to StorHouse

FileTek Proprietary and Confidential
The format of SET CONNECTION is:

EXEC SQL
SET CONNECTION connection_name ;

The following example sets the current connection to the database represented
by the conn_1 connection string:

EXEC SQL
SET CONNECTION 'conn_1' ;

Terminating a connection

DISCONNECT terminates the connection between your program and a Stor-
House database. You can terminate a specific connection, the current connec-
tion, or all established connections.

The format for DISCONNECT is:

EXEC SQL
DISCONNECT {connection_name | ALL | CURRENT } ;

Argument Description

connection_name (required) The name of the connection you are restoring. This
connection must have been established by a previous CONNECT
statement and must not have been terminated by a previous
DISCONNECT statement.
StorHouse ESQL Manual 2-31

2 Satisfying program requirements

Managing connectivity to StorHouse

FileTek Proprietary and Confidential
The following example terminates the connection established by the conn_2 con-
nect string:

EXEC SQL
DISCONNECT 'conn_2' ;

Argument Description

connection_name (required when ALL or CURRENT is omitted) Disconnects from a
specific connection, expressed as a character literal or a host
variable.

ALL (required when connection_name or CURRENT is omitted)
Disconnects from all established connections.

CURRENT (required when connection_name or ALL is omitted) Disconnects
from the current connection.
2-32 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
3

Submitting queries in ESQL

This chapter explains how to submit queries in embedded SQL. It describes:

■ The SELECT statement
■ Cursors
■ Array fetches

About queries

A query is a database operation that retrieves relational data from tables. Queries
can return one or more rows depending on your selection criteria. You submit
queries in ESQL with the SELECT statement. The column names and expressions
that follow the keyword SELECT make up your select list. This list identifies the
information you want to retrieve.

In the following query, the select list contains the columns name and city:

EXEC SQL
SELECT name, city
FROM customer ;
 ESQL Manual 3-1

3 Submitting queries in ESQL

About queries

FileTek Proprietary and Confidential
The SELECT statement supports the following clauses:

You use input host variables in WHERE and HAVING clauses and output host
variables in the INTO clause.

Queries that return a single row

You use the SELECT statement INTO clause for queries that return only one row.
The number of output host variables in the INTO clause must always equal the
number of columns in the select list. If you use SELECT INTO and your query
returns more than one row, the query fails.

If your query accesses a LOB value, you can place the value into a host variable that
is large enough to hold it. That is, the SELECT statement INTO clause host
variable may be defined with a BLOB or CLOB data type. The INTO clause host
variable may also be a locator variable or a file reference variable. See Chapter 6,
“Accessing large objects,” for more information about defining host variables for
LOB data.

The following example declares two output host variables: name_v and city_v.
Then it requests name and city information for a specific customer number from

SELECT clause Provides the

FROM Name of the table(s) you want to access and any join
specifications

GROUP BY Criteria for grouping rows returned by your query

HAVING Criteria for applying one or more qualifying conditions for
selected groups

INTO Variables used to contain a one-row result set

ORDER BY Order of the rows selected by the query

WHERE Search condition(s) to be used for row selection

FOR Compatible clause to allow IBM® DB2 programs to work
correctly without changing the SQL
3-2 StorHouse ESQL Manual

3Submitting queries in ESQL

About queries

FileTek Proprietary and Confidential
the customer table. You can assume that the customer table has no duplicate
entries, so this query will return only one row. The query specifies customer
number 1234 in the WHERE clause.

EXEC SQL BEGIN DECLARE SECTION ;
char name_v [30] ;
char city_v [20];

EXEC SQL END DECLARE SECTION ;
...
EXEC SQL

SELECT name, city
INTO :name_v, :city_v
FROM customer
WHERE cust_no = 1234 ;

Based on the selection criteria specified in the WHERE clause, the query returns
values for customer name and city into the output host variables, name_v and
city_v.

Queries that return multiple rows

For queries that return more than one row, you use a cursor to retrieve, or fetch,
one row at a time or an array of rows into output host variables. See page 3-7 for
an explanation of FETCH. The following graphic summarizes how to retrieve one
StorHouse ESQL Manual 3-3

3 Submitting queries in ESQL

Using cursors

FileTek Proprietary and Confidential
or more rows with a query.

You can use cursor and fetch operations to access LOB data. See Chapter 6,
“Accessing large objects,” for more information about using the FETCH statement
INTO clause to access LOB data.

Using cursors

You must explicitly define a cursor for queries that can return more than one row.
StorHouse/RM uses a cursor to retrieve each row in the result set and to indicate
the current row.

You use the following SQL statements to control cursors:

FETCH multiple rows
at a time into an array
of host variables

FETCH one row
at a time into host
variables

Multiple rows
(use FETCH INTO)

with a cursor

Only one row
(use SELECT INTO)

Queries can return

Database
Queries? Queries?

SQL statement Definition

DECLARE Names a cursor and associates it with a query.

OPEN Executes the query and identifies the result set.
3-4 StorHouse ESQL Manual

3Submitting queries in ESQL

Using cursors

FileTek Proprietary and Confidential
A cursor can be in one of two states: open or closed. An open cursor is associated
with an active set. A closed cursor is no longer associated with an active set,
although it remains associated with the SELECT statement.

The following rules apply to cursors:

■ Cursor names must begin with a letter. They can consist of any combination
of letters a-z and A-Z, numbers 0-9, and underscore (_). Cursor names
should be no longer than 32 characters.

■ You must declare a cursor before you reference it in any SQL statement. ESQL
cannot interpret a reference to an undeclared cursor.

■ All cursor control statements must occur within the same precompiled unit.
In other words, you cannot declare a cursor in one file and open it in another.

■ Cursor names must be unique within a file.

Associating a cursor with a query

You use the DECLARE statement to assign a name to a cursor and to associate the
cursor with a specific query (SELECT statement). The cursor name is an identifier
for the precompiler. It’s not a host variable, so it should not be defined in a Declare
Section.

FETCH Retrieves one row or an array of rows from the
result set. See page 3-9 for a discussion of array
fetches.

CLOSE Terminates cursor processing and releases
system resources.

SQL statement Definition
StorHouse ESQL Manual 3-5

3 Submitting queries in ESQL

Using cursors

FileTek Proprietary and Confidential
The format for DECLARE is:

EXEC SQL
DECLARE cursor_name CURSOR FOR
{ query_expression | prepared_statement_name } ;

Use the query_expression option with embedded SQL and the
prepared_statement_name option with dynamic SQL on the PREPARE statement.
See page 5-7 for information about PREPARE.

The following example declares the cursor cust_cur for a specific SELECT state-
ment (query_expression):

EXEC SQL DECLARE cust_cur CURSOR FOR
SELECT name, city, state
FROM customer
WHERE cust_no = 1234 ;

Opening a cursor

The OPEN statement opens a cursor, executes the associated SELECT statement
with the current program variables, and identifies the result set.

The format for OPEN is:

EXEC SQL
OPEN cursor_name
[{ USING :host_variable [:indicator_variable]
 [,:host_variable [:indicator_variable]]...
| USING DESCRIPTOR input_sqlda_pointer }] ;

Use the USING clause with embedded SQL and the USING DESCRIPTOR clause
with dynamic SQL. See page 5-12 for information about USING DESCRIPTOR.

ESQL references input host variable values when you open a cursor. This means
that changing the value of input host variables after OPEN does not affect your
result set. You must close the cursor and then reopen it for changes to affect your
3-6 StorHouse ESQL Manual

3Submitting queries in ESQL

Using cursors

FileTek Proprietary and Confidential
result set.

The following example declares and opens the cursor cust_cur:

EXEC SQL
DECLARE cust_cur CURSOR FOR
SELECT name, city, state
FROM customer
WHERE cust_no = 1234;

EXEC SQL OPEN cust_cur ;

Retrieving rows using a cursor

The FETCH statement reads the rows of the result set and returns the values into
host variables. For queries that can return multiple rows, FETCH, rather than
SELECT, contains the INTO clause with the list of output host variables. The
number of output host variables in the INTO clause must always equal the
number of items in the select list.

The format for FETCH is:

EXEC SQL
FETCH cursor_name
{ INTO :host_variable [:indicator_variable]
 [,:host_variable [:indicator_variable]]...
| USING DESCRIPTOR output_sqlda_pointer} ;

Use the INTO clause with embedded SQL and the USING DESCRIPTOR clause
with dynamic SQL. See page 5-12 for information about USING DESCRIPTOR.
StorHouse ESQL Manual 3-7

3 Submitting queries in ESQL

Using cursors

FileTek Proprietary and Confidential
The following code fetches rows opened by the cursor cust_cur:

/* connect to your database */
...

EXEC SQL
DECLARE cust_cur CURSOR FOR
SELECT name, city, state
FROM customer
WHERE cust_no = 1234;

/* Open cursor */

EXEC SQL OPEN cust_cur;

/* Fetch the query results into host variables */

while (sqlca.sqlcode==0)
{

EXEC SQL
FETCH cust_cur
INTO :name_v, :city_v; :state_v;

}
EXEC SQL

CLOSE cust_cur;
...

The preceding example declares and opens the cursor cust_cur. The first execution
of FETCH retrieves the first row of the active set. This row becomes the current
row. The cursor can only move forward in the active set. Each subsequent FETCH
advances the cursor to the next row. The only way to return to a previously fetched
row is to close the cursor and reopen it.

If the cursor is already pointing to the last row of the active set or if the active set
does not contain any rows, a FETCH returns the status code 100 in the SQLCA
field sqlcode to indicate that there are no more rows to be fetched. In this case, you
must close and reopen the cursor before you can use it again.
3-8 StorHouse ESQL Manual

3Submitting queries in ESQL

Using a cursor with host variable arrays

FileTek Proprietary and Confidential
Closing a cursor

The CLOSE cursor statement closes a cursor. Once you close a cursor, you can’t
use it to FETCH a row because you no longer have an active set. No statements
referring to the cursor, except for OPEN, are operative.

The format for CLOSE is:

EXEC SQL
CLOSE cursor_name ;

The following example closes the cursor cust_cur:

EXEC SQL
CLOSE CURSOR cust_cur ;

Using a cursor with host variable arrays

The FETCH statement typically returns one row at a time from the active set
selected by OPEN. ESQL can fetch multiple rows at a time if you declare your host
variables as arrays. Array fetching is more efficient than single row fetches for
retrieving a large number of rows because it reduces the number of calls to a
database.

Note: StorHouse/RM currently does not support array fetches with file reference
variables (BLOB_FILE and CLOB_FILE data types).

StorHouse/RM maps all host arrays to a C structure, which is defined on page
2-21. The structure element tpe_size initially contains the maximum number of
rows that an application can retrieve with a single FETCH call. In a multi-row
fetch, you must reset tpe_size before every FETCH.
StorHouse ESQL Manual 3-9

3 Submitting queries in ESQL

Using a cursor with host variable arrays

FileTek Proprietary and Confidential
For example, if tpe_size is initially equal to 25 and there are 60 rows in your result
set, you’ll fetch 25 rows with the first FETCH, 25 rows with the second FETCH,
and 10 rows with the third FETCH. You must reset tpe_size as shown in the
following table.

The third fetch also sets sqlcode to 100, which indicates that there are no more
rows to be retrieved. In this case, FETCH actually retrieved 10 rows even though
the sqlcode indicates the SQL_NOT_FOUND condition.

Note: An extractor cursor operation returns the partial buffer with sqlcode 0 and
an empty buffer with sqlcode 100.

The following example declares the output host variable arrays name and cust_no.
It uses these arrays to fetch up to 50 rows in one FETCH call:

/* Fetch up to 50 rows in one fetch call */
#define ARRAYSZ 50
#define NAMESZ 30

EXEC SQL BEGIN DECLARE SECTION;

TYPE customer_name_t IS AN ARRAY OF CHAR WITH SIZE NAMESZ;
TYPE customer_id_t IS OF TYPE LONG INTEGER ;

customer_name_array IS AN ARRAY OF customer_name_t
WITH SIZE ARRAYSZ;

customer_id_array IS AN ARRAY OF customer_id_t
WITH SIZE ARRAYSZ;

EXEC SQL END DECLARE SECTION;
...

Operation Set tpe_size to

First FETCH 25

Second FETCH 25

Third FETCH 10
3-10 StorHouse ESQL Manual

3Submitting queries in ESQL

Using a cursor with host variable arrays

FileTek Proprietary and Confidential
EXEC SQL
DECLARE customer_cursor CURSOR FOR

SELECT name, cust_no
FROM customer ;

...
if (sqlca.sqlcode < 0) goto err ;
StorHouse ESQL Manual 3-11

3 Submitting queries in ESQL

Using a cursor with host variable arrays

FileTek Proprietary and Confidential
3-12 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
4

Handling errors and warnings

You’ve already learned how to use indicator variables to check for NULL or trun-
cated values. This chapter describes other ways to handle error and warning con-
ditions. These include using the:

■ SQLCA
■ WHENEVER statement

Using the SQLCA

ESQL programs require a data structure called the SQL Communications Area
(SQLCA) to hold information about the status of your most recently executed
SQL statement. StorHouse/RM updates the SQLCA after every executable SQL
statement.

You can use the SQLCA to check:

■ Return code (sqlcode) information
■ The number of rows fetched
■ Warning flags (sqlwarn)

C programs implement the SQLCA as a global structure that is automatically
declared and defined by the ESQL precompiler.
 ESQL Manual 4-1

4 Handling errors and warnings

Using the SQLCA

FileTek Proprietary and Confidential
SQLCA structure definition

The components of the SQLCA structure are:

struct tpe_sqlca {
 char sqlcaid[8]; /* Eye-catcher, "TPESQLCA" */
 int32_t sqlcode; /* Result of execution */
 int16_t sqlcabc; /* Length of tpe_sqlca */
 uint16_t sqlerrml; /* Length of message */
 char sqlerrm[74]; /* Null-terminated message */
 char sqlerrp[8]; /* (reserved) */
 int32_t sqlerrd[8]; /* Diagnostic information */
 char sqlwarn[9]; /* Warning flags */
 char sqlstate[5]; /* Completion state */
};

Component Description

sqlcaid Contains the string 'SQLCA'.

sqlcode Provides the result of an SQL statement execution. Valid values
are:

■ 0 – indicates successful execution.

■ positive – indicates successful execution. The only positive
status code is 100 (SQL_NOT_FOUND), which is returned when
there are no more rows to be fetched.

■ negative – indicates that an error occurred in SQL statement
execution. Refer to the StorHouse SQL Reference Manual for a
list of SQL codes.

sqlcabc Contains the size of the SQLCA structure.

sqlerrml Contains the length of the error message in sqlerrm.

sqlerrm Contains a null terminated character string that is the error text
corresponding to the code in sqlcode.

sqlerrp Currently not used.
4-2 StorHouse ESQL Manual

4Handling errors and warnings

Using the SQLCA

FileTek Proprietary and Confidential
sqlerrd

sqlerrd[2]

sqlerrd[3]

sqlerrd[5]

Contains an array of six long integers. Elements 0, 1, and 4 are
currently not used.

Number of rows that were processed after a successful execution
of INSERT, UPDATE, and DELETE (for system tables and system
table views only).

For FETCH, this element is set to the cumulative number of rows
for a FETCH call associated with a cursor.

Number of rows fetched by the last FETCH call.

Value indicating whether StorHouse/RM used the extractor or the
database engine to process a query. This value is set only after a
PREPARE. Valid values are:

■ Non-zero – the extractor.

■ 0 – the database engine.

sqlwarn

sqlwarn[0]

sqlwarn[1]

sqlwarn[2]

sqlwarn[3]

sqlwarn[4]

sqlwarn[6]

Contains a character array with eight elements. Currently
StorHouse/RM uses only elements 0, 1, 2, 3, 4, and 6. Valid
values are blank or the single character ‘W,’ which indicates a
warning during SQL statement execution.

If set to W, then one or more other elements in this array are also
set to W. If blank, then no warnings are set.

If set to W, then one or more strings returned by the previous
FETCH were truncated. Use indicator variables to indicate which
strings were truncated.

If set to W, then one or more NULL values were ignored in the
computation of an aggregate function.

If set to W, then the number of items in the SELECT list does not
equal the number of host variables in the INTO clause. The query
returns n elements, where n is the lesser of the two.

If set to W, then an UPDATE or DELETE without a WHERE clause
completed successfully. It’s useful to check this element when
working with dynamic statements. UPDATE and DELETE are valid
for system tables and system table views only.

If set to W, then the transaction is implicitly marked for
ROLLBACK. The application must roll back the current transaction
before executing the next SQL statement.

sqlstate Is reserved for future use.

Component Description
StorHouse ESQL Manual 4-3

4 Handling errors and warnings

Checking the sqlcode for status codes

FileTek Proprietary and Confidential
Checking the sqlcode for status codes

You can use the SQLCA component sqlcode to check status codes. You can use
other components to supply additional diagnostic information and to check for
warnings.

The following example shows how to check for the value 100 in sqlcode while
using FETCH:

...
/* Open cursor */
EXEC SQL OPEN cust_cur ;

if (sqlca.sqlcode !=0)
{

fprintf (stderr,
"Open cursor statement failed (%ld : %s)\n",
sqlca.sqlcode, sqlca.sqlerrm);
return (-1);

}

/* Fetch rows and return result set into host variables */
while (sqlca.sqlcode==0)
{

EXEC SQL FETCH cust_cur
INTO :cust_name_v, :cust_city_v,:cust_state_v;

if (sqlca.sqlcode==0)
{

printf ("cust_no : %d, name : %s, city : %s\n",
cust_no_v, name_v, city_v) ;

}
}
if (sqlca.sqlcode < 0)
{

 fprintf (stderr,
"FETCH cursor statement failed (%ld : %s)\n",
sqlca.sqlcode, sqlca.sqlerrm);

}

4-4 StorHouse ESQL Manual

4Handling errors and warnings

Checking the sqlcode for status codes

FileTek Proprietary and Confidential
EXEC SQL CLOSE cust_cur ;
EXEC SQL DISCONNECT ‘conn_1’ ;
...

Checking for warnings

You can use the SQLCA component sqlwarn to check for warnings that occur
during the execution of an ESQL statement.

The following example shows how to use sqlwarn. It computes the average com-
mission for employees in the sales department and checks the sqlwarn[2] compo-
nent to determine whether any NULL values were ignored in the computation of
the average commission.

EXEC SQL BEGIN DECLARE SECTION ;
FLOAT comm_v ;

EXEC SQL END DECLARE SECTION ;
...
EXEC SQL

SELECT AVG (commission)
INTO :comm_v
FROM employee
WHERE deptno = 20 ;

if (sqlcode==0)
{
/* Check for SQLCA warnings */

if (sqlca.sqlwarn[2]=='W')
{
 printf ("(One or more NULL values ignored\n") ;
 printf (" in computation of average commission !)\n") ;
}

printf ("commission : %d\n", comm_v) ;
}
...
StorHouse ESQL Manual 4-5

4 Handling errors and warnings

Using WHENEVER

FileTek Proprietary and Confidential
Using WHENEVER

By default, precompiled programs ignore error and warning conditions and con-
tinue processing when possible. StorHouse SQL supports the WHENEVER state-
ment to automate condition checking and error handling for you.

WHENEVER checks the SQLCA for three runtime exceptions:

■ SQLERROR
■ SQLWARNING
■ NOT FOUND

Depending on the exception, you can tell your program to continue with the
next statement, branch to a host language label, or stop execution.

The format of WHENEVER is:

WHENEVER exception_sp action_sp

where exception_sp is defined as:

{NOT FOUND | SQLERROR | SQLWARNING}

and action_sp is defined as:

{STOP | CONTINUE | GOTO host_language_label}
4-6 StorHouse ESQL Manual

4Handling errors and warnings

Using WHENEVER

FileTek Proprietary and Confidential
Note: FileTek recommends that you use CONTINUE or GOTO instead of STOP.

Do not use WHENEVER NOT FOUND with array FETCH. If you are retrieving
multiple rows at a time (see the section, “Using a cursor with host variable
arrays,” on page 3-9), FETCH may return rows from the result set and still spec-
ify 100 (no more rows to be found) in the sqlca.

Scope of WHENEVER

The scope of WHENEVER is positional rather than logical within a program.
Positional means that WHENEVER tests all executable SQL statements that phys-
ically follow it in the source file, not in the flow of program logic. You should
always code WHENEVER before the first executable SQL statement you want to
test. A WHENEVER statement stays in effect until it is superseded by another
WHENEVER statement that checks for the same condition or until the end of the
source file.

Argument Description

exception_sp

NOT FOUND

SQLERROR

SQLWARNING

One of the following three exception conditions:

sqlcode is set to 100, SQL_NOT_FOUND.

sqlcode is set to negative.

sqlwarn[0] is set to W.

action_sp

STOP

CONTINUE

GOTO
host_language_label

One of the following specific actions:

Terminate program without any final reporting.

Ignore the specified exception and continue executing the
next program statement. CONTINUE is the default.

Branch to the statement corresponding to the
host_language_label.
StorHouse ESQL Manual 4-7

4 Handling errors and warnings

Using WHENEVER

FileTek Proprietary and Confidential
In the following example, the second WHENEVER SQLERROR statement super-
sedes the first. In other words, the first WHENEVER only applies to the CON-
NECT statement. The second WHENEVER SQLERROR statement applies to
both the DELETE and DROP statements, in spite of the control flow from step1
to step3.

step1:
EXEC SQL WHENEVER SQLERROR GOTO step4;
EXEC SQL CONNECT.....
...
GOTO step3

step2:
EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL DELETE sysadm.syssmusers WHERE accountid=’act1’;
...

step3:
EXEC SQL DROP TABLE mytable;
...

step4:
...

The following example uses the WHENEVER statement for exception handling.
In this example, the CONTINUE in the second WHENEVER statement prevents
control from passing to the do_rollback label, which prevents the program from
going into an endless loop if there are subsequent errors.

...
/* Upon error branch to label do_rollback */
EXEC SQL WHENEVER SQLERROR GOTO do_rollback ;

EXEC SQL
CREATE TABLE newtable
(COL1DEF CHAR (5))
TABLE SPACE CV7SET2;
4-8 StorHouse ESQL Manual

4Handling errors and warnings

Using WHENEVER

FileTek Proprietary and Confidential
/* Commit work and disconnect from database */
EXEC SQL COMMIT WORK ;
EXEC SQL DISCONNECT filetek:T:sys1:cust_db ;
exit (0) ;
do_rollback:
EXEC SQL WHENEVER SQLERROR CONTINUE ;

strncpy (errmesg, sqlca.sqlerrm, sqlca.sqlerrml);
errmesg [sqlca.sqlerrml] = '\0' ;
fprintf (stderr, "Error : %s\n", errmesg);

EXEC SQL ROLLBACK WORK ;
EXEC SQL DISCONNECT filetek:T:sys1:cust_db ;
exit (1) ;

It’s a good practice to code the following statement:

EXEC SQL WHENEVER <condition > CONTINUE;

at the end of any function that contains a WHENEVER...GOTO declaration.
StorHouse ESQL Manual 4-9

4 Handling errors and warnings

Using WHENEVER

FileTek Proprietary and Confidential
4-10 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
5

Using dynamic SQL

This chapter defines dynamic SQL and explains:

■ When to use dynamic SQL

■ How to represent dynamic SQL statements as character strings
■ How to use substitution markers for input host variables in dynamic SQL

■ Four scenarios for accepting and processing SQL statements at runtime
■ How to choose the appropriate scenario for your job
■ How to use dynamic SQL to fetch from host arrays

About dynamic SQL

Some applications accept and process different SQL statements at every program
execution. These applications may submit queries that select a variety of
information from different tables according to search criteria received at runtime.
Such SQL statements are dynamic because they vary from one program execution
to the next. Dynamic SQL statements provide more application flexibility than
embedded SQL because they allow for change. You need this versatility when you
don’t know one or more of the following at precompile time:

■ The specific SQL statements you want to execute
■ Number of host variables in each statement
■ Data types of host variables
■ Tables, columns, or view names
 ESQL Manual 5-1

5 Using dynamic SQL

Storing dynamic SQL as a character string

FileTek Proprietary and Confidential
Storing dynamic SQL as a character string

Unlike static SQL, dynamic SQL statements are not embedded in your program.
Instead, they’re stored as character strings. You can declare them as character
host variables in a Declare Section or represent them as quoted string literals.
Either way, these character strings can be input to or constructed by your
program at runtime.

The following example illustrates how to store a dynamic SQL statement as a
host variable. This example declares the host variable sql_str in a Declare Section
and assigns it the value “select name, id from customer_table”. StorHouse/RM can
use this value to build a dynamic SQL statement.

EXEC SQL BEGIN DECLARE SECTION ;
char sql_str [256] ;

EXEC SQL END DECLARE SECTION ;
strcpy (sql_str,“select name, id from customer_table”);

Character strings that represent dynamic SQL statements may not contain:

■ The keywords EXEC SQL

■ The statement terminator for C (the semicolon)
■ Any of the following SQL statements

– CLOSE

– DECLARE

– DESCRIBE

– EXECUTE

– FETCH

– INCLUDE

– OPEN

– PREPARE

– WHENEVER
5-2 StorHouse ESQL Manual

5Using dynamic SQL

Understanding substitution markers

FileTek Proprietary and Confidential
Understanding substitution markers

Dynamic SQL may contain place holders, or substitution markers, for host
variables that are substituted in an SQL statement. It’s not necessary for a marker
to have the same name as the host variable it represents. The only restriction is
that you precede marker names with a colon (for example, :marker_name). If
you prefer, you can use the question mark symbol (?) as a place holder for a host
variable instead of supplying a marker name.

Correlating substitution markers with host
variables

There are two ways that StorHouse/RM correlates substitution markers with the
actual host variables they represent. The method depends on whether the SQL
statement containing the host variable is a SELECT or non-SELECT statement as
shown in the following table:

See pages 3-6 and 5-8 for information about OPEN and EXECUTE, respectively.

Example

The following SQL statements show two ways to represent a substitution marker
in a character string. The first SELECT uses a marker name (:ss_num). The
second SELECT uses a question mark (?). StorHouse/RM interprets both
methods the same way.

Statement category StorHouse/RM replaces markers with

SELECT Host variables supplied by the USING clause of a
subsequent OPEN statement

Non-SELECT Host variables supplied by the USING clause of a
subsequent EXECUTE statement.
StorHouse ESQL Manual 5-3

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
“select name, dept_id from customer_tab where ssnum=:ss_num”
“select name, dept_id from customer_tab where ssnum=?”

The markers :ss_num and ? are merely place holders for a host variable that is
supplied by your program in a subsequent OPEN statement.

Scenarios for using dynamic SQL

To simplify learning how and when to use dynamic SQL, we’ve constructed four
scenarios according to the type of SQL statement you need to execute and the
amount of information you know about its content.

As shown in the following table, each scenario is particularly useful for processing
a specific category of dynamic SQL.

Scenario Query? Restrictions

1 No The SQL statement contains no markers for input host
variables.

You build the statement and process it with EXECUTE
IMMEDIATE. StorHouse/RM parses the statement every
time it’s executed.

Example: DROP TABLE table1

2 No You must know the number of input host variables and their
data types at precompile time.

You build a dynamic SQL statement and process it with
PREPARE and EXECUTE. StorHouse/RM parses the
statement once but can execute it many times with different
values for host variables.

Example: DELETE FROM sysadm.syssmusers
WHERE accountid = :accountid_marker
5-4 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Each successive scenario puts fewer restrictions on your program but is more
complex.

Scenario 1: Non-SELECT without markers

Scenario 1 represents the simplest category of dynamic SQL: non-SELECT
statements that have no markers for input host variables. Some examples of these
SQL statements are:

■ REVOKE DBA FROM user1
■ DROP TABLE customer_table
■ DROP TABLE SPACE mytablespace

Scenario 1 processes SQL statements with the static SQL statement EXECUTE
IMMEDIATE. This statement parses the SQL statement presented in a host
variable or a statement string and executes it.

3 Yes You know the number of select list items, the number of
markers for input host variables, and the data types of
input host variables at precompile time.

You build a dynamic query and process it with PREPARE,
DECLARE, OPEN, FETCH, and CLOSE.

Example:SELECT name, id FROM tab
WHERE ssnum = :marker1

4 Yes You don’t know the number of select list items, the number
of markers for input host variables, and the data types of
input host variables until runtime.

You build a dynamic query and process it using an SQL
descriptor area (SQLDA) which is described in the section
“Scenario 4: SELECT using an SQLDAUnderstanding the
SQLDA structure definition” on page 5-12).

Example: SELECT col1, ... FROM mytable
WHERE predicate_1, ...

Scenario Query? Restrictions
StorHouse ESQL Manual 5-5

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The format for EXECUTE IMMEDIATE is:

EXEC SQL
EXECUTE IMMEDIATE { :host_variable | statement_string } ;

The following example supplies the SQL statement text to EXECUTE
IMMEDIATE with a host variable:

EXEC SQL BEGIN DECLARE SECTION ;
char sql_str [256] ;
EXEC SQL END DECLARE SECTION ;
gets (sql_str) ;
EXEC SQL EXECUTE IMMEDIATE :sql_str ;
...

The following example supplies the SQL statement text to EXECUTE
IMMEDIATE with a statement string. Notice that you terminate the EXECUTE
IMMEDIATE statement with a semicolon because it’s part of an ESQL construct.
You do not terminate the character string that represents the SQL statement with
a semicolon. (There is no semicolon after the word mytable.)

EXEC SQL EXECUTE IMMEDIATE
‘drop table mytable’;

Note: EXECUTE IMMEDIATE works best for statements that are executed only
once because it parses the statement before each execution. If you plan to execute
the statement more than once, use scenario 2 instead of scenario 1.

Scenario 2: Non-SELECT with markers

Scenario 2 is for non-SELECT statements that contain markers for input host
and indicator variables. You must know the data types of your input host
variables at precompile time.
5-6 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
You use the PREPARE and EXECUTE statements to process these non-SELECTs.
Both PREPARE and EXECUTE are embedded, or static, SQL statements that
must be preceded by EXEC SQL and terminated with a semicolon.

■ PREPARE parses an SQL statement for syntax errors and then assigns an
identifier to the statement.

■ EXECUTE executes the parsed SQL statement identified by the
statement_name. It uses the current value of each input host variable named
in the USING clause.

You prepare an SQL statement once but can execute it as often as necessary
within the same transaction. If you commit or roll back the current transaction
and want to re-execute the SQL statement, you must prepare it again.

About PREPARE

The format for PREPARE is:

EXEC SQL
PREPARE statement_name FROM :string_variable ;

where :string_variable is defined as:

character_string | :host_variable

If you specify the SQL statement as a host variable, then you must have declared
the host variable as a character array in a Declare Section.

The following SQL statement prepares an SQL statement from a character string:

EXEC SQL
PREPARE delstmt FROM ‘delete from sysadm.syssmusers where
accountid=:mkr1’ ;
StorHouse ESQL Manual 5-7

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The following SQL statement prepares an SQL statement represented as a host
variable:

EXEC SQL
PREPARE delstmt FROM :sql_str ;

About EXECUTE

The format for EXECUTE is:

EXEC SQL
EXECUTE statement_name

[USING { :host_variable [:indicator_variable]
 [,:host_variable [:indicator_variable]]...
| DESCRIPTOR input_sqlda_pointer }] ;

The DESCRIPTOR clause uses an SQLDA, which is explained on page 5-12.

The USING clause applies to scenario 2. When StorHouse/RM executes an SQL
statement, the input host variables in the EXECUTE statement USING clause
replace the corresponding markers in the prepared SQL statement.

The following SQL statement is an example of a valid EXECUTE statement:

EXEC SQL
EXECUTE delstmt USING :varname1 ;

Associating markers with host variables

Positioning of markers and host variables in their respective SQL statements is
significant. The order of markers in the prepared SQL statement must match the
order of host variables in the EXECUTE statement USING clause.

The following are valid PREPARE and EXECUTE statements. Each marker in the
PREPARE statement has a corresponding host variable in the USING clause.
5-8 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
EXEC SQL
PREPARE delstmt FROM ‘delete from sysadm.syssmusers where

accountid=:x or default_ts=:y’;
EXEC SQL

EXECUTE delstmt USING :x_var, :y_var;

The host variable :x_var is the first host variable in the USING clause list. It
replaces the first marker :x. The host variable :y_var is the second variable in the
USING clause list. It replaces the marker :y.

Example

The following example:

■ Declares the host variables sql_str and acct_id as character arrays
■ Sets sql_str equal to ‘delete from sysadm.syssmusers where accountid=:mkr’

■ Uses the marker mkr as a place holder for the host variable acct_id
■ Parses the SQL statement represented by sql_str

■ Assigns the statement_name delstmt to the prepared SQL statement
■ Executes the SQL represented by delstmt using the current value of the host

variable acct_id

...
EXEC SQL

BEGIN DECLARE SECTION ;
char sql_str [256] ;
char acct_id [32] ;

EXEC SQL
END DECLARE SECTION ;

strcpy (sql_str, “delete from sysadm.syssmusers where
accountid =:mkr”);
EXEC SQL

PREPARE delstmt FROM :sql_str ;
gets (acct_id)
EXEC SQL

EXECUTE delstmt USING :acct_id ;
...
StorHouse ESQL Manual 5-9

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Scenario 3: Fixed-list SELECTs

Scenario 3 combines scenario 2 with the SQL statements that you need to control
a cursor. Use scenario 3 for fixed-list SELECT statements when you know the
following at precompile time:

■ Number of items in the select list
■ Number of markers for input host variables
■ Data types of input host variables

You don’t need to know the names of the tables and columns in your query or
the values of your input host variables until runtime.

You use PREPARE plus the cursor control statements DECLARE, OPEN, FETCH,
and CLOSE to process your query. See “About PREPARE” on page 5-7 for an
explanation of PREPARE. See Chapter 3, “Submitting queries in ESQL” for the
format descriptions of DECLARE, OPEN, FETCH, and CLOSE. The following
table provides a summary description of these statements.

SQL statement Function

DECLARE Defines a cursor and associates it with a specific query.
Cursor names must be unique.

Example: DECLARE my_cursor CURSOR FOR sel_stmt

OPEN
(with the USING clause)

Allocates a cursor, obtains the addresses of input host
variables, executes the query, and identifies the result set.
The USING clause specifies the input host variables that
replace substitution markers in the prepared dynamic SQL
statement.

Example: OPEN my_cursor USING :host_variable

FETCH
(with the INTO clause)

Returns one row or an array of rows from the active set,
assigns column values in the select list to corresponding
host variables, and advances the cursor to the next row.

Example: FETCH my_cursor INTO :name_var, :salary_var

CLOSE Terminates cursor processing and frees system resources.

Example: CLOSE my_cursor
5-10 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The following example shows how to process an SQL statement with two items
in the select list and one input host variable with scenario 3.

extern int hereitis (
char *tablename,
char *acct_id)

{
...
EXEC SQL BEGIN DECLARE SECTION;

char targ_acct [12];
char dept_num [20];
char emp_num [10];
char sel_stmt [120];

EXEC SQL END DECLARE SECTION;
strcpy (sel_stmt, “SELECT dept_num_col,emp_num_col FROM ”);
strcat (sel_stmt, table_name);
strcat (sel_stmt, “ WHERE ACCT_ID = ?”);
strcpy (targ_acct, acct_id);
...
EXEC SQL

WHENEVER SQLERROR GO TO report_err;
EXEC SQL

PREPARE sql_query FROM :sel_stmt;
EXEC SQL

DECLARE my_cursor CURSOR FOR sql_query;
EXEC SQL

OPEN my_cursor USING :targ_acct;
for (;;)
{

EXEC SQL
FETCH my_cursor
INTO :dept_num, :emp_num,;

if (sqlca.sqlcode != 0)
break;

/*
 *User code to process dept_num and emp_num.
 */

}
EXEC SQL

CLOSE my_cursor ;
EXEC SQL
StorHouse ESQL Manual 5-11

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
 COMMIT WORK;
...

return (0);
report_err:

printf (“Error %ld\n”, sqlca.sqlcode);
return (-1);

EXEC SQL WHENEVER SQLERROR CONTINUE;
}

Scenario 4: SELECT using an SQLDA

Scenario 4 is the most complicated method to code. It’s also the most flexible
from an application perspective. You use scenario 4 when you don’t know the
number of select list items, the number of markers for input host variables, and
the data types of input host variables until runtime.

Before StorHouse/RM can process your dynamic SELECT, it needs specific
information about each select list item and input host variable. Specifically,
StorHouse/RM needs to know the:

■ Number of select list items and input host variables
■ Length of each
■ Data type of each
■ Buffer address of each

StorHouse ESQL applications use an SQL descriptor area (SQLDA) to obtain this
information.

About an SQL descriptor area (SQLDA)

An SQLDA is a program data structure that supplies information about dynamic
SQL statements. Applications create an SQLDA and allocate the correct amount
of storage for SQL statement variables. The OPEN, EXECUTE, and FETCH
statements use an SQLDA to obtain these storage addresses.
5-12 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
There are two types of SQLDAs:

■ An input SQLDA (also called a bind descriptor) stores the descriptions of input
host and indicator variables and the addresses of input buffers that hold the
values of these variables.

■ An output SQLDA (also called a select descriptor) stores descriptions of select
list items and the addresses of output buffers that hold the names and values
of these items.

Storing information in an SQLDA

Your application, tpe_da_xxx functions, and the DESCRIBE statement store
information in an SQLDA. See “Allocating an SQLDA” on page 5-21 for
information about how each field in the SQLDA is initialized.

DESCRIBE is a static SQL statement with two formats:

■ DESCRIBE BIND VARIABLES
■ DESCRIBE SELECT LIST

The following tables explain each format.

DESCRIBE BIND VARIABLES

Definition Stores the number of input host variables in an SQLDA.

Format EXEC SQL
DESCRIBE BIND VARIABLES FOR statement_name INTO
input_sqlda_pointer;

Restrictions Execute DESCRIBE BIND after you PREPARE the SQL statement
represented by statement_name and before you OPEN the
associated cursor.

Always use the following form of OPEN with DESCRIBE BIND:

EXEC SQL
OPEN cursor_name USING DESCRIPTOR input_sqlda_pointer;
StorHouse ESQL Manual 5-13

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Understanding the SQLDA structure definition

The following StorHouse SQLDA structure definition, tpe_sqlda, is
automatically included in any program that is preprocessed by ESQL.
Additionally, the structure tpe_sqlvar contains an entry for each variable in the
SQLDA.

struct tpe_sqlda {
char sqldaid[8]; /* Eye-catcher 'TPE_SQLD' */
uint8_t sqldvrsn; /* SQLDA version... must be 0 */
uint8_t sqldfmod; /* Flag: fetch mode */
int16_t sqldsize; /* Number of entries allocated */
int16_t sqldnvar; /* Number of entries in use */
int16_t sqldrsv1; /* (reserved) */
int16_t sqldnrow; /* Number of rows to be fetched */
int16_t sqldvnln; /* Maximum varname length */
tpe_sqlvar* sqldvar; /* tpe_sqlvar elements */

};

DESCRIBE SELECT LIST

Definition Stores the following information about output items in an SQLDA:

■ Number of output items that are returned

■ Data type of each output item

■ Length of each output item

■ Precision value for each DECIMAL (NUMERIC) output item

■ Scale value for each DECIMAL (NUMERIC) output item

■ Null value indicator for each output item

■ Name of each item in the select list

FORMAT EXEC SQL DESCRIBE SELECT LIST FOR statement_name
INTO output_sqlda_pointer ;

Restrictions Execute DESCRIBE SELECT LIST at any time after PREPARE.
5-14 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Component Description

sqldaid Enhances the ability to validate an SQLDA and aids in
debugging, making it possible to find an SQLDA in a dump. The
value is TPE_SQLD.

sqldvrsn Identifies the version of the tpe_sqlda. The version described
here is 0.

sqldfmod Contains a flag indicating the method to use for fetch operations.
Values are:

■ 0 (TPE_DA_STANDARD) indicates a standard fetch into
buffers provided by the client application.

■ 1 (TPE_DA_POINTER) indicates a pointer-fetch. Values are
fetched into a buffer controlled by the server, and pointers in
the SQLDA are updated to reference that buffer.

sqldsize Contains the allocated size of the SQLDA, expressed as a
number of entries. This differs from the number of active entries.
The value must be >= 1 and <= TPE_MAX_FIELDS.

sqldnvar Contains the number of active entries in the SQLDA. This
number must be >= 0 and <= sqldsize. If a DESCRIBE operation
sets this to a negative number, the absolute value of sqldnvar is
the actual number of entries required for the DESCRIBE.

sqldrsv1 Is reserved for future use and must be 0.

sqldnrow Contains the number of rows to be returned. This number must
be >= 1. The sqldfmod flag determines how values are returned.

sqldvnln Contains the maximum length of a variable name when returned
from StorHouse to the client. Any non-NULL sqlvname field in an
entry points to an area that is at least sqldvnln bytes long.

sqldvar Contains a pointer to the array of entries.
StorHouse ESQL Manual 5-15

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The structure definition for tpe_sqlvar is:

struct tpe_sqlvar {
int32_t sqlvln32; /* Variable (maximum) length */
int32_t* sqlvlenp;/* Pointer to actual length*/
int32_t sqlvbl32; /* Buffer length (pointer mode)*/
void* sqlvdata; /* Pointer to data */
int16_t* sqlvind; /* Pointer to indicator variable */
int16_t sqlvtype; /* Variable type (TPE_DT_xxx) */
uint8_t sqlvprec; /* Precision */
uint8_t sqlvscal; /* Scale */
uint8_t sqlvisnl; /* Nullable flag */
uint8_t sqlvrsv1[3]; /* (reserved) */
char* sqlvname; /* Variable name */
int32_t sqlvrsv2[2]; /* (reserved) */

};

Component Description

sqlvln32 Contains the maximum length for the variable. For fixed-length
data, this is the actual length of the variable. For variable-length
data, this includes the size of any length field:

■ 2 bytes for VARCHAR

■ 8 bytes for BLOB and CLOB

sqlvlenp (Valid only for BLOB and CLOB data types)

■ If non-zero, contains a pointer to a buffer with the 64-bit length
of the LOB data. Only the low-order 32 bits are valid at this
time.

■ If zero (NULL), begins with a 64-bit field, of which the low-order
32 bits are the length.

■ For a standard array fetch (sqldnrow > 1, sqldfmod ==
TPE_DA_STANDARD), contains a pointer to a client-supplied
array of 64-bit length fields, one for each row fetched.

sqlvbl32 (Valid only for VARCHAR, VARBINARY, BLOB, and CLOB, data
types) Contains the total length of the data for the variable.
StorHouse/RM sets this field during a SELECT or a FETCH
operation in both standard and pointer-fetch modes. In standard
array fetch mode, the value does not include any padding
between array values.
5-16 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
sqlvdata Contains a pointer to the buffer with the variable data. For BLOB
and CLOB data types, when sqlvlenp is NULL, the buffer begins
with the 64-bit length of the data (only the low-order 32 bits are
valid at this time); otherwise, sqlvdata points to the first byte of
the data. For a standard array fetch (sqldnrow > 1, sqldfmod ==
TPE_DA_STANDARD), this must point to an application-
supplied data buffer large enough to contain
sqldnrow values. The length of the values is determined by
sqlvln32.

sqlvind Contains a pointer to the 16-bit indicator variable.

■ For array fetch (sqldnrow > 1), this points to an array of 16-bit
indicator variables, one for each row fetched. The application
must allocate indicator variables even in pointer-fetch mode.

■ For input variables, a NULL value for sqlvind is equivalent to
specifying an indicator variable with a value of 0. This indicates
that the accompanying value is not NULL.

■ For output variables, a NULL value for sqlvind may be used but
could result in an error if one of the values retrieved is NULL or
a value is truncated. A NULL value for sqlvind, for an output
variable, may only be reliably used when the output variable is
described as not-nullable (the DESCRIBE output for the
variable indicates sqlvisnl == 0).

When fetching rows, StorHouse/RM sets an indicator to:

■ 0 if the returned value is not NULL and the destination buffer is
large enough to hold the value

■ > 0 if the returned value is not NULL but the buffer is not large
enough for the value

■ -1 if the returned value is NULL

sqlvtype Contains the type of the variable. The value is one of the
TPE_DT_xxx values defined in sql_lib.h.

sqlvprec Contains the precision (maximum number of digits) for numeric
types.

sqlvscal Contains the scale (number of digits to the right of the decimal
point) for numeric types.

sqlvisnl Contains a flag indicating the null-ability of the variable. If the flag
is zero, then the variable is NOT NULL.

Component Description
StorHouse ESQL Manual 5-17

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Setting values of sqlvln32 and sqlvtype fields

The following table provides the values for sqlvln32 and sqlvtype for StorHouse
data types and their corresponding C data types.

sqlvrsv1 Is reserved for future use and must be 0.

sqlvname Contains a pointer to an application-supplied data area at least
sqldvnln bytes long. If this pointer is non-NULL, the name of the
host variable or column is returned as a null-terminated string.
The maximum length of the string therefore is sqldvnln-1.

sqlvrsv2 Is reserved for future use.

Component Description

C language
data type

StorHouse
data type

Value of
sqlvln32

Value of
sqlvtype

char CHAR Maximum number of
characters in value

1

tpe_num_t NUMERIC 24 2

short SMALLINT 2 3

long INTEGER 4 4

float REAL 4 5

double DOUBLE 8 6

tpe_date_t DATE sizeof (tpe_date_t) 7

tpe_time_t TIME sizeof (tpe_time_t) 9

tpe_timestamp_t TIMESTAMP sizeof (tpe_timestamp_t) 10

unsigned char BINARY Maximum number of
bytes in value

12

unsigned char VARBINARY Maximum column size
plus 2

17

char VARCHAR Maximum column size
plus 2

19
5-18 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Resetting, or coercing, data types

You can reset, or coerce, the data type of a particular output variable. You coerce
the data type of a specific variable by resetting the corresponding sqlvtype field in
the sqldvar array. For example, to coerce the data type of your variable [3], reset
sqldvar[3].sqlvtype to the desired data type.

Do not coerce BINARY, VARBINARY, and VARCHAR data types to CHAR.
Coercion from VARBINARY or VARCHAR to CHAR invalidates the 2-byte length
field that precedes variable length data. Coercion from BINARY to CHAR causes
an unsupported data conversion.

Note: If you coerce a data type, the StorHouse extractor is not used. See Chapter
7, “Using the StorHouse extractor,” for more information about the StorHouse
extractor.

Checking space for SQLDA entries

The tpe_da_getnbytes function calculates the size, in bytes, of an SQLDA that
may contain size entries. The definition of tpe_da_getnbytes is:

tpe_status_t tpe_da_getnbytes (int16_t size, int32_t*
nbytes)

tpe_clob_t CLOB Maximum column size
plus 8

20

tpe_blob_t BLOB Maximum column size
plus 8

21

tpe_blob_file_t BLOB_FILE sizeof (tpe_blob_file_t) 22

tpe_clob_file_t CLOB_FILE sizeof (tpe_clob_file_t) 23

tpe_blob_loc_t BLOB_LOCATOR sizeof (tpe_blob_loc_t) 24

tpe_clbo_loc_t CLOB_LOCATOR sizeof (tpe_clob_loc_t) 25

C language
data type

StorHouse
data type

Value of
sqlvln32

Value of
sqlvtype
StorHouse ESQL Manual 5-19

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The following example uses tpe_da_getnbytes with tpe_da_setup. See “Initializing
storage as an SQLDA” on page 5-22 for more information about tpe_da_setup.

int16_t nvars = 10;
int32_t nbytes;
tpe_sqlda* newda;
tpe_da_getnbytes (nvars, &nbytes);
newda = (tpe_sqlda*)malloc (nbytes);
tpe_da_setup (newda, nvars, TPE_DA_APPEND_ENTRIES);

Checking space for variable name data

The tpe_da_getvnbytes function calculates the size, in bytes, of the space required
to store variable name (sqlvname) data. Use this routine when you wish to use
your own allocation function. The input tpe_sqlda must be initialized with the
correct number of variables (sqldsize). The size argument contains the length
(including any null terminator) of the variable name entries.

The definition of tpe_da_getvnbytes is:

tpe_status_t tpe_da_getvnbytes (tpe_sqlda* da, int16_t size,
int32_t* nbytes)

Here is an example using tpe_da_getvnbytes. See also “Allocating variable entries
in an SQLDA” on page 5-22.

int32_t nvars = 10;
int16_t vnsize = 32; // each varname is 32 bytes long
int32_t nbytes;
int32_t i;
tpe_sqlda* newda;
char* vndata;

tpe_da_getnbytes (nvars, &nbytes);
newda = (tpe_sqlda*)malloc (nbytes);
tpe_da_setup (newda, nvars, TPE_DA_APPEND_ENTRIES);
tpe_da_getvnbytes (newda, vnsize, &nbytes);
vndata = (char*)malloc (nbytes);
5-20 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
for (i = 0; i < nvars; i++)
{

newda->sqldvar[i].sqlvname = vndata;
vndata += vnsize;

}

Allocating an SQLDA

The tpe_da_alloc function allocates an SQLDA structure. Specifically, this
function allocates, initializes, and returns a pointer to an SQLDA that may
contain entries up to the provided size.

The definition of tpe_da_alloc is:

tpe_status_t tpe_da_alloc (int16_t size, tpe_sqlda** da)

The tpe_da_alloc function initializes the SQLDA components as follows:

SQLDA component Set to

sqldaid TPE_SQLD

sqldsize The value of the 'size' argument

sqldnvar The value of the 'size' argument

sqldnrow 1

sqldfmod 0

sqldvrsn 0

sqldrsv1 0

sqldvnln 0

sqldvar Point to an allocated array of entries

array of entries 0
StorHouse ESQL Manual 5-21

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The following sample code allocates an SQLDA that may contain up to 20
entries:

...
tpe_sqlda *sqldaptr;
tpe_status_t rc;
...
rc = tpe_da_alloc (20, &sqldaptr);
if (rc != STATUS_OK)
{

fprintf (stderr, "Error allocating SQLDA: %d\n", rc);
exit (0);

}

Allocating variable entries in an SQLDA

The tpe_da_alloc_varnames function allocates space for variable (column) names
and sets the appropriate fields in the tpe_sqlda. The sqldsize and sqldvar values in
the tpe_sqlda must be set correctly prior to using this function.

The definition of tpe_da_alloc_varnames is:

tpe_status_t tpe_da_alloc_varnames (tpe_sqlda* da, int16_t
size)

The following sample code allocates up to 30 variables:

rc = tpe_da_alloc_varnames (sqldaptr, 30);
if (rc != STATUS_OK)
{

fprintf (stderr, "Error allocating SQLDA: %d\n", rc);
exit (0);

}

Initializing storage as an SQLDA

The tpe_da_setup function initializes storage as an SQLDA. You would use
tpe_da_setup (instead of tpe_da_alloc) in conjunction with tpe_da_getnbytes and
5-22 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
your own allocation routine (for instance, malloc). No action is taken if the
SQLDA pointer is NULL, or if size<= 0. If entries is NULL (or
TPE_DA_APPEND_ENTRIES), tpe_da_setup assumes that the data area in da is
sufficiently large to contain the variable entries. The tpe_da_getnbytes function
returns the correct length for such an area.

The definition of tpe_da_setup is:

tpe_status_t tpe_da_setup (tpe_sqlda* da, int16_t size,
tpe_sqlvar* entries)

The tpe_da_setentry function initializes the SQLDA components as follows:

Setting values in an SQLDA variable entry

The tpe_da_setentry function sets values in an SQLDA variable entry. Specifically,
this function sets the data type, length, indicator variable pointer and data
pointer to the values provided. All other fields in the entry are left untouched.

SQLDA component Set to

sqldaid TPE_SQLD

sqldsize The value of the 'size' argument

sqldnvar The value of the 'size' argument

sqldnrow 1

sqldfmod 0

sqldvrsn 0

sqldrsv1 0

sqldvnln 0

sqldvar The value of the ‘entries’
StorHouse ESQL Manual 5-23

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
The definition of tpe_da_setentry is:

tpe_status_t tpe_da_setentry (const tpe_sqlda* da, int16_t
entry,
int16_t type, int32_t len, int32_t* indptr, char* dataptr)

Freeing an SQLDA

You can free (or delete) a previously allocated SQLDA by calling the tpe_da_free
function. Note that this function frees space for variable names only if you
allocated them with the tpe_da_alloc_varnames function.

The definition of tpe_da_free is:

tpe_status_t tpe_da_free (tpe_sqlda* da)

Note: Always free allocations for data buffers and indicator variable buffers
before calling tpe_da_free. Passing an invalid argument to tpe_da_free or freeing
an already freed SQLDA could cause memory corruption.

Checking the size of your SQLDA

Always check that the SQLDA you allocated is large enough. Initially, sqldnvar
contains the value of the size argument that you specified in tpe_da_alloc. This
number represents your estimate of the number of input host variables for
DESCRIBE BIND or the number of output items for DESCRIBE SELECT in your
dynamic SQL statement.

The DESCRIBE statement determines the actual number of input host variables
or output items in your SQL statement and stores that number in the SQLDA
field sqldnvar. A positive value in sqldnvar indicates that the SQLDA is large
enough to hold information for all your variables. A negative value indicates that
the SQLDA is too small for your variables. The absolute value of this negative
number represents the actual number of host variables found by DESCRIBE. (For
example, if sqldnvar contains -11, the actual number of host variables found by
DESCRIBE is 11.) If sqldnvar is negative after you execute DESCRIBE, then you
5-24 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
must free the SQLDA, reallocate it large enough for your input host variables or
output items, and then re-DESCRIBE the SQL statement.

The following example:

■ Allocates an input SQLDA with a size of 20
■ Issues DESCRIBE BIND to set the actual number of input variable references
■ Checks sqldnvar for negative
■ Reallocates the SQLDA with sqldsize equal to sqldnvar

static int static_stmt(const char *p_user, const char *p_tsName)
{
 int ix;
 int nvars = -1;
 int daSize = 20;
 struct tpe_sqlda *isqlda;
 const char *sqlFunc = "";

 EXEC SQL BEGIN DECLARE SECTION;
 char stmtStr[100];
 char p1[13];
 char p2[33];
 EXEC SQL END DECLARE SECTION;

 // Set up Error condition Handler

 EXEC SQL WHENEVER SQLERROR GOTO feterr;

 strcpy(stmtStr,
 "insert into sysadm.syssmusers (accountid, default_ts)"
 "values (:p1, :p2)");
 strcpy(p1, p_user);
 strcpy(p2, p_tsName);

 sqlFunc = "PREPARE";
 EXEC SQL
 PREPARE insStmt FROM :stmtStr;

 while (nvars < 0)
 {
 if (tpe_da_alloc(daSize, &isqlda) != STATUS_OK)

 {
 printf("No memory 1\n");
StorHouse ESQL Manual 5-25

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
 return (-1);
 }

 sqlFunc = "DESCRIBE";
 EXEC SQL
 DESCRIBE BIND VARIABLES FOR insStmt INTO isqlda;

 nvars = isqlda->sqldnvar;
 if (nvars < 0)
 {
 daSize = -nvars;
 tpe_da_free(isqlda);
 }
 }

 for (ix = 0 ; ix < nvars ; ++ix)
 {
 isqlda->sqldvar[ix].sqlvtype = TPE_DT_CHAR;
 isqlda->sqldvar[ix].sqlvind = (short *)0;
 isqlda->sqldvar[ix].sqlvprec = 0;
 isqlda->sqldvar[ix].sqlvscal = 0;
 isqlda->sqldvar[ix].sqlvisnl = 0;
 }

 isqlda->sqldvar[0].sqlvln32 = strlen(p1);
 isqlda->sqldvar[0].sqlvdata = (void *)p1;
 isqlda->sqldvar[1].sqlvln32 = strlen(p2);
 isqlda->sqldvar[1].sqlvdata = (void *)p2;

 sqlFunc = "EXECUTE";
 EXEC SQL
 EXECUTE insStmt USING DESCRIPTOR isqlda;

 sqlFunc = "COMMIT";
 EXEC SQL
 COMMIT WORK;

 printf("Static ins statement prepared successfully \n");

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 return (0);
5-26 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
 feterr:
 fprintf(stderr, "SQL Error in %s sqlcode=%ld, %s\n",

 sqlFunc, sqlca.sqlcode, sqlca.sqlerrm);

 EXEC SQL
 ROLLBACK WORK;

 return (-1);
}

Allocating SQLDA buffers for data and indicator variables

The tpe_da_alloc function does not allocate buffers for host and indicator
variables. Your application must allocate these buffers separately and set pointers
to them in the SQLDA. For input SQLDAs, always set the SQLDA components
sqlvtype and sqlvln32 before you allocate buffers and allocate buffers before you
execute OPEN. For output SQLDAs, DESCRIBE SELECT LIST sets sqlvln32 and

sqlvtype for you. Just be sure to allocate output buffers before you execute
FETCH.

Two functions are provided to help you allocate and manage data and indicator
variable buffers:

■ tpe_da_getbsize
■ tpe_da_setptrs

Calculating the buffer size (tpe_da_getbsize). The tpe_da_getbsize function
calculates and returns (in blen) the length of the buffer required to hold the data
described in the provided tpe_sqlda. This length includes space for indicator
variables.

The definition of tpe_da_getbsize is:

tpe_status_t tpe_da_getbsize (const tpe_sqlda* da, int32_t*
blen)

An example follows the tpe_da_setptrs section.
StorHouse ESQL Manual 5-27

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
Initializing buffer pointers (tpe_da_setptrs). The tpe_da_setptrs function
initializes the buffer pointers (sqlvdata, sqlvind) in the provided SQLDA. This
function uses the information in the SQLDA to divide the buffer into smaller
buffers. Each of these smaller buffers is large enough to hold the data for one
variable described in the SQLDA. The sqlvlenp and sqlvind pointers for each
variable in the SQLDA are set to point to a piece of the buffer. It is the caller's
responsibility to ensure that buff is sufficiently large (see tpe_da_getbsize).

For example, suppose the SQLDA describes three variables:

■ Integer (TPE_DT_INTEGER)
■ VARCHAR(14) (TPE_DT_VARCHAR, sqlvln32==16)
■ Double-word floating-point value (TPE_DT_DOUBLE)

In the following example, the buffer offsets and buffer length are provided for
explanation purposes only. No application should be coded so that it depends on
this behavior. The tpe_da_setptrs function sets:

■ sqldvar[0]->sqlvdata to the address of the buffer
■ sqldvar[1]->sqlvdata to the address of the buffer+4
■ sqldvar[2]->sqlvdata to the address of the buffer+20

It then sets the pointers to the indicator variables:

■ sqldvar[0]->sqlvind to the address of buffer+28
■ sqldvar[1]->sqlvind to buffer+30
■ sqldvar[2]->sqlvind to buffer+32

The buffer is divided into 6 buffers of lengths 4, 16, 8, 2, 2, 2. So for a single-row
fetch, the buffer required is just over 34 bytes.

The definition of tpe_da_setptrs is:

tpe_status_t tpe_da_setptrs (tpe_sqlda* da, void* buff)

The following sample code allocates buffers for data and indicator variables.
5-28 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
...
/*
* Allocate buffer space for data and indicators.
* sqldaptr is an SQLDA that has been initialized by
* a DESCRIBE or similar function.
*/
int32_t buflen;
void* buffer;

tpe_da_getbsize (sqldaptr, &buflen);
buffer = malloc (buflen);
if (buffer == NULL)
{

fprintf (stderr, "No memory!\n");
...

}
tpe_da_setptrs (sqldaptr, buffer);

Using multiple SQLDAs

If you have multiple cursors open at the same time for dynamic queries, you a
need a separate SQLDA for each cursor operation. Unlike a cursor or a
connection, an SQLDA is not a "named" object known to the precompiler. You
simply create as many SQLDA structures as you need, assigning the pointer
returned for each to a separate variable. The FETCH will use whichever SQLDA
is pointed to in the USING DESCRIPTOR clause.

Reusing the same SQLDA

Non-concurrent cursors can reuse the same SQLDA as long as the maximum
sqldsize is sufficient for all queries.

Understanding the status value

SQLDA functions return status values (tpe_status_t) that are identical to the
sqlcode values in an SQLCA. These status codes are documented in the StorHouse
SQL Reference Manual. Generally, all of the routines return 0 (STATUS_OK) on a
StorHouse ESQL Manual 5-29

5 Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
successful completion. The routines that allocate memory (such as tpe_da_alloc

and tpe_da_alloc_varnames,) may return -20001 to indicate insufficient memory.

Reviewing the basics

Let’s review the basics necessary to process a dynamic SELECT statement with
scenario 4. We’ll make the following assumptions.

■ Your SELECT statement contains one substitution marker for an input host
variable in the WHERE clause and multiple column identifiers in the select
list.

■ Your program prompts the user for the SELECT statement text and for values
of all input host variables at runtime.

■ The SELECT statement text will be similar to the following statement string:

select ..., ... from emptable where deptnum = :marker_num

■ Because you won’t know information about your host variables until runtime,
you’ll need to use input and output SQLDAs to supply your program with the
data types, lengths, and storage addresses of these variables.

Here are the SQL statements that you’ll use to process this type of dynamic
query:

■ EXEC SQL
PREPARE statement_name FROM :string_variable;

■ EXEC SQL
DECLARE cursor_name CURSOR FOR statement_name;

■ EXEC SQL
DESCRIBE BIND VARIABLES FOR statement_name
INTO input_sqlda_pointer;
5-30 StorHouse ESQL Manual

5Using dynamic SQL

Scenarios for using dynamic SQL

FileTek Proprietary and Confidential
■ EXEC SQL
OPEN cursor_name USING input_sqlda_pointer;

■ EXEC SQL
DESCRIBE SELECT LIST FOR statement_name
INTO output_sqlda_pointer;

■ EXEC SQL
FETCH cursor_name USING DESCRIPTOR output_sqlda_pointer;

■ EXEC SQL
CLOSE cursor_name;

■ EXEC SQL
COMMIT WORK;

Here’s a list of the ESQL-related steps you need to include in your program:

■ Declare input and output host variables in a Declare Section.
■ Allocate and set up an input and output SQLDA.
■ PREPARE the query from the host variable that stores the statement string.
■ DECLARE a cursor for the query.
■ DESCRIBE the input host variable into the input SQLDA.
■ Allocate storage for the input host variable found by DESCRIBE.
■ OPEN the cursor using the input SQLDA.
■ DESCRIBE the select list into the output SQLDA.
■ Allocate storage for select list items and indicator variables.
■ FETCH a row into the allocated data buffers using the output SQLDA.
■ CLOSE the cursor.
■ Commit the transaction to release all locks and resources.
■ Deallocate the storage that was used for variables.
■ Deallocate the SQLDAS.

Satisfying individual program requirements

The program that satisfies the previous assumptions uses input and output
SQLDAs. Your program may have different requirements. It may not need all the
StorHouse ESQL Manual 5-31

5 Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
SQL statements listed on page 5-30 to process queries, or it may need to combine
one statement format from scenario 3 with another statement format from
scenario 4. Dynamic SQL gives you the flexibility to mix and match.

Using an SQLDA for array fetches

StorHouse/RM supports two methods for using dynamic SQL to fetch multiple
rows at a time into host arrays: standard and pointer-fetch.

Note: Do not use the BLOB_FILE and CLOB_FILE data types with any multiple
row fetch method. If these types are present, the sqldnrow field of the SQLDA
must be 1; otherwise, an error occurs.

About the standard method

The standard method for fetching multiple rows requires that you set pointers to
your host and indicator variables and that you allocate memory for the data to be
fetched. You must allocate data buffers and indicator variable buffers that are
large enough to hold the maximum number of rows of maximum size in your
result set. Then you set the SQLDA component sqldnrow to the maximum
number of rows to be retrieved per FETCH call. If you set sqldnrow to 50 and
your result set contains 60 rows, the first FETCH retrieves 50 rows. The second
FETCH retrieves 10 rows. Each FETCH moves result set values to the data
buffers that you allocated.

The following example allocates memory and sets pointers for sqlvdata and
sqlvind for array fetches:

/* set the array size in sqlda */
sqldaptr->sqldnrow = 10;
...
/*
 * Allocate buffer space for data and indicators.
 * sqldaptr is an SQLDA that has been initialized by
5-32 StorHouse ESQL Manual

5Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
 * a DESCRIBE or similar function.
 */

int32_t buflen;
void* buffer;

tpe_da_getbsize (sqldaptr, &buflen);
buffer = malloc (buflen);
if (buffer == NULL)
{
 fprintf (stderr, "No memory!\n");
 ...
}
tpe_da_setptrs (sqldaptr, buffer);

About the pointer-fetch method

The pointer-fetch method is a StorHouse/RM performance enhancement. With
this method, FETCH sets pointers to result set data in its current location rather
than copying values to your buffer. Therefore, you don’t need to allocate an
output buffer for host variables, and you don’t need to set sqlvdata because
FETCH sets it for you. If you use indicator variables, you must still allocate a
buffer for these values and point sqlvind to that buffer.

To use the pointer-fetch method, set the SQLDA field sqldfmod to 1
(TPE_DA_POINTER). You must also set sqldnrow to the maximum number of
rows you want to retrieve with each FETCH.

Consider the following when using the pointer-fetch method:

■ When you FETCH result set values, you must process these values before you
fetch your next set of rows. Each subsequent FETCH may overlay the
previous set of rows with new data.

■ A FETCH may return rows and sqlcode 100 in the same fetch, for instance,
when the cursor is already pointing to the last row of the active set. See page
StorHouse ESQL Manual 5-33

5 Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
3-10 for an example. An extractor cursor operation, however, returns the
partial buffer with sqlcode 0 and an empty buffer with sqlcode 100.

■ The standard and pointer-fetch methods use different strategies for looping
through VARCHAR and VARBINARY data.

– With the standard method, you use the maximum field length plus 2
bytes as the offset to the next data field.

– Data is contiguous in the buffer with the pointer-fetch method. To loop
though your data, simply read the 2-byte length that precedes each data
field and use its value (actual length) plus 2 bytes as the offset to the next
data field.

Sample program

The following sample program shows how to use the pointer-fetch method.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int32_t fetch_example(const char *p_stmtstring /* Ptr for SELECT
*/);
static int user_process(long p_row,
 int p_col,
 void *, /* Current data item ptr */
 int32_t, /* Length of that item */
 int16_t /* and its type */

Data Data Data

L
E
N
G
T
H

L
E
N
G
T
H

L
E
N
G
T
H

Data

L
E
N
G
T
H

L
E
N
G
T
H

Data Data

L
E
N
G
T
H

L
E
N
G
T
H

Data

L
E
N
G
T
H

Data
5-34 StorHouse ESQL Manual

5Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
);
static int32_t usage(const char *prog);

static int32_t usage(const char *p_prog)
{
 fprintf(stderr, "Usage: %s <sysid> <dbname>\n\n", p_prog);
 return 0;
}

int main(int argc, char *argv[])
{
 const char *funcid; /* Current function name for err */
 int rc = 0; /* Return code, 0 (ok) or -1 */

 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[80];
 EXEC SQL END DECLARE SECTION;

 if (argc != 3)
 return (usage(argv[0]));

 /*
 * Copy the database name to a variable known to the
 * precompiler.
 */
 strcpy(dbname, "filetek:T:");
 strcat(dbname, argv[1]);
 strcat(dbname, ":");
 strcat(dbname, argv[2]);

 /*
 * Set up Error Condition handler
 */
 EXEC SQL WHENEVER SQLERROR GOTO err;

 /*
 * Connect to the specified database
 * with the connection name conn1
 */
 funcid = "CONNECT";
 EXEC SQL CONNECT TO :dbname AS 'conn1';

 /*
 * Call function to execute a SELECT statement
StorHouse ESQL Manual 5-35

5 Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
 */
 rc = fetch_example("SELECT * FROM sysadm.sysindexes");

 /*
 * Disconnect from the database
 */
 funcid = "DISCONNECT";
 EXEC SQL DISCONNECT 'conn1';
 return rc;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 err:
 printf("SQL Error %d in function %s\n Text: %s\n",
 sqlca.sqlcode, funcid, sqlca.sqlerrm);
 return -1;
}

static int32_t fetch_example(const char *p_stmtstring)
{
 long rowix; /* Row index with a one FETCH */
 long rownum = 1; /* Row number (1 for first fetched) */
 long rowcurr; /* Current row number */
 int colix; /* Indexes to current row/column */
 short datalen; /* Data length of curr data value */
 int16_t datatype; /* Type of data for a column */
 void *dataptr; /* Pointer to current data value */
 tpe_sqlda *sqldaptr;/* Pointer to SQLDA structure */
 const char *funcid; /* Current function name for err */

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt[500]; /* For input SELECT statement */
 EXEC SQL END DECLARE SECTION;

 /*
 * Set up an SQLDA for 64 return columns. For this
 * example we assume this is always enough.
 */
 tpe_da_alloc(64, &sqldaptr);

 /*
 * Set up the (local) Error Condition handler
 */
 EXEC SQL WHENEVER SQLERROR GOTO err;

5-36 StorHouse ESQL Manual

5Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
 /*
 * Put the input SQL statement (which must be SELECT)
 * into a variable known to the ESQL precompiler.
 */
 strcpy(stmt, p_stmtstring);

 /*
 * Prepare the dynamic SQL statement, declare a cursor to
 * process the returned data, and then open that cursor.
 */
 funcid = "PREPARE";
 EXEC SQL PREPARE query_stmt FROM :stmt;

 funcid = "DECLARE";
 EXEC SQL DECLARE the_cursor CURSOR FOR query_stmt;

 funcid = "OPEN";
 EXEC SQL OPEN the_cursor;

 /*
 * Describe the output variables. This sets up the type
 * and length arrays in the SQLDA.
 */
 funcid ="DESCRIBE";
 EXEC SQL DESCRIBE SELECT LIST FOR query_stmt INTO sqldaptr;

 /*
 * Set up the SQLDA to use pointer-fetch mode, and to
 * fetch up to 100 rows per operation.
 */
 sqldaptr->sqldfmod = TPE_DA_POINTER;
 sqldaptr->sqldnrow = 100;

 /*
 * We don't need to set up variable pointers, but we
 * still need to set up indicator variable pointers. In
 * this case we assume the data is NOT NULL and zero out
 * these pointers.
 */
 for (colix = 0 ; colix < sqldaptr->sqldnvar ; ++colix)
 sqldaptr->sqldvar[colix].sqlvind = NULL;

 /*
 * Fetch the data. The outer loop is for the entire
 * FETCH cycle. Each fetch returns an array of rows.
 * The inner loops process each column (variable) and
 * within that, each individual data item.
StorHouse ESQL Manual 5-37

5 Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
 */
 funcid = "FETCH";
 while (sqlca.sqlcode == 0)
 {
 EXEC SQL FETCH the_cursor USING DESCRIPTOR sqldaptr;
 for (colix = 0 ; colix < sqldaptr->sqldnvar ; ++colix)
 {
 dataptr = sqldaptr->sqldvar[colix].sqlvdata;
 datatype = sqldaptr->sqldvar[colix].sqlvtype;
 datalen = sqldaptr->sqldvar[colix].sqlvln32;

 for (rowix = 0 ; rowix < sqlca.sqlerrd[3] ; ++rowix)
 {
 rowcurr = rownum + rowix;
 dataptr = (void*)((char *)dataptr +
 user_process(rowcurr, (colix + 1),
 dataptr, datalen, datatype
));
 }
 }

 rownum += sqlca.sqlerrd[3];
 }

 funcid = "CLOSE";
 EXEC SQL CLOSE the_cursor;

 funcid = "COMMIT";
 EXEC SQL COMMIT WORK;

 tpe_da_free(sqldaptr);
 return 0;

 err:
 printf ("SQL Error %d in function %s\n Text: %s\n",
 sqlca.sqlcode, funcid, sqlca.sqlerrm);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK;
 tpe_da_free(sqldaptr);
 return -1;
}

static int user_process (
 long p_row,
 int p_col,
 void *p_dataptr, /* Current data item ptr */
5-38 StorHouse ESQL Manual

5Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
 int32_t p_datalen, /* Length of that item */
 int16_t p_datatype /* and its type */
)
{
 int actlen = p_datalen;
 short varlen = p_datalen;
 char *dptr = (char *)p_dataptr;

 if ((p_datatype == TPE_DT_VARCHAR) ||
 (p_datatype == TPE_DT_VARBINARY))
 {
 memcpy((void *)&varlen, p_dataptr, 2);
 actlen = varlen + 2;
 dptr += 2;
 }

 printf("Data: Row: %ld Col: %d Len: %d Type: %d ",
 p_row, p_col, (int)varlen, (int)p_datatype);

 if ((p_datatype == TPE_DT_VARCHAR) ||
 (p_datatype == TPE_DT_CHAR))
 printf("Value: <%.*s>\n", varlen, dptr);
 else
 printf("Firstbyte: 0X%02X\n", *(unsigned char *)dptr);

 return (actlen);
}

StorHouse ESQL Manual 5-39

5 Using dynamic SQL

Using an SQLDA for array fetches

FileTek Proprietary and Confidential
5-40 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
6

Accessing large objects

This chapter describes basic information about accessing large objects (LOBs) and
explains how to:

■ Place LOB data into a host variable
■ Use a locator variable to access and manipulate LOB data
■ Place LOB data into a client file

Ways to access LOB values

A LOB value is the content of a LOB column in a row in a user table. A LOB value
may be a binary large object (BLOB) or a character large object (CLOB) up to 2 GB
in size.

You can refer to and manipulate LOB values using host variables just as you would
any other data type. For instance, you can define a host variable as a BLOB or
CLOB data type when your program needs the entire LOB value. Host variables,
however, use the client memory buffer which may not always be large enough to
hold a LOB value. StorHouse ESQL supports two additional ways to access LOB
values:

■ Locator variables
■ File reference variables
 ESQL Manual 6-1

6 Accessing large objects

Ways to access LOB values

FileTek Proprietary and Confidential
Locator variables

A locator variable is a type of host variable that refers to a LOB value or LOB
expression on StorHouse. You define locator variables with the BLOB_LOCATOR
and CLOB_LOCATOR data types. By using a locator variable, ESQL programs can
manipulate the LOB value—at the server—as if the value was stored in a regular
host variable. The value associated with the locator variable is valid until the end
of the transaction or until you explicitly free it with the FREE LOCATOR
statement.

Locator variables are useful when:

■ A program needs only a part of a LOB value.

■ The entire LOB value cannot fit in the program’s memory or in a regular host
variable.

■ A program needs a temporary LOB value from a LOB expression but does not
need to save the result.

File reference variables

A file reference variable is a type of host variable useful for transferring a LOB value
to a client file. You define file reference variables with the BLOB_FILE and
CLOB_FILE data types. The file referenced by the file reference variable must be
accessible from the system on which the program runs. When using file reference
variables, you must set file options in the file reference variable structure. See the
BLOB_FILE specification on page 2-7 or the CLOB_FILE specification on page
2-10 for more information about file options.

StorHouse/RM currently does not support input file reference variables to move
data from a client file to StorHouse. Also, you cannot use a BLOB_FILE or
CLOB_FILE file reference variable for the following:

■ A multi-row fetch operation (array or pointer)
■ A pointer-fetch operation, even if only one row is fetched
6-2 StorHouse ESQL Manual

6Accessing large objects

Placing LOB data into a host variable

FileTek Proprietary and Confidential
Sample LOB value

The following LOB value is a product description in a product catalog table. Each
product description is an XML document defined as a CLOB. The examples in this
chapter access and manipulate this LOB value.

<Product>
<Name>Turkey Wrench</Name>
<Developer>Gobble Labs, Inc.</Developer>
<Summary>Like a monkey wrench, but smaller.</Summary>
<Description>
<Para>The turkey wrench, which comes in both right- and left-
handed versions (skyhook optional), is made of the finest
stainless steel. The Readi-grip rubberized handle quickly
adapts to your hands, even in the greasiest situations. </
Para>
<Para>You can:</Para>
<List>
<Item><Link URL="Order.html">Order your turkey wrench</
Link></Item>
<Item><Link URL="Wrenches.htm">Read more about wrenches</
Link></Item>
<Item><Link URL="catalog.zip">Download the catalog</Link></
Item>
</List>
<Para>The turkey wrench costs just $19.99 and, if you order
now, comes with a hand-crafted shrimp hammer as a bonus
gift.</Para>
</Description>
</Product>

The CREATE TABLE definition for the product catalog is as follows:

CREATE TABLE ProdInfo
(ProdNo INTEGER,
ProdName VARCHAR(100),
ProdDescr CLOB(2 MB));

Placing LOB data into a host variable

You can place LOB data into a host variable that is large enough to hold the data.
StorHouse ESQL Manual 6-3

6 Accessing large objects

Using a locator variable to select LOB data

FileTek Proprietary and Confidential
To do this, you:

■ Define a host variable as a BLOB or CLOB data type
■ Issue a query to access the data and place the result into the host variable

For example, assume you want to access all product descriptions in the ProdInfo
table. First, define a host variable to contain the result:

EXEC SQL BEGIN DECLARE SECTION;
CLOB hv_product_desc;

EXEC SQL END DECLARE SECTION;

Then issue the query, placing the result into the host variable:

SELECT ProdDescr
INTO :hv_product_desc
FROM ProdInfo;

Using a locator variable to select LOB data

When querying a user table containing LOB data, you can use a locator variable
to manipulate a LOB value at the server and to fetch that value or part of the value
to the client as needed. To do this, you:

■ Declare the locator variable
■ Issue the query and associate a LOB value with the locator variable
■ Manipulate the LOB value, if needed, through the locator variable
■ Release the locator variable

For example, suppose you need to search the ProdInfo table to find a wrench that
comes with a bonus gift.
6-4 StorHouse ESQL Manual

6Accessing large objects

Using a locator variable to select LOB data

FileTek Proprietary and Confidential
Declaring a locator variable

In order to use a locator variable, you must first declare one with the
BLOB_LOCATOR or CLOB_LOCATOR data type in a Declare Section. If you
intend to retrieve a LOB value or part of it back to the client, you must also define
a host variable for the value with the BLOB or CLOB data type. See “Defining
StorHouse data types” on page 2-6 for more information about these data types.
For example:

EXEC SQL BEGIN DECLARE SECTION;
long hv_start_descr;
long hv_end_descr;
long hv_bonus_start;
CLOB_LOCATOR hv_prod_locator;
CLOB_LOCATOR hv_prod_desc_locator;
CLOB(2M)hv_product;

EXEC SQL END DECLARE SECTION;

The preceding Declare Section defines the following:

■ hv_start_descr and hv_end_desc host variables to contain the starting and
ending position of the product description.

■ hv_bonus_start host variable to contain the starting position of the bonus
information.

■ hv_prod_locator locator variable to be associated with a specific product in the
user table.

■ hv_prod_desc_locator locator variable to be associated with the product
description of the product.

■ hv_product host variable to contain the resulting CLOB value on the client.

You can continue to use a locator variable as long as you have not released it with
the FREE LOCATOR statement and the transaction has not ended.
StorHouse ESQL Manual 6-5

6 Accessing large objects

Using a locator variable to select LOB data

FileTek Proprietary and Confidential
Issuing the query

When using a locator variable, you issue the query and associate the result with a
locator variable. The LOB value remains on StorHouse. The associated locator
value moves to the client.

■ For a static query that selects one row, use the SELECT statement INTO clause
to identify the locator variable.

■ For a static query that selects multiple rows, use a cursor and FETCH
statement INTO clause to identify the locator variable.

Example using SELECT INTO

The following example, using SELECT INTO, associates the result with the locator
variable :hv_prod_locator.

SELECT ProdDescr
INTO :hv_prod_locator
FROM ProdInfo
WHERE ProdName LIKE “%Wrench%”;

Example using FETCH

The following example, using a cursor and FETCH statement, declares and opens
a cursor called my_cursor and associates the result with the locator variable
:hv_prod_locator.

EXEC SQL
DECLARE my_cursor CURSOR FOR

SELECT ProdDescr
FROM ProdInfo
WHERE ProdName LIKE “%Wrench%”;

EXEC SQL
OPEN my_cursor;
6-6 StorHouse ESQL Manual

6Accessing large objects

Using a locator variable to select LOB data

FileTek Proprietary and Confidential
EXEC SQL
FETCH my_cursor
INTO :hv_prod_locator;

Manipulating a LOB value through a locator
variable

For a static query, you can manipulate or evaluate a LOB value that’s associated
with a locator variable by using the VALUES INTO statement.

The format for VALUES INTO is:

VALUES { expr | (expr [,expr]...) } INTO :host_variable [,:host_variable]...

For example, the following VALUES INTO statements use the INSTR function to
locate the starting and ending position of the product description associated with
the locator variable :hv_prod_locator. The starting position is placed into host
variable :hv_start_descr and the ending position is placed into host variable
:hv_end_descr.

EXEC SQL VALUES
(INSTR(:hv_prod_locator,’<Description>'))
INTO :hv_start_descr;

EXEC SQL VALUES
(INSTR(:hv_prod_locator,’</Description>'))
INTO :hv_end_descr;

Then these VALUES INTO statements use the SUBSTR and INSTR functions to
locate the substring bonus gift.

EXEC SQL VALUES
(SUBSTR(:hv_prod_locator,

:hv_start_descr,
:hv_end_descr - :hv_start_descr)
INTO :hv_prod_desc_locator;

EXEC SQL VALUES
(INSTR (:hv_prod_desc_locator, “bonus gift”)

INTO :hv_bonus_start;
StorHouse ESQL Manual 6-7

6 Accessing large objects

Placing LOB data into a client file

FileTek Proprietary and Confidential
Finally, this VALUES INTO statement places the resulting product description into
the host variable :hv_product. At this point, the LOB value moves to the client.

if (hv_bonus_start != npos) {
 EXEC SQL VALUES (:hv_prod_desc_locator)
 INTO :hv_product;

}

Releasing a locator variable

You can release a locator variable before the end of a transaction by using the FREE
LOCATOR statement. This statement removes the association between one or
more locator variables and their values and frees the storage used by a locator
variable at the StorHouse server. If you don’t explicitly release locator variables,
StorHouse/RM releases them at the end of the transaction.

The format for FREE LOCATOR is:

EXEC SQL
FREE LOCATOR :locator_variable [,:locator_variable]...

For example, the following statement releases two locator variables.

EXEC SQL
FREE LOCATOR :hv_prod_locator , :hv_prod_desc_locator ;

Placing LOB data into a client file

You can use a file reference variable to place a LOB value into a client file. For
instance, an ESQL program can access an audio clip stored in a BLOB column,
write the clip into the file, and start the audio player with the file as input. You
can create a file, overwrite data in a file, or append data to a file.
6-8 StorHouse ESQL Manual

6Accessing large objects

Placing LOB data into a client file

FileTek Proprietary and Confidential
To place LOB data from StorHouse into a client file, you:

■ Declare the file reference variable
■ Initialize the client file variable
■ Issue the query

Assume you are querying the same product information table used in the previous
section. The query places a specific product description into a client file named
ProdFile.xml.

Declaring a file reference variable

In order to place data into a client file, you must first declare a file reference
variable with the BLOB_FILE or CLOB_FILE data type in a Declare Section. See
“Defining StorHouse data types” on page 2-6 for more information about these
data types.

For instance, the following example defines a file reference variable named
ProdFile:

EXEC SQL BEGIN DECLARE SECTION;
CLOB_FILE ProdFile;

EXEC SQL END DECLARE SECTION;

Note that you cannot use a BLOB_FILE or CLOB_FILE file reference variable for
the following:

■ A multi-row FETCH (array or pointer)
■ A pointer FETCH, even if only one row is fetched

Initializing the client file variable

Then before you can retrieve the data from StorHouse, your program must
StorHouse ESQL Manual 6-9

6 Accessing large objects

Placing LOB data into a client file

FileTek Proprietary and Confidential
initialize the following fields for the client file variable:

■ file_options – Must be one of the following:

– TPE_FILE_CREATE – Creates a new file. An error occurs if the file exists.
– TPE_FILE_OVERWRITE – Replaces any existing file.
– TPE_FILE_APPEND – Appends fetched data to an existing file or creates a

new file.

■ name – The name of the file.

■ name_length – The length of the file name (in bytes). The maximum length
of a file name is 255.

For example:

ProdFile.file_options = TPE_FILE_CREATE;
strcpy (ProdFile.name ,"/home/user/ProdFile.xml");
ProdFile.name_length = strlen(ProdFile.name);

Note: The application sets the data_length portion of the file reference variable to
the length of the new data written to the file.

Issuing the query

Finally, issue the query and associate the result with the file reference variable. If
the query selects one row, use the SELECT statement INTO clause to identify the
file reference variable. If the query selects multiple rows, use a cursor and a FETCH
statement to identify the file reference variable.

Example using SELECT INTO

The following example, using SELECT and the INTO clause, associates the result
(the XML product description for product number 123) with the file reference
variable :ProdFile.
6-10 StorHouse ESQL Manual

6Accessing large objects

Placing LOB data into a client file

FileTek Proprietary and Confidential
EXEC SQL
SELECT ProdDescr

INTO :ProdFile
FROM ProdInfo
WHERE ProdNo = 123;
StorHouse ESQL Manual 6-11

6 Accessing large objects

Placing LOB data into a client file

FileTek Proprietary and Confidential
Example using FETCH

The following example, using a cursor and FETCH statement INTO clause,
associates the result with the file reference variable :ProdFile.

EXEC SQL
DECLARE my_cursor CURSOR FOR

SELECT ProdDescr
FROM ProdInfo
WHERE ProdNo = 123;

EXEC SQL OPEN my_cursor;

EXEC SQL
FETCH my_cursor
INTO :ProdFile;

In the previous examples, StorHouse/RM places the data directly into the
/home/user/PDFile.xml file. The application might, for example, then start an XML
reader with the file name as a parameter. The length of the document is in
PDFile.data_length. If more than one row is fetched, and you want to store each
CLOB value, you must change the file name (ProdInfo.name) before each FETCH.
6-12 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
7

Using the StorHouse extractor

This chapter describes the StorHouse extractor software: what it does, the types
of queries that qualify for extractor processing, and the extractor requirements. It
also explains what to check in the SQLCA to determine whether a database
engine or the extractor processed a query.

About the StorHouse extractor

The StorHouse extractor provides fast path processing for some queries that result
in full table scans and full segment selects.

■ A full table scan reads every row in a table, without the use of an index, to
determine a result set.

■ A full segment select returns data from one or more entire segments with the
use of a range index.

The extractor processes full table scans and full segment selects quicker and more
efficiently than the standard StorHouse engine. Furthermore, when a table
resides on both StorHouse optical and tape media, the extractor always uses the
tape copy when it’s available to benefit from faster sequential I/O.
 ESQL Manual 7-1

7 Using the StorHouse extractor

Types of eligible queries

FileTek Proprietary and Confidential
Types of eligible queries

Two types of queries are eligible for extractor processing: simple and full segment.
You can submit these queries as embedded or dynamic SQL. StorHouse/RM
decides whether to process queries with the extractor at PREPARE time.

Simple queries

A simple query is a SELECT statement that requires a full table scan. Simple que-
ries must meet the following requirements as well as the extractor requirements
on page 7-4.

■ The query cannot contain a WHERE, ORDER BY, GROUP BY, or DISTINCT
clause.

■ The StorHouse account issuing the query must have the SCAN database
privilege to perform a full table scan.

Format

SELECT simple_column_list FROM table

where simple_column_list is defined as:

* | column_name [,column_name]...

Example

SELECT col1, col2 FROM tab1

The extractor processes this query if all requirements are met.
7-2 StorHouse ESQL Manual

7Using the StorHouse extractor

Types of eligible queries

FileTek Proprietary and Confidential
Full segment queries

A full segment query is a SELECT statement that returns one or more entire table
segments with the use of a range index. If a user table consists of multiple seg-
ments and a query selects both complete segments and partial segments, the
extractor processes the complete segments and a database engine processes the
partial segments. Full segment queries must meet the following requirements as
well as the extractor requirements on page 7-4.

■ All predicates in the WHERE condition must be based on columns in range
indexes.

■ All predicates must select all rows from one or more table segments.

Format

SELECT simple_column_list FROM table
WHERE condition

where simple_column_list is defined as:

* | column_name [,column_name]...

and condition is one or more predicates.

Example

SELECT * FROM janbilling
WHERE billdate BETWEEN ’01/15/2000’AND ’03/15/2000’

The extractor may process this query if the billdate column is indexed in a range
index, the predicate selects at least one complete table segment, and all other
extractor requirements are met.
StorHouse ESQL Manual 7-3

7 Using the StorHouse extractor

Qualifying for extractor processing

FileTek Proprietary and Confidential
Qualifying for extractor processing

Eligible queries must also meet the following requirements to qualify for extrac-
tor processing.

■ The query must not contain any subqueries.

■ The query must refer to one user table.

■ The host and StorHouse systems must have the same native values key so that
no byte-reordering of INTEGER and SMALLINT columns is necessary.

■ The application issuing the query must not have changed any values in
SQLDA fields set by DESCRIBE.

Note: The extracted columns of the table can be NULL or NOT NULL and any
database data type. Some client machines, however, may not support DECIMAL,
REAL, and DOUBLE data types.

If an eligible query doesn’t satisfy these requirements, StorHouse/RM processes it
with a database engine instead of the extractor. The following drawing summa-
rizes how StorHouse/RM qualifies eligible queries for extractor processing.

N

Eligible
query

?

Meets
extractor

rules
?

Y YProcess with
extractor

N

Process with
database engine

Y

7-4 StorHouse ESQL Manual

7Using the StorHouse extractor

Checking the SQLCA

FileTek Proprietary and Confidential
For instance, StorHouse/RM selects the database engine rather than the extractor
to process the following query because the query contains more than one table
reference:

SELECT * FROM tab1, tab2

Checking the SQLCA

The SQLCA field sqlerrd [5] indicates whether StorHouse/RM used the extractor
or a database engine to process a query. StorHouse/RM records this information
in the SQLCA at PREPARE time.

Do not test for a specific value to determine whether the extractor is used, that is,
check for only 0 or non-zero.

When this method is used
StorHouse/RM puts this value in
sqlerrd [5]

Extractor Non-zero

Database engine 0
StorHouse ESQL Manual 7-5

7 Using the StorHouse extractor

Checking the SQLCA

FileTek Proprietary and Confidential
7-6 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
8

Managing transactions

This chapter describes transaction management in ESQL. It defines atomic and
durable operations, general transaction guidelines, and locking. It explains when
transactions start and how to end them with COMMIT WORK or ROLLBACK
WORK.

About transactions

A transaction is one or more SQL statements that are treated as a single unit of
work. A unit of work is a recoverable sequence of operations. In StorHouse, trans-
actions are both atomic and durable. Atomic means that all operations in the
transaction are either committed (applied to the database) or rolled back (canceled,
or not applied to the database). Durable means that once a transaction is com-
mitted, the changes done by that transaction are permanent.

The following transaction guidelines apply:

■ If an SQL statement fails, StorHouse/RM removes all effects of that statement
from the database.

■ An application must decide whether to commit or roll back a transaction. A
commit saves all SQL statements that executed successfully within the
transaction. In contrast, a rollback cancels the entire transaction.

■ When a failed SQL statement is part of a larger transaction, prior SQL
statements in the transaction are not affected.
 ESQL Manual 8-1

8 Managing transactions

Starting a transaction

FileTek Proprietary and Confidential
■ Typically an application rolls back an entire transaction whenever one of the
SQL statements in the transaction fails.

Starting a transaction

A transaction begins with the first SQL statement that affects the state of the
database or the transaction itself. A PREPARE statement, for example, affects the
state of a transaction because it creates a prepared statement that’s used only for
the duration of that transaction. A CREATE TABLE statement affects the state of
a database because it updates the metadata. Executable statements (see the table
on page 1-4 for a list) affect the state of a database, so they can begin a transac-
tion. In contrast, the following SQL statements do not affect the state of a data-
base or transaction, therefore, they do not begin a transaction:

■ CONNECT
■ BEGIN DECLARE SECTION
■ END DECLARE SECTION
■ WHENEVER

When an active transaction already exists, an executable statement executes as
part of that active transaction. If there is no active transaction, then the statement
starts a new transaction, which then becomes the active transaction. All subse-
quent SQL statements execute as part of the active transaction until the applica-
tion ends the transaction by explicitly committing it or rolling it back.

For example, assume an application just CONNECTed to submit a dynamic
query. There’s no current active transaction. A dynamic query consists of several
SQL statements, including PREPARE, DECLARE CURSOR, OPEN, and so on.
PREPARE is the first SQL statement that affects the state of the transaction, so the
active transaction begins with PREPARE and the remaining SQL statements
become part of the active transaction until it’s committed or rolled back.
8-2 StorHouse ESQL Manual

8Managing transactions

Ending a transaction

FileTek Proprietary and Confidential
For example:

CONNECT
No active transaction

PREPARE (begin active transaction)
DECLARE CURSOR
OPEN
DESCRIBE SELECT LIST
FETCH
CLOSE
COMMIT WORK (end active transaction)

No active transaction

Ending a transaction

A transaction ends when it is committed or rolled back, either explicitly with a
COMMIT WORK or ROLLBACK WORK statement or implicitly for DDL state-
ments.

Committing a transaction

The COMMIT WORK statement terminates a transaction when all SQL state-
ments complete successfully. COMMIT WORK:

■ Releases all locks held by a transaction
■ Closes all open cursors within a transaction
■ Frees any active locator variables
■ Makes any changes to the database permanent

An example of a COMMIT WORK statement is:

EXEC SQL COMMIT WORK ;
StorHouse ESQL Manual 8-3

8 Managing transactions

Ending a transaction

FileTek Proprietary and Confidential
Committing DDL statements

StorHouse/RM implicitly issues a COMMIT WORK statement before and after
every DDL statement (ALTER, CREATE, DROP, GRANT, REVOKE). An applica-
tion cannot roll back changes to a StorHouse database after issuing DDL state-
ments.

Committing non-DDL statements

Non-DDL statements like PREPARE and SELECT also place locks on tables (see
page 8-5 for locking information), so it’s necessary to release those locks by issu-
ing a COMMIT WORK statement. An application must explicitly issue a COM-
MIT WORK statement for non-DDL statements to end those transactions. An
application can roll back the effect of non-DDL statements before committing a
transaction, but once committed, the transaction cannot be canceled.

Rolling back a transaction

The ROLLBACK WORK statement—typically used in exception handlers—can-
cels any changes made to the database within an uncommitted transaction.
ROLLBACK WORK:

■ Releases all locks held by a transaction
■ Closes all open cursors within a transaction
■ Frees any active LOB locators

An example of a ROLLBACK WORK statement is:

EXEC SQL ROLLBACK WORK ;
8-4 StorHouse ESQL Manual

8Managing transactions

Locking

FileTek Proprietary and Confidential
Automatic rollback

A rollback occurs automatically when:

■ An application terminates abnormally, for instance, in the event of a hardware
or software failure or a lock time-out error

■ An active transaction exists when an ESQL application disconnects from a
database

When a serious error occurs, StorHouse/RM might implicitly mark a transaction
for rollback. The SQLCA identifies transactions implicitly marked for rollback
(see “sqlwarn” on page 4-3). In this case, the application must roll back the cur-
rent transaction before proceeding with execution of the next SQL statement.

Locking

StorHouse supports the serializable ANSI/ISO transaction isolation level, which
guarantees the highest read consistency and data integrity in a database.
StorHouse implements table-level locks to support this isolation level. Tables
include user tables, system tables, and views.

A commit or rollback is always required to release table-level locks, even for que-
ries. This section describes the types of locks, the operations that require locks,
and the duration of locks.

Types of locks

There are two types of table-level locks: shared and exclusive.
StorHouse ESQL Manual 8-5

8 Managing transactions

Locking

FileTek Proprietary and Confidential
Shared locks

A shared (or read) lock reserves a table for reading only. This lock prevents a table
from being dropped. Multiple engines can have a shared lock on the same table.

A metadata backup uses a special database-level lock that has the effect of read-
locking every system table. The following operations require shared locks on user
tables:

■ Loads (at the beginning and end (no locks during data transfer))
■ DDL processing
■ Queries

Exclusive locks

An exclusive (or write) lock reserves a table for updating only. This lock prohibits
a table from being shared. One engine can have an exclusive lock on a table. All
other lock requests (shared and exclusive) for the table are queued.

DML operations require an exclusive lock on system table views, and the follow-
ing operations require an exclusive lock on system tables:

■ Metadata recovery
■ Loads (at start and end)
■ DDL processing

The following SQL statements require an exclusive lock on user tables:

■ CREATE TABLE
■ CREATE INDEX
■ DROP TABLE
■ DROP INDEX
8-6 StorHouse ESQL Manual

8Managing transactions

Locking

FileTek Proprietary and Confidential
Duration of a lock

An engine holds on to locks—both shared and exclusive—against user tables
throughout a transaction. It releases shared locks against system tables as soon as
it’s done processing the system tables, and it releases exclusive locks against sys-
tem tables when the transaction ends.
StorHouse ESQL Manual 8-7

8 Managing transactions

Locking

FileTek Proprietary and Confidential
8-8 StorHouse ESQL Manual

Chapter

StorHouse

FileTek Proprietary and Confidential
9

Using the ESQL precompiler

The ESQL precompiler translates each static SQL statement into C code to build
a program that can be compiled. After you precompile your source file, you run
the standard C compiler to create an object file from the C source file. Then you
link the object files with the ESQL libraries to create the application executable.

This chapter explains what’s required to precompile, compile, and link ESQL
programs. These topics include:

■ Setting default values for StorHouse environment variables
■ Issuing the esqlc command with the proper command options

Setting environment variables

StorHouse/RM uses the following environment variables to supply default values
for the StorHouse/RM root directory and various precompiler options.

Environment variable Indicates

DB_NAME (optional to override the current default) The name of your
default database.

DB_PASSWD (optional to override the current default) The password of
your default StorHouse account.

DB_USER (optional to override the current default) Your default
StorHouse account ID.
 ESQL Manual 9-1

9 Using the ESQL precompiler

Setting environment variables

FileTek Proprietary and Confidential
The default compile (ESQL_CC) and link (ESQL_LINK) commands differ by
operating system. The Sun Solaris default compile and link commands are:

Note that the compile is run using cc, the Sun ANSI C compiler. The link is
done with CC, the Sun Workshop C++ compiler. The compiler is used here just
to set up and run the linker. To override the default and use C++ as the compiler
for Solaris, set ESQL_CC as follows:

setenv ESQL_CC "CC -c -g"

ESQL_CC (optional, depending on which operating system you use)

The command string required to invoke the desired C
compiler (cc, acc, CC, etc.). You must include the -c option
(compile only).

ESQL_CPP (optional, depending on which operating system you use)

The C preprocessor command and basic options.

ESQL_LINK (optional, depending on which operating system you use)

The command string that is required to invoke the linker.
ESQL programs must use the C++ linker.

STHROOT (required) The directory where the StorHouse ESQL
product is installed. This directory must contain the
StorHouse ESQL bin and lib subdirectories.

Environment variable Indicates

Solaris default compile and link commands

Variable Default command

ESQL_CC cc -c -I<sth_dir>/include/ <app_program.c>

ESQL_LINK CC -o <app_program> <app_program.o> /<sth_dir>/lib/libsthfe.a -lm -
lnsl -lsocket
9-2 StorHouse ESQL Manual

9Using the ESQL precompiler

Issuing the esqlc command

FileTek Proprietary and Confidential
The HP default compile and link commands are:

To override the compile default and use C++ as the compiler for HP, set
ESQL_CC as follows:

setenv ESQL_CC "aCC -c -AA"

Issuing the esqlc command

You invoke the ESQL precompiler with the esqlc command. The ESQL precom-
piler passes all command line options that it does not recognize to the C com-
piler. This feature allows you to specify C compiler options directly as options to
the esqlc command. Options that are recognized by the ESQL precompiler are
prefixed by the plus symbol (+) to avoid clashes with options supported by the C
compiler and linker.

If you don’t use any of the + options listed in the following table, then the esqlc
command precompiles and compiles the specified source file with the same line
numbering as your .pc file. In addition, you can’t use #define symbols in your
ESQL statements.

HP default compile and link commands

Variable Default command

ESQL_CC cc -Ae -c -I<sth_dir>/include/ <app_program>.c

ESQL_LINK aCC -AA -o <app_program> <app_program>.o /<sth_dir>/lib/libsthfe.a -
lm -lnsl
StorHouse ESQL Manual 9-3

9 Using the ESQL precompiler

Issuing the esqlc command

FileTek Proprietary and Confidential
The format of the esqlc command is:

esqlc [option_list] file_name_list

Some examples follow.

Argument Description

option_list
+G

+L

+K

(optional) Specifies different ways to run the command.

Inserts debugging code in the generated .c files and adds
the -g option to the c compiler.

Suppresses redefinition of source line numbers in the
generated C code.

Keeps all intermediate files generated during compilation.

+T

+P

Translates the embedded SQL source code (.pc files) to C
source code (.c files). There is no additional processing of
the generated C source code.

Runs the C preprocessor on the input file before translating
the SQL statements in the input file so that #define'd
symbols can be used in ESQL statements.

+V

-c

-o

Displays the commands invoked by the precompiler as it
processes files.

Generates .o files from .pc or .c files without linking.

Generates an executable named ‘filename’ from .pc and .c
files.

file_name_list Specifies the name(s) of the files to include in the
precompile operation. Valid file extensions are:

■ .pc - indicates embedded SQL source code files.

■ .c - indicates C source code files.

■ .o - indicates object files.
9-4 StorHouse ESQL Manual

9Using the ESQL precompiler

Issuing the esqlc command

FileTek Proprietary and Confidential
■ To build the application executable orders from the orders.pc source file,
execute the following esqlc commands:

esqlc -c orders.pc

esqlc -o orders orders.o

In this example, the ESQL precompiler precompiles the source file and then
invokes the C compiler to compile the generated .c file. The second
command invokes the system linker to link the object file into an executable
named orders.

■ If SQL statements in the orders.pc source file use #define’d symbols, then
execute the following esqlc commands:

esqlc +P orders.pc

esqlc -o orders orders.o
StorHouse ESQL Manual 9-5

9 Using the ESQL precompiler

Issuing the esqlc command

FileTek Proprietary and Confidential
9-6 StorHouse ESQL Manual

Appendix

StorHouse

FileTek Proprietary and Confidential
A

Reviewing a sample program

This appendix contains one ESQL sample program that illustrates how to perform static SELECT state-
ments.

/*
 * Example program showing usage of static select statements.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int static_select(const char *);
static int usage(const char *prog);

static int usage(const char *prog)
{
 fprintf(stderr, "Usage: %s <sysname> <dbname>\n\n", prog);
 return (0);
}

main
(
 int argc,
 char *argv[]
)
{
 int rc = 0;

 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[64];
 EXEC SQL END DECLARE SECTION;
 ESQL Manual A-1

A Reviewing a sample program

FileTek Proprietary and Confidential
 if (argc != 3)

 return (usage(argv[0]));

 /*
 * Copy the database name
 */
 strcpy(dbname, "filetek:T:");
 strcat(dbname, argv[1]);
 strcat(dbname, ":");
 strcat(dbname, argv[2]);

 /*
 * Set Error condition handler
 */
 EXEC SQL
 WHENEVER SQLERROR GOTO err;

 /*
 * Connect to the specified database
 * with the connection name conn1
 */
 EXEC SQL
 CONNECT TO :dbname AS 'conn1';

 /*
 * Call function to execute a static select statement
 */
 rc = static_select("SYS");

 /*
 * Disconnect from the database
 */
 EXEC SQL
 DISCONNECT 'conn1';

 return (rc);

 EXEC SQL
 WHENEVER SQLERROR CONTINUE;

 err:
 printf("SQL Error (%ld) %s\n", sqlca.sqlcode, sqlca.sqlerrm);

 return (-1);
A-2 StorHouse ESQL Manual

AReviewing a sample program

FileTek Proprietary and Confidential
}

/*
 * static_select : demonstrates the usage of
 * a static select statement. Gets the list of
 * tables whose names do not have a prefix 'SYS'.
 */
static int static_select
(
 const char *p_pat
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char tretval[33];
 char likepat[9];
 EXEC SQL END DECLARE SECTION;

 /*
 * Set up Error condition Handler
 */
 EXEC SQL
 WHENEVER SQLERROR GOTO err;

 EXEC SQL
 DECLARE stcur CURSOR FOR
 SELECT tbl
 FROM sysadm.systables
 WHERE tbl NOT LIKE :likepat;

 /*
 * Note: For static statements, if the declare cursor
 * statement contains references to auto variables,
 * OPEN statement should be in the same C function.
 */
 EXEC SQL
 WHENEVER NOT FOUND GOTO over;

 strcpy(likepat, "%%%%%%%%");
 strncpy(likepat, p_pat, strlen(p_pat));

 EXEC SQL
 OPEN stcur USING :likepat;

 for (; ;)
StorHouse ESQL Manual A-3

A Reviewing a sample program

FileTek Proprietary and Confidential
 {
 tretval[0] = '\0';
 EXEC SQL
 FETCH stcur INTO :tretval;
 printf("<%s>\n", tretval);
 }

 EXEC SQL
 WHENEVER NOT FOUND CONTINUE;

 over:
 EXEC SQL
 CLOSE stcur;
 EXEC SQL
 COMMIT WORK;

 printf("Static select statement executed successfully\n");

 return (0);

 EXEC SQL
 WHENEVER SQLERROR CONTINUE;

 err:
 fprintf(stderr, "SQL Error: %d %s\n", sqlca.sqlcode,
 sqlca.sqlerrm);

 EXEC SQL
 ROLLBACK WORK;

 return (-1);
}

A-4 StorHouse ESQL Manual

Appendix

StorHouse

FileTek Proprietary and Confidential
B

Converting and comparing data

This appendix explains two StorHouse/RM API functions:

■ tpe_conv_data to explicitly convert data from one type to another
■ tpe_compare_data to compare two values with the same database data type

Converting data

StorHouse/RM performs the required data conversions between data types wher-
ever possible. While delivering each SELECT list value to host variables in the
INTO clause, StorHouse/RM implicitly converts the data value, if necessary,
from the database representation to the host language representation. For exam-
ple, if you retrieve a database column of type SMALLINT into a host variable of
type long, StorHouse/RM automatically converts the value from SMALLINT to
long integer.

StorHouse/RM does not allow implicit type conversions between all data types.
For example, if an integer host variable holds a character value, then
StorHouse/RM does not perform an implicit data conversion and reports an
error.

The StorHouse/RM API call tpe_conv_data explicitly converts data from one type
to another. The syntax of this call is:

tpe_status_t tpe_conv_data (
int16_t, /* IN input type */
int32_t, /* IN length of input buffer */
 ESQL Manual B-1

B Converting and comparing data

Converting data

FileTek Proprietary and Confidential
const void*, /* IN input buffer */
const char*, /* IN conversion format */
int16_t, /* IN output type desired */
int32_t, /* IN length of output buf */
void* /* OUT output buf for result */

);

The data types supported by StorHouse/RM API calls are:

■ TPE_DT_CHAR
■ TPE_DT_DATE
■ TPE_DT_DOUBLE
■ TPE_DT_INTEGER
■ TPE_DT_NUMERIC
■ TPE_DT_REAL
■ TPE_DT_SMALLINT
■ TPE_DT_TIME
■ TPE_DT_TIMESTAMP
■ TPE_DT_VARCHAR

The following sample code shows the conversion from character data to integer
data:

EXEC SQL BEGIN DECLARE SECTION ;
char data [20] ;
long outval ;

EXEC SQL END DECLARE SECTION ;

strcpy (data, "1234") ;
status = tpe_conv_data (TPE_DT_CHAR, strlen (data), data,
"", TPE_DT_INTEGER, sizeof (long), &outval) ;

In the preceding example:

■ data is the buffer containing input data
■ outval is the output data that is returned
B-2 StorHouse ESQL Manual

BConverting and comparing data

Comparing data

FileTek Proprietary and Confidential
Note: For better portability, SQL statements can be used for data type conversion
in ESQL. On the other hand, using the StorHouse/RM API call tpe_conv_data
improves the performance of the ESQL program.

Comparing data

You can compare two data values with the same database data type with the
StorHouse/RM API call tpe_compare_data. The syntax of this call is:

tpe_status_t tpe_compare_data (
int16_t, /* IN data type */
int32_t, /* IN length of LHS value */
const void*, /* IN LHS value */
int32_t, /* IN length of RHS value */
const void*, /* IN RHS value */
int16_t* /* OUT comparison result */

);

The result is a short integer with the following values:

The data types supported for comparison are:

■ TPE_DT_CHAR
■ TPE_DT_DATE
■ TPE_DT_INTEGER
■ TPE_DT_NUMERIC
■ TPE_DT_REAL
■ TPE_DT_SMALLINT

This result value Indicates that the

1 First data value is greater than the second

-1 First data value is less than the second

0 Two data values are equal
StorHouse ESQL Manual B-3

B Converting and comparing data

Comparing data

FileTek Proprietary and Confidential
■ TPE_DT_TIME
■ TPE_DT_TIMESTAMP
■ TPE_DT_VARCHAR

The function tpe_compare_data returns a zero (0) if the comparison is successful;
otherwise, it returns a non-zero error code.

The following sample code shows the comparison of two numeric data elements:

EXEC SQL BEGIN DECLARE SECTION ;
numeric val1 ;
numeric val2 ;
short result ;

EXEC SQL END DECLARE SECTION ;

...
status = tpe_compare_data (TPE_DT_NUMERIC, sizeof
(tpe_num_t),

(void *)&val1, sizeof (tpe_num_t), (void *)&val2,
&result) ;

if (status == 0)
{

if (result > 0)
printf ("val1 > val2 ") ;

else
if (result < 0)

printf ("val1 < val2 ") ;
else

printf ("val1 = val2 ") ;
}

The previous example compares val1 and val2 and returns the result in result.

Note: For better portability, SQL statements can be used for comparison of data
in ESQL. On the other hand, using the StorHouse/RM API call tpe_compare_data
improves the performance of the ESQL program.
B-4 StorHouse ESQL Manual

Appendix

StorHouse

FileTek Proprietary and Confidential
C

Developing ESQL applications

This appendix lists some tips for writing ESQL programs. More tips will be
added in subsequent revisions of this manual.

Coding guidelines

Here are some guidelines and tips for writing ESQL applications:

■ Statements represented as character strings must be null-terminated.
However, no nulls may occur within the string.

■ The WHENEVER statement provides more flexibility and reduces the code
size of an application when it’s used in an ESQL program to check for error
conditions.

■ Don’t use the +P option on the esqlc command if any SQL reserved words are
#define’d in some of the included header files. When the +P option is used in
esqlc, the source files are passed through the C preprocessor before the ESQL
statements are translated.

One frequent problem is the reserved word NULL, which is #define'd in the
standard header file stdio.h. In this case, you can:

– Avoid using the +P option.

– Avoid the inclusion of the header file that contains the definition of the
reserved word.
 ESQL Manual C-1

C Developing ESQL applications

Coding guidelines

FileTek Proprietary and Confidential
– Reverse the case of the reserved word when used in the ESQL statement, as
shown below. This does not affect esqlc because reserved words in ESQL
statements are not case sensitive.

EXEC SQL
SELECT ename
FROM employee
WHERE commission IS null ;

■ You can use #define symbols in SQL statements wherever you can use
constants. The following example shows the usage of the #define symbol,
MAX_SALARY:

#define MAX_SALARY 10000

EXEC SQL
SELECT ename, salary
FROM employee
WHERE salary = MAX_SALARY ;

■ It is good practice to specify all columns in the SELECT list instead of using
an asterisk (*). The full SELECT list improves the readability of the SELECT
statement. In addition, if the database table schema is ever changed, you won’t
have to subsequently modify the SELECT statement.

■ When you issue queries, use an indicator variable to check for NULL values
on columns that can contain NULL values.

■ The StorHouse SQL DECODE function is similar to the switch statement in
C.
C-2 StorHouse ESQL Manual

Index

FileTek Proprietary and Confidential
Index

Symbols

() in SQL syntax xiv

+G option for esqlc command 9-4

+K option for esqlc command 9-4

+L option for esqlc command 9-4

+P option for esqlc command 9-4

+T option for esqlc command 9-4

+U option for esqlc command 9-4

+V option for esqlc command 9-4

... in SQL syntax xiv

.c file name for esqlc command 9-4

.o file name for esqlc command 9-4

.pc file name for esqlc command 9-4

{ } in SQL syntax xiv

| in SQL syntax xiv

’ in SQL syntax xiv

A

account_id argument 2-30
action_sp argument for WHENEVER statement 4-7

active set, definition 1-7

ALL argument 2-32

allocating
SQLDA buffers 5-27
SQLDA structure 5-21
variable entries in an SQLDA 5-22

API functions
tpe_compare_data B-3
tpe_conv_data B-1

array
declaring variables 2-21
definition 2-21
fetches 3-9, 5-32

associating a cursor with a query 3-5

atomic, definition 8-1

automating condition checking and error handling
with WHENEVER 4-6

B

BINARY data type 2-6

BLOB data type 2-6

BLOB_FILE data type 2-7

BLOB_LOCATOR data type 2-8

braces in SQL syntax xiv

brackets in SQL syntax xiv
StorHouse ESQL Manual Index-1

Index

C

FileTek Proprietary and Confidential
C

C format for declaring a host array 2-23

C language data types, mapping to StorHouse data
types 2-4

-c option for esqlc command 9-4

C structures
new_type_name 2-21
tpe_blob_file_t 2-8
tpe_clob_file_t 2-10
tpe_num_t 2-14
tpe_sqlda 5-14
tpe_sqlvar 5-16
tpe_time_t 2-16
tpe_timestamp_t 2-18

C++-style comments 1-9

calculating buffer size 5-27

CHARACTER data type 2-9

character strings, rules for dynamic statements 5-2

checking the size of an SQLDA 5-24

client file, initializing 6-9

CLOB data type 2-9

CLOB_FILE data type 2-10

CLOB_LOCATOR data type 2-11

CLOSE statement
description 3-9
example 5-10
format 3-9
to control cursors 3-5

closed cursor, definition 3-5

closing a cursor 3-9

coding guidelines for writing ESQL applications C-1

comments
C++-style 1-9
C-style 1-9
SQL-style 1-8

COMMIT WORK statement
description 8-3
format 8-3, 8-4

comparing data with the tpe_compare_data function
B-3

compiling ESQL programs 9-1

components
SQLCA

sqlcabc 4-2
sqlcaid 4-2
sqlcode 1-8, 3-8, 4-2
sqlerrd 4-3, 7-5
sqlerrm 4-2
sqlerrml 4-2
sqlerrp 4-2
sqlwarn 4-3

SQLDA
sqlvln32 5-18
sqlvtype 5-18

CONNECT statement
account_id argument 2-30
connection_name argument 2-29
database_name argument 2-29
description 2-29
example 2-30
format 2-29
password argument 2-30

connection string for a StorHouse remote database 2-
30

connection_name argument
Index-2 StorHouse ESQL Manual

Index

D

FileTek Proprietary and Confidential
CONNECT statement 2-29
DISCONNECT statement 2-32
SET CONNECTION statement 2-31

continuations in C 1-10

continuing SQL statements on another line 1-10

Control Center, description x

conventions, SQL xiv

converting data with the tpe_conv_data function B-1

correlating substitution markers with host variables 5-
3

C-style comments 1-9

CURRENT argument 2-32

current connection, definition 2-28

current row, definition 1-7

cursor
associating with a query 3-5
closing 3-9
definition 1-7
opening 3-6
retrieving rows 3-7
rules 3-5
using 3-4
using with host variable arrays 3-9

cursor states
closed 3-5
open 3-5

D

data definition (DDL) statements 1-4

data manipulation (DML) statements 1-4

data types, general
mapping StorHouse types to C types 2-4
supported

by StorHouse/RM API calls B-2
for comparison B-3

data types, specific
BINARY 2-6
BLOB 2-6
BLOB_FILE 2-7
BLOB_LOCATOR 2-8
CHARACTER 2-9
CLOB 2-9
CLOB_FILE 2-10
CLOB_LOCATOR 2-11
DATE 2-11
DECIMAL 2-13
DOUBLE 2-12
int16_t 2-4
int32_t 2-4
int64_t 2-4
int8_t 2-4
INTEGER 2-13
NUMERIC 2-13
REAL 2-15
SMALLINT 2-16
TIME 2-16
TIMESTAMP 2-17
uint16_t 2-4
uint32_t 2-4
uint64_t 2-4
uint8_t 2-4
VARBINARY 2-19
VARCHAR 2-19

database data type, definition 1-7

database_name argument 2-29

DATE data type 2-11

DB_NAME environment variable 9-1
StorHouse ESQL Manual Index-3

Index

D

FileTek Proprietary and Confidential
DB_PASSWD environment variable 9-1

DB_USER environment variable 9-1

DECIMAL data type 2-13

declarative statement, definition 1-3

Declare Section
declaring host and indicator variables 2-2
definition 1-5, 1-6, 2-1
example 2-2
rules for coding 2-2

DECLARE statement
example 5-10
format 3-6
used to control cursors 3-4

declaring
a host array

C format 2-23
ESQL format 2-22

an array as a new data type 2-24
host and indicator variables in a Declare Section

2-2
host variables as

C data types 2-4
StorHouse types 2-4

locator variable 6-5
output file reference variable 6-9
variables as

host arrays 2-21
type definitions 2-20

DECODE function C-2

definitions
active set 1-7
array 2-21
atomic 8-1
closed cursor 3-5
current connection 2-28

current row 1-7
cursor 1-7
database data type 1-7
declarative statement 1-3
Declare Section 1-5, 1-6, 2-1
durable 8-1
dynamic SQL 5-1
embedded SQL 1-3
ESQL construct 1-3
executable statement 1-4
full segment query 7-3
full table scan 7-1
host language 1-3
host language data type 1-7
host language variable 1-5
host program 1-3
indicator variable 1-6
input host variable 1-5
input SQLDA 5-13
open cursor 3-5
output host variable 1-5
output SQLDA 5-13
place holder 5-3
query 3-1
result set 1-7
select list 3-1
simple query 7-2
SQLCA 1-7
SQLDA 1-4
static SQL 1-3
StorHouse extractor 7-1
substitution markers 5-3
transaction 8-1

delimiters 1-10

DESCRIBE statement 5-13

DISCONNECT statement
ALL argument 2-32
connection_name argument 2-32
Index-4 StorHouse ESQL Manual

Index

E

FileTek Proprietary and Confidential
CURRENT argument 2-32
description 2-31
example 2-32
format 2-31

DOUBLE data type 2-12

durable, definition 8-1

dynamic SQL
definition 5-1
when to use 1-4

E

ellipsis points in SQL syntax xiv

embedded SQL, definition 1-3

environment variables for StorHouse
DB_NAME 9-1
DB_PASSWD 9-1
DB_USER 9-1
ESQL_CC 9-2
ESQL_CPP 9-2
ESQL_LINK 9-2
STHROOT 9-2

ESQL
construct, definition 1-3
format for declaring a host array 2-22
guidelines for writing applications C-1
precompiler 1-1
program path 1-2
sample program A-1

ESQL_CC environment variable 9-2

ESQL_CPP environment variable 9-2

ESQL_LINK environment variable 9-2

esqlc command

examples 9-4
file_name_list argument 9-4
format 9-4
issuing 9-3
option_list argument 9-4

examples
associating a cursor with a query 3-6
associating markers with host variables 5-9
BLOB data type 2-6
BLOB_FILE data type 2-7
BLOB_LOCATOR data type 2-8
changing the current connection 2-31
CHARACTER data type 2-9
checking for status codes 4-4
checking for warnings 4-5
checking the size of the SQLDA 5-25
CLOB data type 2-9
CLOB_FILE data type 2-10
CLOB_LOCATOR data type 2-11
CLOSE statement 5-10
closing a cursor 3-9
COMMIT WORK statement 8-3
CONNECT statement 2-30
connecting to a StorHouse database 2-30
correlating substitution markers with host

variables 5-3
C-style comments 1-9
DATE data type 2-11
DECLARE statement 5-10
declaring an array as a new data type 2-25
delimiters 1-10
DOUBLE data type 2-12
ESQL format for declaring a host array 2-22
esqlc command 9-4
EXECUTE statement 5-8
FETCH statement 5-10
FREE LOCATOR statement 6-8
INTEGER data type 2-13
non-SELECT statements without markers 5-5
StorHouse ESQL Manual Index-5

Index

F

FileTek Proprietary and Confidential
NUMERIC 2-13
OPEN statement 5-10
opening a cursor 3-7
pointer fetch method for array fetches 5-34
preparing an SQL statement from a character

string 5-7
queries that return a single row 3-2
REAL data type 2-15
retrieving multiple rows using a cursor 3-8
ROLLBACK WORK statement 8-4
SET CONNECTION 2-31
SMALLINT data type 2-16
SQL-style comments 1-9
standard method for array fetches 5-32
statement labels 1-11
storing a dynamic SQL statement as a host

variable 5-2
terminating a connection 2-32
TIME data type 2-16
TIMESTAMP data type 2-17
using a cursor with host variable arrays 3-10
using file reference variables 6-8
using host variables 2-26, 6-3
using indicator variables 2-28
using locator variables 6-4
VALUES INTO statement 6-7
WHENEVER statement 4-8

exception_sp argument for WHENEVER statement
4-7

exclusive lock 8-6

EXEC SQL delimiter 1-10

executable statement, definition 1-4

EXECUTE IMMEDIATE statement
example 5-6
format 5-6

EXECUTE statement

example 5-8
format 5-8

extractor 7-1

F

FETCH statement
description 3-7
example 5-10
format 3-7
multiple rows 3-9
pointer fetch method 5-33
to control cursors 3-5

file reference variable
declaring 6-9
definition 6-2
example 6-8
file options 2-8

file_name_list file extensions for esqlc command
.c 9-4
.o 9-4
.pc 9-4

FLOAT data type 2-12

FREE LOCATOR statement 6-8

freeing an SQLDA 5-24

full segment query
definition 7-3
example 7-3
format 7-3
processing 7-4

full segment select 7-1

functions
DECODE C-2
Index-6 StorHouse ESQL Manual

Index

G

FileTek Proprietary and Confidential
NVL 1-5
tpe_compare_data B-1
tpe_conv_data B-1
tpe_da_free function 5-24

G

GROUP BY clause in SELECT statement 3-2

guidelines
embedding SQL in C 1-8
writing ESQL applications C-1

H

HAVING clause in SELECT statement 3-2

host language datatype, definition 1-7

host language variable, definition 1-5

host language, definition 1-3

host program, definition 1-3

host variable in an ESQL statement
format 2-26
names 1-10
rules 2-26

I

in SQL syntax xiv

indicator variable in an ESQL statement
definition 1-6
format 2-27
rules 2-27

initializing
buffer pointers 5-28
client files 6-9

input host variable, definition 1-5

input SQLDA, definition 5-13

int16_t data type 2-4

int32_t data type 2-4

int64_t data type 2-4

int8_t data type 2-4

INTEGER data type 2-13

INTO clause in SELECT statement 3-2

issuing the esqlc command for the ESQL precompiler
9-3

L

large objects (LOBs)
definition 6-1
manipulating with VALUES INTO 6-7
placing into a host variable 6-3
placing LOB data into a client file 6-8
using a locator variable 6-4
using file reference variables 6-2

linking ESQL programs 9-1

locator variable
definition 6-2
manipulating 6-7
releasing 6-8
using to select LOB data 6-4

lock types
exclusive 8-6
shared 8-6
StorHouse ESQL Manual Index-7

Index

M

FileTek Proprietary and Confidential
locking 8-5

lowercase in SQL syntax xiv

M

mapping StorHouse data types to C types 2-4

maximum number of open database connections 2-
28

methods for fetching multiple rows
pointer fetch 5-33
standard 5-32

multiple SQLDAs 5-29

N

new_type_name C structure 2-21

NULL values 1-5

NUMERIC data type 2-13

NVL function 1-5

O

-o option for esqlc command 9-4

open cursor, definition 3-5

OPEN statement
description 3-6
example 5-10
format 3-6
to control cursors 3-4

opening a cursor 3-6

operators 1-11

option_list argument for esqlc command
+G 9-4
+K 9-4
+L 9-4
+P 9-4
+V 9-4
-c 9-4
-o 9-4

ORDER BY clause in SELECT statement 3-2

output host variable, definition 1-5

output SQLDA, definition 5-13

P

password argument 2-30

place holder, definition 5-3

pointer fetch method for fetching multiple rows 5-33

PREPARE statement 5-7

processing of queries 7-4

Q

query
associating a cursor 3-5
definition 3-1
that returns a single row 3-2
that returns multiple rows 3-3

query types
full segment 7-3
simple 7-2
Index-8 StorHouse ESQL Manual

Index

R

FileTek Proprietary and Confidential
R

read lock 8-6

REAL data type 2-15

releasing a locator variable 6-8

requirements for compiling and linking ESQL
programs

issuing the esqlc command 9-3
setting environment variables 9-1

resetting data types 5-19

result set, definition 1-7

retrieving rows using a cursor 3-7

reusing an SQLDA 5-29

ROLLBACK WORK statement
description 8-4
example 8-4
format 8-4

rules for
coding a Declare Section 2-2
extractor qualification 7-4
using a host variable 2-26
using an indicator variable 2-27
variable declarations 2-3

S

sample program (ESQL) A-1

scan, full table 7-1

scenarios for dynamic SQL
fixed-list SELECTs 5-10
non-SELECT with markers 5-6

non-SELECT without markers 5-5
SELECT using an SQLDA 5-12

select list, definition 3-1

SELECT statement
FOR clause 3-2
FROM clause 3-2
full segment query 7-3
GROUP BY clause 3-2
HAVING clause 3-2
INTO clause 3-2
ORDER BY clause 3-2
simple query 7-2
WHERE clause 3-2

semi-colon delimiter 1-10

serializable isolation level 8-5

SET CONNECTION statement
connection_name argument 2-31
description 2-30
example 2-31
format 2-31

setting environment variables for the ESQL
precompiler 9-1

shared lock 8-6

simple query
definition 7-2
example 7-2
processing 7-4

SMALLINT data type 2-16

SQL format conventions xiv

SQL in C, guidelines for embedding 1-8

SQL statements
continuing on another line 1-10
dynamic 5-1
StorHouse ESQL Manual Index-9

Index

S

FileTek Proprietary and Confidential
that control cursors
CLOSE 3-5
DECLARE 3-4
FETCH 3-5
OPEN 3-4

SQL syntax
braces { } xiv
commas , xiv
ellipsis points ... xiv
lowercase terms xiv
uppercase terms xiv
vertical bar | xiv

SQLCA
components

sqlcabc 4-2
sqlcaid 4-2
sqlcode 4-2
sqlerrd 4-3
sqlerrm 4-2
sqlerrml 4-2
sqlerrp 4-2
sqlstate 4-3
sqlwarn 4-3

description 1-7
purpose 4-1
structure 4-2
WHENEVER statement 4-6

sqlcabc component of SQLCA structure 4-2

sqlcaid component of SQLCA structure 4-2

sqlcode
checking the value of 4-4
component of SQLCA structure 4-2

SQLDA
allocating 5-21
allocating SQLDA buffers for variables 5-27
array structure 5-18

calculating buffer size 5-27
checking the size 5-24
components

sqldaid 5-15
sqldfmod 5-15
sqldnrow 5-15
sqldnvar 5-15
sqldrsv1 5-15
sqldsize 5-15
sqldvar 5-15
sqldvnln 5-15
sqldvrsn 5-15
sqlv_types 5-18
sqlvln32 5-18

description 1-4, 5-12
freeing 5-24
initializing buffer pointers 5-28
status values 5-29
structure definition 5-14
using for array fetches 5-32

sqldaid SQLDA component 5-15

sqldfmod SQLDA component 5-15

sqldnrow SQLDA component 5-15

sqldnvar SQLDA component 5-15

sqldrsv1 SQLDA component 5-15

sqldsize SQLDA component 5-15

sqldvar SQLDA component 5-15

sqldvnln SQLDA component 5-15

sqldvrsn SQLDA component 5-15

sqlerrd component of SQLCA structure 4-3, 7-5

sqlerrm component of SQLCA structure 4-2

sqlerrml component of SQLCA structure 4-2

sqlerrp component of SQLCA structure 4-2
Index-10 StorHouse ESQL Manual

Index

S

FileTek Proprietary and Confidential
sqlstate component of SQLCA structure 4-3

SQL-style comments 1-8

sqlv_types component of SQLDA structure 5-18

sqlvbl32 in tpe_sqlvar 5-16

sqlvdata in tpe_sqlvar 5-17

sqlvind in tpe_sqlvar 5-17

sqlvisnl in tpe_sqlvar 5-17

sqlvlenp in tpe_sqlvar 5-16

sqlvln32 component of SQLDA structure 5-18

sqlvln32 in tpe_sqlvar 5-16

sqlvname in tpe_sqlvar 5-18

sqlvprec in tpe_sqlvar 5-17

sqlvrsv1 in tpe_sqlvar 5-18

sqlvrsv2 in tpe_sqlvar 5-18

sqlvscal in tpe_sqlvar 5-17

sqlvtype in tpe_sqlvar 5-17

sqlwarn
checking for warnings in the SQLCA 4-5
component of SQLCA structure 4-3

standard method for fetching multiple rows 5-32

starting a transaction 8-2

statement labels
example 1-11
format 1-11

statements
CLOSE 3-9
COMMIT WORK 8-3
CONNECT 2-29
DECLARE 3-5

DISCONNECT 2-31
EXECUTE 5-8
EXECUTE IMMEDIATE 5-6
FETCH 3-7
FREE LOCATOR 6-8
OPEN 3-6
PREPARE 5-7
ROLLBACK WORK 8-4
SELECT 3-2, 7-2, 7-3
SET CONNECTION 2-30
VALUES INTO 6-7
WHENEVER 1-8

static SQL
definition 1-3
when to use 1-4

status values, SQLDA 5-29

STHROOT environment variable 9-2

StorHouse data types
list 2-6
mapping to C language types 2-4

StorHouse extractor, definition 7-1

StorHouse, description ix

StorHouse/RM API functions
tpe_compare_data B-3
tpe_conv_data B-1

StorHouse/RM, description x

StorHouse/SM, description ix

storing dynamic SQL as a character string 5-2

storing information in an SQLDA using
DESCRIBE SELECT LIST FOR 5-13

substitution marker, definition 5-3
StorHouse ESQL Manual Index-11

Index

T

FileTek Proprietary and Confidential
T

TIME data type 2-16

TIMESTAMP data type 2-17

tips for writing ESQL applications C-1

tpe_blob_file_t C structure 2-8

tpe_blob_t C structure 2-8

tpe_clob_file_t C structure 2-10

tpe_compare_data API function B-1
description B-3
syntax B-3

tpe_conv_data API function B-1
description B-1
syntax B-1

tpe_da_alloc function 5-21

tpe_da_alloc_varnames function 5-22

tpe_da_free function 5-24

tpe_da_getbsize function 5-27

tpe_da_setentry function 5-24

tpe_da_setptrs function 5-28

tpe_da_setup function 5-22

tpe_date_t C structure 2-12

tpe_num_t C structure 2-14

tpe_sqlda C structure 5-14

tpe_sqlvar C structure 5-16

tpe_time_t C structure 2-16

tpe_timestamp_t C structure 2-18, 2-19

transaction

definition 8-1
ending 8-3
starting 8-2

transaction management statements 1-4

U

uint16_t data type 2-4

uint32_t data type 2-4

uint64_t data type 2-4

uint8_t data type 2-4

uppercase in SQL syntax xiv

using a cursor with host variable arrays 3-9

V

VALUES INTO statement 6-7

VARBINARY data type 2-19

VARCHAR data type 2-19

variable declarations, rules 2-3

vertical bar in SQL syntax xiv

W

WHENEVER statement 1-8
action_sp argument 4-7
description 4-6
example 4-8
exception_sp argument 4-7
format 4-6
Index-12 StorHouse ESQL Manual

Index

W

FileTek Proprietary and Confidential
scope 4-7

WHERE clause in SELECT statement 3-2, 7-3
StorHouse ESQL Manual Index-13

	Online Guide
	Contents
	Welcome
	StorHouse family of products
	StorHouse/SM
	StorHouse/RM
	Control Center

	Purpose of this document
	Intended audience
	Contents
	Related documentation
	Format conventions

	Introducing StorHouse ESQL
	Understanding the ESQL precompiler
	Learning basic concepts
	Embedded, or static, SQL
	Types of embedded SQL statements
	Static versus dynamic SQL

	NULL values
	Host language variables
	Locator variables
	File reference variables

	Indicator variables
	Data types
	Cursors
	Errors and warnings

	Guidelines for embedding SQL in C
	Comments
	SQL-style comment
	C-style comment
	C++-style comments

	Continuations
	Delimiters
	Host variable names
	Operators
	Statement labels

	Satisfying program requirements
	Coding a Declare Section
	Declaring variables and types
	Declaring variables and types as StorHouse or C data types
	Mapping StorHouse data types to C language types
	Defining StorHouse data types

	Declaring variables with type definitions
	Declaring variables as host arrays
	ESQL format
	C format
	Declaring an array as a new data type

	Using host variables
	Using indicator variables
	Managing connectivity to StorHouse
	Connecting to a StorHouse database
	Changing the current connection
	Terminating a connection

	Submitting queries in ESQL
	About queries
	Queries that return a single row
	Queries that return multiple rows

	Using cursors
	Associating a cursor with a query
	Opening a cursor
	Retrieving rows using a cursor
	Closing a cursor

	Using a cursor with host variable arrays

	Handling errors and warnings
	Using the SQLCA
	SQLCA structure definition

	Checking the sqlcode for status codes
	Checking for warnings

	Using WHENEVER
	Scope of WHENEVER

	Using dynamic SQL
	About dynamic SQL
	Storing dynamic SQL as a character string
	Understanding substitution markers
	Correlating substitution markers with host variables
	Example

	Scenarios for using dynamic SQL
	Scenario 1: Non-SELECT without markers
	Scenario 2: Non-SELECT with markers
	About PREPARE
	About EXECUTE
	Associating markers with host variables
	Example

	Scenario 3: Fixed-list SELECTs
	Scenario 4: SELECT using an SQLDA
	About an SQL descriptor area (SQLDA)
	Storing information in an SQLDA
	Understanding the SQLDA structure definition
	Setting values of sqlvln32 and sqlvtype fields
	Resetting, or coercing, data types
	Checking space for SQLDA entries
	Checking space for variable name data
	Allocating an SQLDA
	Allocating variable entries in an SQLDA
	Initializing storage as an SQLDA
	Setting values in an SQLDA variable entry
	Freeing an SQLDA
	Checking the size of your SQLDA
	Allocating SQLDA buffers for data and indicator variables
	Calculating the buffer size (tpe_da_getbsize)
	Initializing buffer pointers (tpe_da_setptrs)

	Using multiple SQLDAs
	Reusing the same SQLDA
	Understanding the status value
	Reviewing the basics
	Satisfying individual program requirements

	Using an SQLDA for array fetches
	About the standard method
	About the pointer-fetch method
	Sample program

	Accessing large objects
	Ways to access LOB values
	Locator variables
	File reference variables
	Sample LOB value

	Placing LOB data into a host variable
	Using a locator variable to select LOB data
	Declaring a locator variable
	Issuing the query
	Example using SELECT INTO
	Example using FETCH

	Manipulating a LOB value through a locator variable
	Releasing a locator variable

	Placing LOB data into a client file
	Declaring a file reference variable
	Initializing the client file variable
	Issuing the query
	Example using SELECT INTO
	Example using FETCH

	Using the StorHouse extractor
	About the StorHouse extractor
	Types of eligible queries
	Simple queries
	Format
	Example

	Full segment queries
	Format
	Example

	Qualifying for extractor processing
	Checking the SQLCA

	Managing transactions
	About transactions
	Starting a transaction
	Ending a transaction
	Committing a transaction
	Committing DDL statements
	Committing non-DDL statements

	Rolling back a transaction
	Automatic rollback

	Locking
	Types of locks
	Shared locks
	Exclusive locks

	Duration of a lock

	Using the ESQL precompiler
	Setting environment variables
	Issuing the esqlc command

	Reviewing a sample program
	Converting and comparing data
	Converting data
	Comparing data

	Developing ESQL applications
	Coding guidelines

	Index

