Release Notes for
StorHouse/RM 3.3

StorHouse/RM Release 3.3

Publication Number
900126 Rev. N

August 9, 2004

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

Copyright © 1996-2004 FileTek, Inc. As an Unpublished Licensed Work.
Publication Number: 900126 Rev. N

NOTICE: U.S. GOVERNMENT USERS

This notice applies to all acquisitions of this work by or for the U.S. Government
(“Government”), or by any prime contractor or subcontractor (at any tier) under
any contract, cooperative agreement or other activity with the Government. By
accepting delivery of this work, the Government agrees that this work and the
Licensed Program(s) described herein qualify as “commercial” computer
software within the meaning of the acquisition regulation(s) applicable to this
procurement. The terms of conditions of the license for the Licensed Program(s)
shall pertain to the Government’s use and disclosure of this work and the
Licensed Program(s), and shall supersede any conflicting contractual terms or
conditions. If the license for this work and the Licensed Program(s) fails to meet
the Government’s need or is inconsistent in any respect with Federal law, the
Government agrees to return this work and the Licensed Program(s), unused, to
FileTek, Inc. The following additional statement applies only to acquisitions
governed by DFARS Subpart 227.4 (October 1988) “Restricted Rights - Use,
duplication and disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 (OCT. 1988).” Unpublished licensed
work property of FileTek, Inc. Unauthorized use, duplication or distribution
prohibited. All rights reserved. A copyright notice on this work and/or on the
Licensed Program(s) by itself does not constitute publication or public disclosure
of this work or the Licensed Program(s). The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS I1S” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

FileTek Proprietary and Confidential

FileTek

Contents

WEICOME . Vil
Intended aUIENCEc.evviriiiiiiiiriiicic s vii
Contents of dOCUMENT ...c..cviiiiiiiiiiiiiiii e vii
Related documentationc..coueererieieininericieeeseee et viii

Chapter 1: Changes and enhancementsccccccoovviiiiiiiiinnnnee, 1-1
SYStem FEQUITCIMENITS ...evviuviiiiieiieteie ittt ettt sttt st sa e sa e s aesnes 1-1
UGHEY UPAALES .venvviniiiiiiciirictrice ettt 1-2

Renamed UtIlIHES ...o.veveriiniiniiiiiiiicicicceeee e 1-2
Changed Utilitiescooviiiiiiiiiiiii e 1-2
Redo journaling ..o 1-3
JOUNQL fIlE ..ot 1-4
Primary and secondary journal filesc..cccoeveviniciniiininiininiincccce 1-4
Journal file STATUS .veeevieivieieeiicieeee ettt ettt et et et e eaeas 1-5
Journal file NAMES ..c.eeeeviiiiiicieceeeee e e e 1-5
Redo journaling utilitiesccoceoiiiiiniiiniiiiiiiccce 1-6
Ways to run redo journaling utilitiesccccovioiriiiniiininiiniicccce, 1-6
Privileges for running redo journaling utilitiesccccevevinevinnennccniecnienne, 1-7
Location of the redo journalcccocccoveviniiiniiinniinicccceee 1-7
LOCKING .ttt 1-8
Enabling journaling for a new databasecccccoeviiiiiiniiiiiniiie, 1-9
Enabling journaling for an unjournaled databaseccccocooiiinn 1-9
Cycling journal filescccooioiiiiiiiiiiiiiice, 1-10
Archiving and purging journal filesccccveiiniiniiiniie 1-11

Release Notes for StorHouse/RM 3.3 iii

FileTek Proprietary and Confidential

. Contents

Replaying a journal filecccoooiiiiiiiiiiiiiiices 1-13
Segment delete UL .ooveviveiiiiiiiiiiciec e 1-15
Before deleting SEgMENtscecueueirieinieiiniiiiinicieccce e 1-16
Ways to run the segment delete utilitycoveireenninncinciinininccccee 1-16
Privileges required to run the segment delete utilityocoeeivinivieciininnnnee 1-17
LOCKING vt 1-17
Running the segment delete utilityccoooiiiiiiiiii 1-18
Running multiple delete processesccocviviviiiiiiiininiiiiiiiccccie, 1-19
Restarting an interrupted Processcocoeeeriiiiniiiiiiiininecnnesseesenas 1-19
After deleting SEZMENTScoveviriiuiiiieirieirieen ettt 1-20
Explain facilityccoocooiviiiiiiiiiiiii e 1-20
EXECULION LIEE ...eiuiiiiiiiiiieiieie ettt sttt ettt ettt 1-20
INOAES ettt s 1-21

INOdE OPEIALIONS ..uveviiieiiieiiieici ettt 1-21

PrOJECT eviueiiiiiiiiiiiiiiiiit s 1-23

RESTIICE. weivviniiiiiiiciiciciccc 1-23

JOUL wvveeemnnessessessessssssssssssessesssssssssssssssnsessessssssssssssssnnssssesssssssssssssmnssenns 1-23

SOIT. ettt ettt ettt ettt ettt et et e st st e st esat e st e sab e e s e e sabeeebee s 1-23

URION. ittt 1-23

Table SCAN eviiiiiicieie e 1-23

INAEX SCAN .voviiiiiiiiiiii e 1-24

EXPLESSION TrE ...ocuivuiiiiiiiieiiitiieieiteiesete ettt s 1-24
Explain facility SQL Statementscceceververmeieenienieniiineniereeeeseneeeeeeenenne 1-25
Explain facility result tablescccoevieoiiinininiiiiccce 1-26
Explain privilegescoccoviiiiiiiiiiiiiiiic e 1-26
Explain examplec..cocoiiiiiniiiiiiiic e 1-27
Step 1: Run the explain facility .c.ooeoeveeveninciineiiniiinincececn 1-27

Step 2: Obtain the execution plan IDccoeiiiiiiinciiniinicineeee 1-27

Step 3: Display the execution plancccceeereiineinninncinecnecnn 1-28

Step 4: Display the expression for the project nodeccccoeueuvriennene 1-29

Data type changesccccoiiiiiiiiiiiiiic e 1-29
ODBEC Changesccccueeueuiinieinieiiieieiieeete ettt 1-30
ESQL COMPILELS .niviniiiiiiciiiciiieictcc sttt 1-31
SOIALIS ottt 1-31

iv Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Contents .

HP-UX e e e e e e e e e e e e e s aneeeesaeaee e s e eaeeseeraeeeeaeeeenanee 1-31
AT e e e e e e e e e ——e e e e e e ae—e e e e e e eaaaaeeaaas 1-31
Data loader changesccoouiiiiiiiiniiiiniiiicccccc e 1-32
New ESCAPED BY Clause ...eevviiiiiiiiiiiiiiieeeeeiee ettt ettt eeeeaveeeeeseans 1-32
Format of ESCAPED BY Clause ...cccovveeeuveieiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeee s 1-33
Example ESCAPED BY clausecccccovvevenieiiininicieincnencencseeceeenne 1-34
Enhanced pending load checkccooooiiiiii 1-34
Data unloader changescccoeiviiiiiiiiiniiiiicicceee e 1-35
NeWw ESCAPED BY ClAUSE .euvveeeeeeeeeeeeee et e eeeee e e e eeeeseneeeeeeseeas 1-35
New RECORDS NOT TERMINATED clausecccovveevveveeveeeeeeeereeeeeinneenn. 1-35
Removed 18SeIved WOIAScciiiveeeiieeieiieeieeee ettt ee e e e e eeaareeeseseeaaaeeeeeeas 1-35
Limit changesccccoiiiiiiiiiiiiic s 1-36
NeW SQL COAES vttt ettt 1-36
Chapter 2: Special considerationsccccceeeveeiiiiiiiiieeeeeeieeeee, 2-1
SQL €ode -30T03T aiiiiiiiieieiieterieete ettt sttt 2-1
SQL €ode -30033 ..ottt b ettt sttt neea 2-1
DESCRIBE BIND IEStIICHIONS ooieiiiiiiiiiiiieieiieeeeeeeiensiiserereesereeeeeeeeeeeeeeeseseeeseeeeeeees 2-2
Design advisory for join OPerationscccccuveiviiiniiiiiiiiiniiiieesecesee s 2-2
ISQL ProdUuCt STATUS ...eeveeuerieeeiieiirienieteitetesteteet ettt ettt sttt sesae st be e ese e 2-2
DDL processing in generalccocoiiiiniiiniiininiicinccce s 2-3
Host variables as BINARY, VARBINARY, and VARCHAR data types 2-3
Immediate restart after a load faillureoooovveeieeiieiiiieeeeeeeeeeeeee e 2-3
LOB IEStIICTIONS vvvvviivieutriiieeeieieieeteeeeeesintereeesesasareeeessssessseeessssssssresesssssssseseessssnnnns 2-4
ESQL ettt ettt et st b e et reera et beereennenes 2-4
S ettt ettt n et et et st eteeteteneereenan 2-4
Use 0f SYS 1N taDIE NAMIES wevvviiieeeiieeeeeeeeeeeee et eeeeet e e e e eeeeeeteeeeeeeeneeeeeeseeenane 2-4
Use of control characters as delimIters v..eeeeueveeeeeeeeeeeeeeee oot e eeeeeeeereeeeeeeeeeeeeseeas 2-4

Release Notes for StorHouse/RM 3.3 v

FileTek Proprietary and Confidential

Contents

vi Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

FileTek

Welcome

The Release Notes for StorHouse/RM 3.3 identifies changes, enhancements, and
special considerations for StorHouse/RM release 3.3.

Intended audience

This document is intended for StorHouse/RM users who are familiar with the
StorHouse/RM software and for new users who want a summary of changes.

Contents of document

This publication contains the following chapters:

s Chapter 1, “Changes and enhancements,” summarizes updates and new
features in StorHouse/RM release 3.3.

» Chapter 2, “Special considerations,” describes issues that may, in certain

environments or fields of use, require careful review during assessment of an
application’s use of StorHouse/RM at this time.

Release Notes for StorHouse/RM 3.3 vii

FileTek Proprietary and Confidential

Related documentation

Related documentation

viii

Refer to the following documents for information about StorHouse/RM.

The StorHouse SQL Reference Manual, publication number 900111, describes
the SQL statements, predicates, and functions supported by StorHouse®.

The StorHouse SQL Quick Reference, publication number 900122, provides a
summary of the material in the StorHouse SQL Reference Manual.

The StorHouse Database Administration Guide, publication number 900108,
describes StorHouse database concepts and explains how to create user tables
and indexes, manage accounts and privileges, set up user tablespaces, and
perform other StorHouse database administration tasks.

The StorHouse ESQL Manual, publication number 900121, explains how to
use StorHouse SQL in application programs.

The Filelek MVS Data Loader Utility Manual, publication number 900109,
describes how to load data into StorHouse user tables from an MVS
environment.

The FileTek FTP Data Loader Manual, publication number 900115, explains
how to load data into StorHouse user tables from UNIX®, VAX, or other
hosts using your standard File Transfer Protocol (FTP) client software.

The Filelek FTP Data Unloader Manual, publication number 900137,
explains how to unload data from StorHouse databases using FTP. It describes
the UNLOAD control statement you prepare to format result data, the
SELECT statement you prepare to select the data to unload, and the subset of
FTP commands you use to transfer control information and to receive result
data.

The StorHouse/RM Metadata Conversion Manual, publication number
900142, explains how to convert metadata from one StorHouse/RM release
to another.

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Welcome

Related documentation

» The StorHouse/RM Glossary, publication number 900112, defines the
terminology used in the StorHouse/RM User Document Set.

Release Notes for StorHouse/RM 3.3 ix

FileTek Proprietary and Confidential

Welcome

Related documentation

X Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Chapter

1

Changes and enhancements

This chapter describes the changes and enhancements to StorHouse/RM for
release 3.3. Significant new features are as follows:

s Redo journaling, which supplements the metadata backup and restore
utilities in capturing and restoring transactions that affect metadata

s Segment delete utility, which removes invalidated segments and associated
objects (for example, index files and entries in system tables) from StorHouse

» Explain facility, which enables you to examine the strategy, or execution plan,
created by the optimizer for a given query

System requirements

StorHouse/RM release 3.3 requires the following:
s StorHouse/SM release 5.4 (delivery 51) or a later StorHouse/SM release

» UNIX operating system environment/platform:
— Sun™ Solaris™ 2.6, 8, or 9 on Sparc systems
— HP-UX 11.x on PA-RISC systems
— IBM AIX 5.2 on pSeries servers

See “ESQL compilers” on page 1-31 for information about supported ESQL
compilers.

Release Notes for StorHouse/RM 3.3 1-1

FileTek Proprietary and Confidential

Changes and enhancements

Utility updates

Utility updates

1-2

Some existing utilities were renamed and modified in StorHouse/RM 3.3.

Renamed utilities

The commands of the following utilities were renamed to use a consistent
naming scheme.

Utility command changes

Utility Old command New command
Database down dbdown sthdb_down
Database up dbup sthdb_up
Metadata backup meta_bkup sthdb_backup
Metadata restore meta_rstr sthdb_restore

Changed utilities

The -d option letter is no longer required on the database down (sthdb_down)
and database up (sthdb_up) utilities. StorHouse/RM, however, accepts -d for
compatibility with previous releases.

The -n option is available on the database down (sthdb_down) and database up
(sthdb_up) utilities. Include this option to run the utility in non-interactive
mode (no prompting).

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

Additional options are now available on the database creation (syscreate) and
metadata backup (sthdb_backup) utilities to support redo journaling.

Command options for existing utilities

Utility Options Description
syscreate -jor-J Enable journaling for a new database
sthdb_backup -for-F Ignore the data loader checkpoint status
-hor-H List command usage information
-jor-J Enable journaling for an existing database
-nor-N Run in non-interactive mode
-vor -V Receive detailed status messages
-sor-S Set values for VSET, FSET, and VTF. If you omit this

{sm_options} option, the utility uses StorHouse system parameters
to obtain the values. The format of {sm_options} is:

VSET=name,FSET=name,VTF=NOW | DIRECT |
NEXT

For example:
-s VSET=MYVSET,FSET=MYFSET,VTF=NOW

Redo journaling

StorHouse/RM 3.3 supports redo journaling—a set of utilities for capturing,
storing, and restoring transactions that affect metadata. Redo journaling is used
in conjunction with the metadata backup and restore utilities to restore
transactions that affect the metadata since the last metadata backup.

You can start redo journaling when you create a StorHouse database. You can also

enable journaling later, but you cannot stop journaling once you start it for a
database. FileTek customer support, however, can disable the feature if necessary.

Release Notes for StorHouse/RM 3.3 1-3

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

Journal file

A redo journal, or journal file, contains a record of each transaction that changes
a table in a system tablespace. The following committed transactions are
captured in a journal file:

s CREATE TABLE

s CREATE INDEX

= DROP TABLE

= DROP INDEX

= INSERT (table rows and index entries)
= UPDATE (table rows and index entries)
» DELETE (table rows and index entries)

Other forms of ALTER, CREATE, and DROP statements are not explicitly
captured because the changes they cause in the system tablespace are completely
recorded by the capture of the underlying INSERT, UPDATE, and DELETE
statements that are generated by those DDL statements.

Primary and secondary journal files

The redo journaling utilities manage primary journal files and secondary journal
files. A primary journal file is the file that is archived to StorHouse or used in the
event the redo journal must be applied. A secondary journal file is a copy of the
primary journal file and is used if the primary is corrupt. Typically, the secondary
journal file is located on a different device from the primary journal file.

1-4 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

Journal file status

A journal file may have a status of current, cycled, archived, or purged.

s The current journal file is the file presently open and storing journal records.
The current journal file is located on UNIX disk.

» A cycled journal file is a UNIX file that has been closed in preparation for
archiving and deleting.

» An archived journal file is a UNIX file written to StorHouse as a StorHouse
file. The UNIX file remains on disk until purged.

» A purged journal file is a UNIX file deleted from disk only after successful
archiving to StorHouse.

Journal file names

The current journal files have the following naming convention:

dbname_currenttime.PRI1.JOU
dbname_currenttime.SEC.JOU

where:

dbname is the name of the StorHouse database

currenttime is the elapsed time in seconds since 00:00:00 Universal Time,
January 1, 1970

PRI is the primary journal file and SEC is the secondary, copy

JOU is the file extension

For example, CUSTOMERDB_1042555527.PRI.JOU.

Release Notes for StorHouse/RM 3.3 1-5

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

On StorHouse, an archived journal file name does not contain PRI or SEC, for
example, CUSTOMERDB_1042666627.JOU.

Redo journaling utilities

You use the following utilities to manage redo journaling.

Task Utility See page
Enable journaling when creating a database syscreate 1-9

Enable journaling for an unjournaled database sthdb_backup 1-9

Close the current journal file and start a new one sthjou_cycle 1-10
Validate a journal file, archive a journal file to a sthjou_archive 1-11

StorHouse VSET and FSET, and purge an old
journal file from the UNIX directory

Apply all journal files to finish restoring a database sthjou_replay 1-13

Ways to run redo journaling utilities

You must run the journal replay utility from the StorHouse operating system
(UNIX) prompt. You can run the journal cycle and journal archive utilities in the
following ways:

» StorHouse Command Language RUN command

» StorHouse Command Language SCHEDULE command

» UNIX command line (StorHouse operating system prompt)
» UNIX cron command

1-6 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Redo journaling

Privileges for running redo journaling
utilities

You must use the operator account and password to run the journal replay utility
from the StorHouse operating system (UNIX) prompt. A StorHouse account
with one of the following command privileges can run the journal archive and
journal cycle utilities:

= OPERATOR
= SERVICE
= SYSTEM

Note that the SYSADM account has ALLPRIVILEGE (which includes the above
privileges). Refer to the StorHouse Command Language Reference Manual for
more information about command privileges.

Location of the redo journal

On StorHouse, an archived journal file is stored in a VSET and FSET that you
can name when running the journal archive utility (sthjou_archive). If you don't
specify the VSET and FSET, the utility uses StorHouse system parameters
(SQL_BKUP_VSET and SQL_BKUP_FSET) to obtain the values.

On disk, the current journal files, cycled journal files, and archived but not yet
purged journal files are located in directories that you designate in the
$STHROOT /etc/rdbtemp.data file. You add an entry to the rdbtemp.data file for
each directory to use for journaling and cycling.

Specifically, the rdbtemp.data file is organized into three sections:

» Temporary file directories
» Primary journal file directories
s Secondary journal file directories

Release Notes for StorHouse/RM 3.3 1-7

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

The first line in a section is the number of entries in the section. Subsequent lines
are a full path specification.

For example, the following rdbtemp.data file contains two temporary file
specifications, four primary journal file specifications, and two secondary journal
file specifications.

2
/[filetek/tnp
/[filetek2/tmp

[JOURNAL_PRI MARY]

4

[horre/ journal / sth3. 0/ prinmaryl
[horre/ journal / sth3. 0/ prinmary2
/hone/journal /sth3. 0/ primary3
/ hone/journal /sth3. 0/ pri mary4

[JOURNAL _ SECONDARY]

2

/rm journal /sth3.0/secondl
/rm journal /sth3.0/second2

When you enable journaling for a new database, StorHouse/RM creates a
primary journal file in the first primary directory (for example, / hone/
journal /sth3. 0/ primaryl) and a secondary journal file in the first
secondary directory (for example, / r mf j our nal / st h3. 0/ secondl) . When
you cycle the journal files, the journal cycle utility creates new files in the next
directories (for example, / hone/ j our nal / st h3. 0/ pri mary2 and

/rm journal /sth3.0/second2).

Locking

Journaling uses locks during physical I/O to the current journal file and during
journal cycling. These locks affect only the current journal file. Locks are not
used for operations on cycled and archived journal files.

1-8 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Redo journaling

Enabling journaling for a new database

When creating a StorHouse database, you can start journaling by using the -j or
-J (journaling) option on the syscreate command. When journaling is selected,
the syscreate utility creates the database, then it creates a backup of the new
database. The syscreate format is:

syscreate [] | -J] database_name

For example, to enable journaling for a new StorHouse database called
CUSTOMERDB:

$STHROOT/bin/syscreate -] CUSTOMERDB

Enabling journaling for an unjournaled
database

If you did not enable journaling when you created a database, you can enable it
later by using the -j or -J option when running the metadata backup utility
(sthdb_backup). The metadata backup utility backs up the metadata and creates
the journal files in the primary and secondary directories specified in the

rdbtemp.data file.

For example, to back up a database called CUSTOMERDB and to enable
journaling:

run sthdb_backup -j CUSTOMERDB
In this example, the metadata backup utility terminates if any loads are active

(there’s no -f option on the command statement). In this case, no backup is
created and journaling is not started for the database.

Release Notes for StorHouse/RM 3.3 1-9

1-10

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

Cycling journal files

The journal cycle utility (sthjou_cycle) performs the following functions:

» Creates new files in the next primary and secondary directories specified in

the rdbtemp.data file

» Writes a record containing the names of the new journal files to the outgoing

current journal files

s Closes the current primary and secondary journal files in preparation for

archiving

The new files then are the current journal files and the closed files are the cycled
journal files. You should cycle journal files when they becomes large or at a preset
interval (cron job). If the rdbtemp.data file contains multiple primary and
secondary directory entries, the journal cycle utility will switch to the next

directory.

The format of the journal cycle utility is as follows:

sthjou_cycle [options] database_name

Argument Description

[options]

v |-V

-h|-H

(optional) Command options.

Option to display the names of the current primary and
secondary journal files, and when sthjou_cycle utility
completes, the names of the newly created primary and
secondary journal files.

Option to display a description of the sthjou_cycle utility and
its command syntax.

database_name

(required) Name of the StorHouse database with journaling
enabled. When running the utility with the StorHouse RUN
command, enclose a database name with lowercase
characters in double quotes.

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Redo journaling

For example, to cycle journal files for the Calls database using the -v option:

run sthjou_cycle -v “Calls”

Archiving and purging journal files
The journal archive utility (sthjou_archive) performs the following functions:

s Verifies the integrity of a cycled primary journal file by reading each journal
record. If the utility detects a problem with a primary journal file, it reads the
secondary journal file.

» Archives, or copies, journal files from the UNIX directories to a VSET and
FSET on StorHouse. This utility archives only those journal files that have
been cycled and not yet archived to StorHouse. The utility ignores the
current journal file and any disk journal file already archived to StorHouse
but not yet deleted.

» Optionally purges archived journal files from disk. You can purge journal files
only or archive and purge journal files at the same time.

Running the utility with no options archives every disk journal file (except the
current journal file) that has not been previously archived to StorHouse.

Release Notes for StorHouse/RM 3.3 1-11

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

The format of the journal archive utility command is as follows.

sthjou_archive [options] database_name

Argument Description

options (optional) Command options.
-s {sm_options} | Option to specify the VSET, FSET, and VTF values for the
-S {sm_options} StorHouse file to contain the journal files. If you omit this

option, the utility uses StorHouse system parameters
(SQL_BKUP_VSET and SQL_BKUP_FSET) to obtain the
values for VSET and FSET, and it uses NEXT as the default
for VTF. The format of {sm_options} is:

VSET=name,FSET=name,VTF=NOW | DIRECT | NEXT
For example:

-s VSET=MYVSET,FSET=MYFSET,VTF=NOW

No spaces are permitted between the items (sm_options).

-p N[.nnnnn] | Option to purge disk journal files in addition to archiving

-P N[.nnnnn]| journal files. Only journal files that have been successfully
written to StorHouse and verified as safe on StorHouse are
purged. N.nnnn is the age criteria for the disk journal file,
where N (required) is days and .nnnnn (optional) is a fraction
of a day. For example, -p 1 indicates to purge disk journal
files that were archived at least one day ago.

-0|-O Option to only purge disk journal files that have been
previously written to StorHouse. No archiving occurs.

-cN|-CN Option to specify the number of journal file copies that must
be stored on StorHouse before the utility deletes the journal
files on disk. The N value may be 0, 1, 2, or 3. The utility
issues a StorHouse SHOW FILE /SAFE_COPIES command
to verify that the number of safe copies exists and are
complete and usable. When the number of safe copies
exists, the utility purges the disk journal files.

The default value is 2. The value 0 (not recommended)
indicates a file exists on StorHouse but it's not important
where, for example, only in the performance buffer.

1-12 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

Argument Description

database_name (required) Name of the StorHouse database with journaling
enabled. When running the utility with the StorHouse RUN
command, enclose a database name with lowercase
characters in double quotes.

Some examples follow.

s To archive journal files to a VSET called v2003 and an FSET called 2003 for a
database named CUSTOMERDB:

run sthjou_archive -s vset=v2003,fset=f2003 CUSTOMERDB

» To archive journal files to the default VSET and FSET (omit the -s option)
and to purge journal files that were archived at least seven days ago and have
one copy on StorHouse:

run sthjou_archive -p 7 -c 1 CUSTOMERDB
» To purge all archived disk journal files:

run sthjou_archive -O CUSTOMERDB

Replaying a journal file

The journal replay utility (sthjou_replay) applies all journal files created since the
last metadata backup. You run the journal replay utility after restoring the
database with the metadata restore (sthdb_retore) utility. A database with
journaling enabled that has been restored is inaccessible until you run the journal
replay utility. The database must be down during both operations.

Note: Contact FileTek customer support before restoring a database and
replaying a redo journal.

Release Notes for StorHouse/RM 3.3 1-13

FileTek Proprietary and Confidential

Changes and enhancements

Redo journaling

The format of the sthjou_replay utility command is as follows.

sthjou_replay [options] database name

Argument Description

[options] (optional) Command options.

-v |-V Option to print replay statistics to the standard output
device at the end of the replay.

-h|-H Option to display a description of the sthjou_replay utility
and its command syntax.
database_name (required) Name of the StorHouse database with journaling
enabled.

For example, to replay the redo journal with the verbose option for the Calls
database, type:

$STHROOT/bin/sthjou_replay -v Calls

1-14 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential
Changes and enhancements 1
Segment delete utility

The following sample illustrates output for the verbose option. Only the final
four lines are printed without the -v option.

total redo journal files processed \1\
total records processed \988\

total statement records processed \987\
total statements \7210 \

total tables created \0\

total tables dropped \O\

total table inserts \3032\

total table updates \0\

total table deletes \0\

total indexes created \0\

total indexes dropped \0\

total index inserts \3196\

total index deletes \O\

total config updates \491\

total committed transactions \491\
total transaction rollbacks \0O\

Wall clock \33.31\

User \1.61\

SYS \0.66\

sthjou_replay has completed successfully

Segment delete utility

The segment delete utility (sthseg_delete) identifies invalidated segments, removes
the segment files (table data file, index files, LOB subsegments), and removes the
associated entries in system tables (SYSSTHFILES, SYSSTHSEGMENTS, range
index tables, and so on). Use this facility to mass-remove invalidated segments
and their associated objects from a StorHouse database. An invalidated segment is
one that has been replaced or made obsolete through a FileTek data loader merge,
or coalesce, operation.

Release Notes for StorHouse/RM 3.3 1-15

FileTek Proprietary and Confidential
1 Changes and enhancements
Segment delete utility

You can also delete segments with StorHouse/Admin. The difference between
deleting segments with StorHouse/Admin and the segment delete utility is as
follows:

s With StorHouse/Admin, you select the invalidated segment(s) to delete or
specify delete criteria for one user table at a time.

s With the segment delete utility, you identify the database, and the utility
identifies the invalidated segments and deletes them. Utility options enable
you to select or limit the scanned segments.

Before deleting segments

You must invalidate segments before deleting them. The segment delete utility
removes only those segments that have been invalidated for a minimum of 14
days or a specified number of days (utility option). The interval between segment
invalidation and deletion should not be small, since a very long-running query
might still be referencing the segment. Invalidating a segment that is in use does
not create a problem, but deleting the associated StorHouse file might cause such
a query to fail. You can invalidate segments with StorHouse/Admin and with a
FileTek data loader (REPLACE SEGMENT clause or a MERGE (COALESCE)
operation).

Ways to run the segment delete utility
You can run the segment delete utility in the following ways:

» StorHouse Command Language RUN command

» StorHouse Command Language SCHEDULE command

» UNIX command line (StorHouse operating system prompt)
» UNIX cron command

1-16 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Segment delete utility

Privileges required to run the segment delete
utility

You must use the operator account and password to run the utility from the
StorHouse operating system (UNIX) prompt. A StorHouse account with the

OPERATOR, SERVICE, or SYSTEM command privilege can run the segment
delete utility with the StorHouse Command Language RUN and SCHEDULE

commands.

Locking
Different locks occur during the segment delete process.

» The utility takes a read lock on system tables when scanning the StorHouse
database to determine which segments to process.

» It takes a write lock when deleting table rows from system tables.
» It holds no locks when deleting segment files.
A utility option enables you to limit the number of seconds any system table

write lock is held. The default is 2 seconds. If the database contains hundreds of
thousands of segments to be scanned, specify a value of at least 10 seconds.

Release Notes for StorHouse/RM 3.3 1-17

FileTek Proprietary and Confidential

Changes and enhancements

Segment delete utility

Running the segment delete utility

You can run the segment delete utility occasionally to remove invalidated
segments. You can also schedule the utility to run at a specified time and
frequency. The format of segment delete utility command is:

sthseg_delete [-options] database name

Argument Description

-options (optional) Criteria to select or limit the segments that are
scanned for deletion and to set locking and messaging
preferences. The option characters are not case sensitive,
for instance, you can specify -d or -D. All options have a
default.

-d or -D days Minimum number of days a segment has been invalid.
The default is 14 days.

-t or -T tblid[,tblid]... Table Id(s) to delete invalidated segments from specific
user tables. The table ID is the ID value from the
SYSTABLES entry for that table (that is, it is not the table
name). The default is all user tables in the database.

-l or -L lock_seconds Limit on the number of seconds any system table write
lock is held. The default is 2 seconds. Specify a larger
value (for example, 10) if hundreds of thousands of
segments are going to be scanned.

-v or -V verbose_level Level of message detail (echo activity to stdout). Values of
verbose_level are 0 (minimal messaging), 1, or 2 (most
verbose). The default is 0.

database_name (required) Name of the StorHouse database. When
running the utility with the StorHouse RUN command,
enclose a database name with lowercase characters in
double quotes.

1-18 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Segment delete utility

Some examples follow.

s To delete all segments that have been invalidated for at least 10 days in
database called Customer:

run sthseg_delete -d 10 “Customer”

s To delete all segments that have been invalidated for at least 14 days (default)
in table 158 in the SALES database:

run sthseg_delete -t 158 SALES

Running multiple delete processes

The segment delete utility operates on one StorHouse database at a time;
however, you can run up to 10 segment delete processes at a time (for instance, to
delete segments in different databases). FileTek recommends running only one
instance that references the same table in the same database. All but one instance
may fail in this case, although no database damage will occur and no StorHouse

files will be orphaned.

Restarting an interrupted process

You can restart an interrupted process (for instance, should StorHouse shut
down) by running the segment delete utility again. The utility creates a
checkpoint record after deleting a segment table entry from the SYSTHFILES
system table or making any other associated table updates to ensure restart and to
prevent StorHouse files from being orphaned. The segment delete utility also
creates a disk-resident table in the target database to track progress of the delete
operation. The table, named STH__SEG_DEL_UTIL, provides current status
information required to restart an interrupted operation.

Release Notes for StorHouse/RM 3.3 1-19

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

After deleting segments

The segment delete utility moves the deleted segment files to the StorHouse

deleted directory. Those files remain in that directory until you remove them
with the StorHouse Command Language REMOVE FILE command or with

StorHouse/Admin.

Explain facility

With the new StorHouse/RM explain facility, you can examine the strategy, or

execution plan, used by the optimizer for a specific query. For instance, you can
determine whether StorHouse/RM uses an index and which index. Or you can
determine the chosen join method and join predicate. You can use the explain

facility to analyze SELECT statements only.

Execution tree

An execution tree is an internal representation of a query in a form that an engine
can process. When you submit an SQL query:

» The parser parses the SQL statement, generating an internal execution tree.

» The optimizer manipulates and refines the tree, for instance, selects indexes,
determines an optimal join order when multiple tables participate in the
query, and restructures the execution tree for performance.

s The engine then executes the optimized execution tree.

The explain facility enables you to create a representation of the execution tree in

the form of relational tables. You can query these tables to view the execution
strategies selected by the optimizer.

1-20 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

Nodes

An execution tree is structured as a binary tree. Each node in the tree represents a
primitive operation in the execution of the query. And, each node in the tree may
have one child, two children, or no children. Child nodes are referred to as either
left or right child nodes. If a node has one child, that child node is always a left
child. A right child node exists only if there are two child nodes.

There are three categories of nodes:

s The ro0t node is the entry point into the execution tree. The root node has no
parent.

» An interior node is a node that has both a parent and one or more children.

» A leaf node is a node that has a parent, but no children. Leaf nodes represent
operations on base tables.

A node requests a result row or rows from its children, manipulates the data, and
passes the result to its parent. Execution of the tree begins when the root node is
requested to return a row of the final result set. Data (from stored tables) enters
the tree only from leaf nodes.

Node operations

There are six types of nodes, one for each of the six primitive data operations:

= Project
» Restrict
= Join

s Sort

= Union

s Table scan
s Index scan

Release Notes for StorHouse/RM 3.3 1-21

1-22

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

The root node is always a project operation. An interior node may be a project,
restrict, join, sort, or union operation. A leaf node is either a table scan or an
index scan operation. The following figure illustrates node operations and parent
and child nodes. This execution tree is typical of a query that has a predicate.

Level 1

Level 2

Level 3

Level 4

Root node
Parent of restrict node

Child of root node
Parent of project node

Child of restrict node
Parent of table scan

Child of project node

The following figure illustrates node operations and a left and right child node of

a join node.
Level 1
Root node
Level 2
Restrict Left child of root node
Level 3
Join Left child of restrict node
Level 4
Left child of broiect) Right child of
join node rojec Project join node
Level 5

Left child of project node

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

Project. A project node selects result set columns by eliminating or aggregating the
columns in its input data. The final result maps to the list of columns in the
query result set. The root node of an execution tree is always a project node. A
project node has only one child.

Restrict. A restrict node selects result set rows by eliminating rows from its input
data that do not pass a test. For example, in the query SELECT coll, col2 FROM
tbl WHERE col1="x’, the WHERE clause contains a predicate that identifies rows.
The restrict node for this example returns a result row only when an input row
passes the test (coll ='x). A restrict node has only one child.

Join. A join node combines the rows from its two child nodes. The fundamental
operation used to combine rows is the Cartesian Product, where each row from
the left child is combined with every row from the right child. Conditional tests
can be used to limit the number of rows that are combined by providing a
matching condition for the left and right rows. Such a condition is created by
predicates in WHERE or ON clauses that reference columns from two tables.
Joins also can specify the manner of combining rows (inner- or outer-join) and
the algorithm employed: nested loop join (uses no index), augmented nested
loop (requires an index on the join columns), and hybrid IN, or merge join
(requires a value index on the join columns). A join node always has both a left

and a right child.

Sort. A sort node orders data. An execution plan contains a sort node when the
query contains an ORDER BY clause, a GROUP BY clause, or a DISTINCT
operator.

Union. A union node selects all the rows from its left child node, followed by all
or all unique rows from its right child node. An execution plan contains a union
node when the query contains a UNION or UNION ALL set operator. A union
node always has both a left and a right child.

Table scan. A table scan node selects all columns from all rows of one table by
reading from the physical data store. The optimizer may choose a table scan

Release Notes for StorHouse/RM 3.3 1-23

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

when no appropriate index is present or when an index scan is more costly than a
table scan. A table scan node is always a leaf node.

Index scan. An index scan node uses an index to select all columns of specific
rows from one table. An index scan node is always a leaf node.

Expression tree

An expression tree is another tree structure that is associated with the execution
tree. Expression trees represent relational operators, arithmetic operators,
functions, columns, constants, and parameter references. An expression tree can
consist of a single node representing a column or it can be a complex tree with
many nodes representing a complex predicate. An expression tree is associated
with project, restrict, join, and index scan nodes.

With the explain facility, you can list the expressions and operators associated
with a node. The following expressions and operators may appear in the explain
result data.

Expressions and operators in an expression tree

Type Description

Logical operators Logical operators in restrict and join nodes: AND, OR,
NOT
Relational operators » Relational operators in restrict nodes and in join

predicates: =, <>, <, >, <=, >=

= Relational operators in restrict nodes only: IN, NOT IN,
BETWEEN, NOT BETWEEN, LIKE, NOT LIKE

= Relational operators in join predicates only: EXISTS,

NOT EXISTS
Arithmetic operators +,-%
Aggregate functions MAX, MIN, COUNT, SUM, and AVG
Scalar functions ABS, TO_CHAR, SUBSTR, and so on

1-24 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

Expressions and operators in an expression tree (continued)

Type Description

Column references Column name reference in a table
Constants Constant value (literal)
Parameters Host variable parameter

Explain facility SQL statements

You use the explain facility by submitting a set of SQL statements and querying
the result tables. You can submit the explain facility SQL statements using any
method supported by StorHouse. The SQL statements for the explain facility are
as follows.

Explain statements

Statement Description

CREATE EXPLAIN TABLES Create a set of empty explain tables to hold result data

DROP EXPLAIN TABLES Remove a set of explain tables

EXPLAIN PLAN Specify the query to be explained and run the explain
facility to insert the results into the explain tables

SELECT Query the explain tables

Release Notes for StorHouse/RM 3.3 1-25

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

Explain facility result tables

The explain facility populates the explain tables that you create. You can query
these tables to examine the execution plan implemented by the StorHouse/RM
optimizer. INSERT, UPDATE, and DELETE statements should not be performed
on the explain facility result tables. The following table briefly describes the
StorHouse explain tables.

Explain result tables

Table name Contains

STH_EXPLAIN_ID Statement ID that you specify on the EXPLAIN PLAN
statement and the associated execution plan ID generated
by StorHouse/RM

STH_EXPLAIN_PLAN Description of the nodes in an execution plan

STH_EXPLAIN_STMT Query (SELECT statement) specified in your EXPLAIN
PLAN statement

STH_EXPLAIN_EXPR Description of aggregate functions, scalar functions,
columns, constants, or parameters in an expression tree

STH_EXPLAIN_OPR Description of the relational, logical, and arithmetic
operators in an expression tree

Explain privileges

At a minimum, you must have the RESOURCE database privilege to create and
drop your own explain tables (submit CREATE EXPLAN TABLES and DROP
EXPLAIN TABLES statements). If you omit the owner name on the statement,
the account ID you use to log in to the StorHouse database is the default owner.

An account with the DBA database privilege can create and drop explain tables

for other accounts. Only the owner of the explain tables, however, can submit the
EXPLAIN PLAN statement. For example, if the SYSADM account creates a set of
explain tables for an account named SAC, then only SAC can issue the EXPLAIN

1-26 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

PLAN statement for those tables. An account with DBA however, can query all
explain result tables.

Explain example

This example analyzes a query without a predicate. The user table is named
CUSTOMERS owned by USERI1. No indexes are defined. The table columns are
CUSTOMERNO, CUSTOMERNAME, STARTDATE, and STATUS. Assume you,
USER1, submit all statements. The query in this example is as follows:

SELECT CUSTOMERNO, STATUS FROM CUSTOMERS,;

Step 1: Run the explain facility. Create the explain tables and then submit an
EXPLAIN PLAN statement to specify the query to be explained and to populate
the explain tables with information about the query. You can specify a statement
ID (up to 32 characters) on the EXPLAIN PLAN statement to identify the
execution plan. In the example, however, the STMT_ID clause is omitted. The
default statement ID is STH_EXPLAIN_DEFAULT.

CREATE EXPLAIN TABLES;

EXPLAIN PLAN FOR SELECT CUSTOMERNO, STATUS
FROM CUSTOMERS;

Step 2: Obtain the execution plan ID. Query the STH_EXPLAIN_ID table to
obtain the execution plan ID generated by StorHouse/RM. You can use this ID to
query the other explain tables.

SELECT * FROM STH_EXPLAIN_ID
WHERE STMT_ID="STH_EXPLAIN_DEFAULT",

Release Notes for StorHouse/RM 3.3 1-27

1-28

FileTek Proprietary and Confidential

Changes and enhancements

Explain facility

The result table is as follows. In this example, the execution plan 1 Dis 1.

STMI_I D STATEMENT_TI MESTAMP I D

STH_EXPLAI N_DEFAULT 10/ 03/ 2003 16: 31: 44. 000000 1

Step 3: Display the execution plan. Query the STH_EXPLAIN_PLAN table
to examine the execution plan. It’s helpful to order the result table by level (LVL).

SELECT * FROM STH_EXPLAIN_PLAN
WHERE ID=1 ORDER BY LVL,;

The result table is as follows. This example execution plan consists of three
nodes. The table scan node indicates an index is not used to execute the query.

I D NODE PAR_NCDE LVL LR EXPLAI N_PLAN

1 12 1 L PRQIECT

1 9 12 2 L PRQIECT

1 10 9 3 L TABLE SCAN OF USER1. CUSTOVERS

Column descriptions are as follows.

» 1Dis the execution plan ID.

= NODE is the node number assigned to the node.

= PAR NODE identifies the node number of the parent node.

= LWL is the node’s level in the execution tree. Level 1 is the root node.

» LRindicates whether the node is a left child (L) or a right child (R).

» EXPLAI N_PLAN identifies the node operation and any additional information,
such as a table name, index name, or join method.

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1

Data type changes

The tree representation of this execution plan looks like this:

Level 1
CUSTOMERNO, STATUS

Level 2

Project

Tablescan) USER1.CUSTOMERS

Step 4: Display the expression for the project node. Query the expressions
for the project nodes. These expressions are located in the STH_EXPLAIN_EXPR
table. Use the ID and NODE values in the STH_EXPLAIN_PLAN table to display
the expressions for a specific node. The following query, for example, displays the
STH_EXPLAIN_EXPR table for ID 1 and NODE 12 (the root node). These entries
represent the columns that are projected by NODE 12.

Level 3

SELECT * FROM STH_EXPLAIN_EXPR
WHERE ID =1 AND ASSOC_NODE =12
ORDER BY ENTRY;

Data type changes

Data type changes are as follows:

s The conversion of CHAR to/from BINARY/VARBINARY literals and columns
is no longer supported.

s The TO_CHAR function supports the BLOB data type as the input
expression.

» For any arithmetic operation or comparison, if any operand is of type REAL
or DOUBLE, the result (or comparison) is REAL or DOUBLE.

Release Notes for StorHouse/RM 3.3 1-29

FileTek Proprietary and Confidential

Changes and enhancements

ODBC changes

s The SUBSTR function supports BINARY and VARBINARY data types for its
first argument. The result data type is the same as the first argument. This
change was implemented in release 3.2 build 02 but is documented in the
StorHouse/RM 3.3 user documentation.

» Conversions from CHAR data types to TIMESTAMP data types have been
extended to allow strings formatted as TIME and DATE values. Support has
also been added for conversion of TIME data types and TIME literal values to
the TIMESTAMP data type.

ODBC changes

1-30

StorHouse/RM uses the StorHouse/ODBC driver, which is a separate product
with its own release cycle. The newest release of the StorHouse/ODBC driver,
release 2.15, includes the following changes:

» LOB data types are supported and appear as ODBC LONG data types.

» SQL statements can be longer than 10,000 characters, now up to 32,767
characters.

» A driver specification is now supported in the ODBC connect string. In
Windows, the DRIVER attribute tells the Windows Driver Manager to use
the StorHouse/ODBC driver. In UNIX, this attribute can be used for
compatibility with the Windows specification and to indicate that the
ODBC.ini file should not be used.

You can use the release 2.14 ODBC driver with either StorHouse/RM 3.2 or 3.3,

however, that driver doesn’t support LOB data types or statements longer than
10,000 characters.

Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
ESQL compilers

ESQL compilers

The following changes were made to the ESQL compilers.

Solaris

For Solaris, application programs can now be compiled and linked with a C
compiler, specifically with SUNWspro cc (version 4.2, 5.0, or later) or gcc
(current version). Previously the link step of ESQL program preparation required
the SUNWspro 5.0 CC compiler. Note that for the C compilers, you must
explicitly add the library /ust/lib/libCrun.so.1 to the link command. For the g++
compiler, the LD_LIBRARY_PATH must include the path to the g++ libraries.

HP-UX

For HP-UX, the aCC compiler (with the -AA option) is supported for compile or
link. The cc compiler, with the -Ae option, is supported but only for the compile
step. The aCC compiler with the -AA option must always be used for linking. Use
of other compilers or use of the aCC compiler without -AA is not supported.

AlX

For AIX, to compile and link an ESQL program containing C++ syntax, the ESQL
source file should have a file extension of .pcx. In this case, ESQL generates an
intermediate file with a file type .CPP, which is accepted by the AIX xIC C++
compiler as a source file containing C++ syntax. (The .pcx file extension is also
accepted on non-AIX platforms, although it is not necessary.)

You can use the C++ compiler, xIC, to compile both C and C++ programs. The
compiler determines whether the source file is written in C or C++ based on the
file extension. A program containing C++ syntax with a source file extension of .c
(the file extension for intermediate files generated by the ESQLC preprocessor)
causes the compiler to issue errors and warnings about the C++ syntax.

Release Notes for StorHouse/RM 3.3 1-31

FileTek Proprietary and Confidential
Changes and enhancements
1
Data loader changes

The following example sets the default value for the environment variable and
invokes the ESQL compiler for an ESQL program on AIX.

setenv ESQL_CC xIC -g -c

esqgl c mysource. pcx -0 nyexecutabl e

Data loader changes

Two enhancements were made to the The FileTek FTP Data Loader and the
FileTek MVS Data Loader.

New ESCAPED BY clause

If data fields are delimited and the data itself contains the delimiter character, an
escape character informs the FileTek data loader to interpret the delimiter
character as data. The escape character typically precedes the data value. You use
the ESCAPED BY clause to specify the escape character to use for loading data
into StorHouse.

1-32 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements

Data loader changes

Format of ESCAPED BY clause

ESCAPED BY [DELIMITER | 'char' | NONE]

Argument Description

DELIMITER (optional) Keyword to use the enclosure delimiter (for example,
specified on the FIELDS clause) as the escape character. The
FileTek data loader interprets a doubled (two consecutive
occurrences without whitespace between them) delimiter as a
single data character that is one instance of that delimiter. The
FileTek data unloader doubles an enclosure delimiter found in the
data stream. This is the default if the data is enclosed by delimiters
and you omit an ESCAPED BY option.

« If a field starts with a doubled delimiter, the first one is still
considered the start delimiter (even if OPTIONALLY
ENCLOSED).

If the start and end enclosure delimiters are different, a doubled
start delimiter (after the delimiter that starts the field) is also
changed to a single delimiter. It is not necessary to escape such
an instance of the start delimiter since any start delimiter
encountered after the start of field is always considered a data
character and remains in the data.

If a field is OPTIONALLY ENCLOSED BY ", a single " in data
that doesn't start with a " is interpreted as data. A doubled
delimiter in this case is not converted to a single "".

‘char’ (optional) Value of the terminator or enclosure delimiter to use as
the escape character, for instance, ‘\'.

= The ‘char’ value cannot be a whitespace character.

= If afield is TERMINATED BY WHITESPACE, an escaped
whitespace character is not interpreted as part of the delimiter,
that is, it is skipped or trimmed.

NONE (optional) Keyword to not specify an escape character. An error
occurs if there are any delimiters in the data. This is the default if
the data is terminated by delimiters and you omit an ESCAPED BY
option.

Release Notes for StorHouse/RM 3.3 1-33

FileTek Proprietary and Confidential

1 Changes and enhancements

Data loader changes

Note the following:

s The DELIMITER option is the default for enclosure delimiters in
ENCLOSED data and NONE is the default for terminators.

= You cannot use the ESCAPED BY clause to escape a newline. In this case, the
data loader returns a short record error.

s When you use the ESCAPED BY NONE option, the data loader interprets
four consecutive delimiters as two empty fields, rather than one field
containing a single data character that is the delimiter character. For example,
""" (with " the enclosing delimiter) is two data fields, each of them empty.
Without BY NONE, the data loader interprets this data pattern ("""") as one
field that contains a single quote ().

The C-style escape sequences \r, \n, and \t are now allowed in the control file
(not the data) for convenience in specifying the characters CR, LE and TAB as
delimiters. For example, you could specify TERMINATED BY '\t' in a
CONSTANT string. The C-style escape '\0" is not supported.

Example ESCAPED BY clause

To load a data file that was unloaded from Informix (using the default
terminator):

LOAD ESCAPED BY \' FIELDS TERMINATED BY '|'INTO TABLE ...

Enhanced pending load check

The method for checking for pending data loads was enhanced. Previously, the
metadata backup test for pending loads excluded any active load operations. Now
it doesn’t.

1-34 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
Data unloader changes

Data unloader changes

The FileTek FTP Data Unloader provides two new clauses.

New ESCAPED BY clause

The ESCAPED BY clause enables you to specify the escape character to use for
unloading data from StorHouse. If a delimiter is found in the data that is being
unloaded, the data unloader adds the escape character before it outputs the data
character. The format of the ESCAPED BY clause is the same as described at
“Data loader changes” on page 1-32. Note that when ESCAPED BY DELIMITER
is used, the data unloader ensures that consecutive zero-length fields do not result
in adjacent (doubled) terminators by inserting a blank in output data.

New RECORDS NOT TERMINATED clause

The RECORDS NOT TERMINATED clause enables you to suppress the
terminator for the last field in each record, leaving only the newline at the end of
the record. The format of the clause is:

RECORDS NOT TERMINATED

Removed reserved words

The following words are no longer reserved in SQL statement syntax:

= CONNECT
= LINK
= NUMBER

Release Notes for StorHouse/RM 3.3 1-35

FileTek Proprietary and Confidential

1 Changes and enhancements
Limit changes

Limit changes

The limits on the number of columns in a table and the length of an SQL
statement changed as follows:

s The maximum number of columns in a table is now 1,024 (previously 500).

s The maximum length of an SQL statement is now 32,767 characters
(previously 10,000).

If you want to submit longer SQL statements, you must use the StorHouse/RM
release 3.3 of ISQL and the 2.15 release of ODBC. You may also have to rebuild
any ESQLC applications.

New SQL codes

The following SQL codes are new.

-103006 Illegal attempt to acquire duplicate lock.

-20151 Illegal zero length SQL statement.

-20152 Invalid EXPLAIN STATEMENT_ID.

-20153 Illegal EXPLAIN SQL statement.

-20154 Illegal explain user.

-20155 EXPLAIN STATEMENT_ID already in use.

-20156 Error dropping explain tables.

-20157 Explain tables do not exist.

-20158 EXPLAIN UID already in use

-20159 Invalid EXPLAIN UID.

-85001 Error opening Redo Journal file.

-85002 Journal CRC function failure. CRC status undefined.
-85003 Error creating Redo Journal lock.

-85004 Internal Error: error enabling journaling. Backup Database!
-85005 Read beyond the Journal EOEF. Journal incomplete or corrupt.
-850006 Error reading Journal.

1-36 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Changes and enhancements 1
New SQL codes

-85007 Fatal error while Journaling. Write operations disabled.
-85008 Error creating Redo Journal.

-85009 Journal CRC failure, indicates corruption in journal file.
-85010 Journal error, Error performing SM operation.

-85011 Journal error, unable to locate SM file in storage machine.
-85012 Journal error, missing journal file.

-85013 Journal error, unprocessed data found in journal file.
-85014 Journal error, incorrect or inaccessible sthdbs environment.
-85015 Journal error, error producing runtime statistics.

-85016 Journal error, unknown record type encountered in journal.
-85017 Journal error, tmp directory not found.

-85018 Journal error, error purging journal file.

-85019 Journal error, error processing replay cache file.

-85020 Journal error, replay table operation failure.

-85021 Journal error, general replay failure - see alog.

-85022 Journal error, uninitialized journal object.

-85023 Journal error, journaling not enabled.

-85024 Journal error, replay required before database can be accessed.
-85025 Journal error, illegal replay requested.

-85100 Warning: one of more Redo Journal files may be corrupt.

Release Notes for StorHouse/RM 3.3 1-37

FileTek Proprietary and Confidential

Changes and enhancements

New SQL codes

1-38 Release Notes for StorHouse/RM 3.3

FileTek Proprietary and Confidential

Chapter

2

Special considerations

This chapter highlights known issues that may, in certain environments or fields
of use, require careful review during assessment of an application’s use of
StorHouse/RM at this time. If applicable to your environment, please discuss
these issues with your FileTek systems engineer to explore possible design
alternatives.

SQL code -301031

For some StorHouse/RM processing errors, SQL code -301031 (transaction
aborted) may be mistakenly returned instead of the correct error code. Usually,
this is caused by an out-of-space condition in a volume set or a miscellaneous
hardware failure. If you receive this code, you may need to call FileTek Customer
Support for help determining necessary corrective action.

SQL code -30033

SLQ code -30033 is a generic return code that applies to any unrecoverable error
caused by a relational engine’s exit. The code may appear in conjunction with
several error situations. Whether these errors are program-induced or user-
induced, the code always indicates that a serious error has occurred and requires
assistance from FileTek Customer Support.

StorHouse/RM Release Notes for 3.2 2-1

FileTek Proprietary and Confidential

2 Special considerations
DESCRIBE BIND restrictions

DESCRIBE BIND restrictions

DESCRIBE BIND VARIABLES does not correctly process an SQL statement that
contains both scalar functions and host variable markers. For example, the
following SQL statement, which contains the scalar function TO_HEX and host
variable markers, does not work properly with DESCRIBE BIND VARIABLES:

SELECT * FROM table WHERE (TO_HEX (bin_column) LIKE :var)

The following SQL statement works correctly with DESCRIBE BIND
VARIABLES because it contains no scalar function:

SELECT * FROM table WHERE bin_column > :var

Refer to the StorHouse SQL Reference Manual for complete documentation about
DESCRIBE BIND VARIABLES.

Design advisory for join operations

Queries that use extensive join operations may not be good candidates for
StorHouse/RM execution, especially at the high data volumes that you generally
expect in large database environments. When you require such queries, consult
your FileTek systems engineer for performance analysis and modeling assistance.

ISQL product status

The ISQL tool allows interactive processing of SQL statements. Use this tool only
as a general-purpose development tool. You should not incorporate it into
production software or operations procedures. If you do use it, you must use the
new version included in the release 3.3 client (host.sol2) tar file. Older versions
of ISQL cannot be used.

2-2 StorHouse/RM Release Notes for 3.3

FileTek Proprietary and Confidential

Special considerations 2

DDL processing in general

DDL processing in general

In StorHouse/RM, DDL statement execution is atomic and permanent. The
software performs an implicit COMMIT before and after every DDL statement.
Transaction logic (user-specific bundling of statements) may lead to undesirable
table-level locks that restrict the entire database from use. To protect against this,
StorHouse/RM adds to user-specified transaction (BEGIN-END groups) logic an
implicit COMMIT before and after every DDL statement.

Host variables as BINARY, VARBINARY, and
VARCHAR data types

In an ESQL program, you cannot declare host variables as BINARY, VARBINARY,
and VARCHAR data types in a Declare Section. To define these types of variables,
set up an SQLDA and use the DESCRIBE statement as documented in the
StorHouse ESQL Manual.

Immediate restart after a load failure

If a data load fails and you restart it immediately, the restart may fail if the load
cleanup hasn't completed. You receive the following errors when this happens:

500- %L-I-XLDINFO, \sqlcode=<-60021> Loader: Unrecoverable segment file\
500- %L-I-XLDINFO, \Unrecoverable segment, table=RESL_TBL1\

You can avoid this situation by waiting a few seconds before restarting a load. If
you receive these errors, try the restart again after the brief delay.

StorHouse/RM Release Notes for 3.3 2-3

FileTek Proprietary and Confidential

2 Special considerations

LOB restrictions

LOB restrictions

Restrictions on accessing LOBs via ESQL and using LOBs in SQL are as follows.

ESQL. You must use a single-row fetch with the BLOB_FILE and CLOB_FILE
data types. You cannot use array or pointer-fetch with these data types.
Additionally, StorHouse/RM does not support file reference variables as input,
that is, to transfer a LOB value from a client file to StorHouse. StorHouse/RM
supports output file reference variables to transfer a LOB value from StorHouse
to a client file.

SQL. LOB data types are not allowed with the following SELECT statement
clauses: DISTINCT, ORDER BY or GROUP BY. Additionally, LOB data types are
not allowed with the following functions: MIN, MAX, and COUNT(DISTINCT
lob_expr).

Use of SYS in table names

Table names may not start with SYS, for instance, SYS_STARTUP or
SYSSERVICE. The SYS prefix is reserved for system tables.

Use of control characters as delimiters

For data loading, use of control characters as delimiters, especially whitespace
characters, is discouraged in input data. A terminator declared explicitly that is
also a whitespace character may result in a "terminator not found" error,
particularly when the prior field is enclosed. If you are using one of these
characters as a delimiter, specify WHITESPACE rather than the character.

2-4 StorHouse/RM Release Notes for 3.3

FileTek Proprietary and Confidential

Special considerations 2
Use of control characters as delimiters

The whitespace characters are SP (space), CR, FE LE VT, and HT (tab). In any
ASCII code page these have hex values 20, 0D, 0C, 0A, 0B, and 09. In any
EBCDIC code page the hex values are 40, 0D, 0C, 25, 0B, and 05.

StorHouse/RM Release Notes for 3.3 2-5

	Online Guide
	Contents
	Welcome
	Intended audience
	Contents of document
	Related documentation

	Changes and enhancements
	System requirements
	Utility updates
	Renamed utilities
	Changed utilities

	Redo journaling
	Journal file
	Primary and secondary journal files
	Journal file status
	Journal file names

	Redo journaling utilities
	Ways to run redo journaling utilities
	Privileges for running redo journaling utilities
	Location of the redo journal
	Locking
	Enabling journaling for a new database
	Enabling journaling for an unjournaled database
	Cycling journal files
	Archiving and purging journal files
	Replaying a journal file

	Segment delete utility
	Before deleting segments
	Ways to run the segment delete utility
	Privileges required to run the segment delete utility
	Locking
	Running the segment delete utility
	Running multiple delete processes
	Restarting an interrupted process
	After deleting segments

	Explain facility
	Execution tree
	Nodes
	Node operations
	Project
	Restrict.
	Join
	Sort.
	Union.
	Table scan
	Index scan

	Expression tree
	Explain facility SQL statements
	Explain facility result tables
	Explain privileges
	Explain example
	Step 1: Run the explain facility
	Step 2: Obtain the execution plan ID
	Step 3: Display the execution plan
	Step 4: Display the expression for the project node

	Data type changes
	ODBC changes
	ESQL compilers
	Solaris
	HP-UX
	AIX

	Data loader changes
	New ESCAPED BY clause
	Format of ESCAPED BY clause
	Example ESCAPED BY clause

	Enhanced pending load check

	Data unloader changes
	New ESCAPED BY clause
	New RECORDS NOT TERMINATED clause

	Removed reserved words
	Limit changes
	New SQL codes

	Special considerations
	SQL code -301031
	SQL code -30033
	DESCRIBE BIND restrictions
	Design advisory for join operations
	ISQL product status
	DDL processing in general
	Host variables as BINARY, VARBINARY, and VARCHAR data types
	Immediate restart after a load failure
	LOB restrictions
	ESQL
	SQL

	Use of SYS in table names
	Use of control characters as delimiters

