Generic
Callable Interface
Programmer’s Guide

Release 2.5 of the
Callable Interface
Publication Number

900046 Rev. J
June 8, 2004

No part of this publication may be reproduced, translated, stored in any electronic
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of FileTek,
Inc.

This publication Copyright © 2004 by FileTek, Inc. As an Unpublished Licensed Work. All
Rights Reserved. Publication Number: 900046 Rev. J

NOTICE: U.S. GOVERNMENT USERS

This notice applies to all acquisitions of this work by or for the U.S. Government
(“Government”), or by any prime contractor or subcontractor (at any tier) under
any contract, cooperative agreement or other activity with the Government. By
accepting delivery of this work, the Government agrees that this work and the
Licensed Program(s) described herein qualify as “commercial” computer soft-
ware within the meaning of the acquisition regulation(s) applicable to this pro-
curement. The terms of conditions of the license for the Licensed Program(s)
shall pertain to the Government's use and disclosure of this work and the
Licensed Program(s), and shall supersede any conflicting contractual terms or
conditions. If the license for this work and the Licensed Program(s) fails to meet
the Government’s need or is inconsistent in any respect with Federal law, the
Government agrees to return this work and the Licensed Program(s), unused, to
FileTek, Inc. The following additional statement applies only to acquisitions gov-
erned by DFARS Subpart 227.4 (October 1988) “Restricted Rights — Use, dupli-
cation and disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 (OCT. 1988).” Unpublished licensed work prop-
erty of FileTek, Inc. Unauthorized use, duplication or distribution prohibited. All
rights reserved. A copyright notice on this work and/or on the Licensed Pro-
gram(s) by itself does not constitute publication or public disclosure of this work
or the Licensed Program(s). The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197, 6,049,804.

FileTek Confidential and Proprietary

Contents

Contents

ATAY =T [T] 1 ¢ 1= Xiii
Purpose of This DOCUMENTc.evuiuiriiiiiiiiinieiiieeiee ettt xiii

INtENdEd AUAIEIICE oovveveeeeeeiee ettt ettt et eeate e e eaa e e s e aeesseaaeessssaeeessaaeesasaeas xiii

(©70) 417 s = N xiil

Related DOCUMENETATION ..vvviiiiiiiiieiieeeeeeeeieeteeeeeeeeeateeeeeseeseeeeeessessesaeeesssssessssseesssssssssssesssssnnns Xiv

NOAIONA] CONVENTIOMS euevvvreeeteeeeeeeeeeeeeeeeereeeeeeseeesareeessesesreeeeesseaessrreeessesesssseressssssssseeessess XV

Chapter 1: INtrodUCtiONoovviiieiiiei e 1-1
C Language INterfaceccoouiiiiiiiiiiiiiiiiiicicce e 1-1

Callable Interface Function Hierarchy ..o 1-1

Sess10n CONTIOl FUNCHIOMNS ovuvviiiiiieeieiie ettt eeeeee ettt eeeaeeeeeaeeeseteessesatesssiseessssaeesssnees 1-2

File Operation FUNCHONS ...c.covieiiiiiiiiiiiiniciicicictctte ettt 1-2

Data Transfer FUNCTIONS ovouvviieiiieeiiiieeeeeeeeeereeeeeseeeieeeeeeseeesareeesssesssseeeessssssssesessssssnnes 1-3

StorHouse Command FUNCHONS ..uuvveeeetiieeeeeeee et eeeeeeeseeeeeeeseeeeeeeeessesssreeeessesesnes 1-3

Chapter 2: StorHouse Parameters and Data Descriptions 2-1
Session and Data Transfer Link IAEntifIersoeeooveeeueeeeeieeeeieeas 2-1

StorHouse Accounts and PassWordseeeseeeeseesessseeesesens 2-1

ACCOUNT PASSWOIAS +.eeevviieiiieeiee ettt ettt e e e eea e e s et e e sssaeesssatesssseeessseeesasnneas 2-2

Default Access Groups and Rightsccoeiviiiiiniiiniiiniiiciceccncceceeees 2-2

StorHouse Privilegescccoiiiiiiiiiiiiiiiiiiiii 2-2

StorHouse Files and File Access Groupscccceeeiviiiniiiiiniiieicicceeecece e 2-3

StOrHOUSE FIle INAIMIES toiieeeeeeieeee ettt ettt e e e et e e e e eeeeeeeeeeeesseeeeeeesesessseeneeeseanns 2-3

File ACCESS GIOUPS ..ouvviiiiieiiiitiieictetciertee ettt 2-4

FileTek, Inc. Generic Callable Interface Programmer’s Guide iii

FileTek Confidential and Proprietary

. Contents

Group and File Access Passwordscccociviiiiiiiiiiniiiniiiiccicecceccceeas 2-4
GIoup Passwordsccueueirieiiriiiiniiiciiicieeeeee e 2-4

File PasSWOIdscc.eeueieieiiriiniiieieitntestet ettt 2-4

FIle VEISIONS ..viuiiiiiiiiirtiiiniciet ettt ettt 2-5
File REVISIONS .uveutiuiriiiiieiieiiniiteiet ettt ettt sttt sttt st 2-6
File Data Representationococoveieinienieieinienieieteieseeee ettt s 2-6
Directory INfOrmMationc..ecceivieieirinierieieeree ettt 2-6
Chapter 3: File POSItIONING ..oooiiiiiiiiieeccei e 3-1
Record SEqUENCING ...cveviiiiiiiiiiciiec ettt 3-1
Entry SeqUence ... 3-1
Key SEQUENCE ..o.viiiiiiiiiiiiicitc e 3-1
Current Record POSIIONcc.ccviiiiiriiniiiiiicnicieintesetee ettt 3-2
Read Functions and Current Record POSItIONccevveieeiririenieinininieieineneiceeeseeseeeenens 3-2
Record Sequencing Exampleccooooiiiiiiiiiiiiiiiiiiiice s 3-2
Chapter 4: Control Structures for the C Interfaceccccccoooevvennnnnnnin. 4-1
Parameter VAIUES ...covouveveiuiiiiieiieiirietcrte ettt sttt sttt 4-1
CharaCter STHNES ..c.coveuiriiuirieieirteinteet ettt ettt ettt ettt be e eaeaea 4-1
Externally Specified Parameterscccoeerieveninieinieiniiininictnctnccneeeeveeece s 4-2
TIOKEIIS ettt ettt 4-2
ReEtUIN COES ..ttt sttt sttt naen 4-2
Indicative Text MESSAZEScovvueuiriiiiiiiiiiiiieiiiieieieie ettt 4-3
Chapter 5: Definition of the LSMxxx FUNCtionsccccccoeevieiviinnnnnnnn. 5-1
Synchronous and Asynchronous FUNCHONScccoueiriiiiniiiiiniiiniiiccccceceees 5-1
SYNCRIONOUS MOAE ...cviniiiiiiiiiiieieeeee et 5-1
Asynchronous Modeooeieiiiiiinieieieceee ettt 5-1
Function Statement FOrmatccccoiviriiiiiiiiiiiiiiicincceceeeceseeeee s 5-2
Session Control FUNCHONS ..cc.cviuiriiriiriiiiircciei ettt 5-2
LSMOCON - COMNECE ..uvuvrviriimiririeteieietseeeeiesestteaesesesesee et sesesesessese e sae s s et seesesesenesnnes 5-3
Function Prototype DefInition ... 5-3
Argument DesCrIPtIONcccocuiviiieiiininiiiiiieie sttt s s 5-3
Return Codesc.ooiiuiiiiiiiiiiiiiiciciec e 5-4
Detailed Function Descriptioncceveeuerieieinienieinineneieeeeneneeeeie e 5-4
Cross-Reference to Sample C Programccccoeciviiiiiiniiiniiiniiicsccecceeeieees 5-4
LSMDIS - DISCONNECT ..eiuviiiiiiiiiriieeieeeiteste ettt ettt sttt e eneenesaneea 5-5

iv Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Contents .

Function Prototype DefInitioncccoiiiiiiiiniiiniiiiiiiciececeeeeas 5-5
Argument DesCriPtionccoiviiiiiiiniiiiiiiiii i 5-5
RetUrn COodes ..eovviiiiiiiciiciieiee ettt 5-5
Detailed Function DesSCriprionc.ccueueirieuinieieninieinieiniereniereiescesteese et s seessenennes 5-5
INOEES ottt st 5-5
Cross-Reference to Sample C Programccccoeciiiiiiiiniiiniiiniiiiicccccecieees 5-5
File Operation FUNCHONScooiiiiiiiiiiiiiiiciiicccece e 5-6
LSMOS - Open Sequentialccooveevieiiiniiiniiiiieiciciieceee e 5-7
Function Prototype DefInition ..o 5-7
Data STrUCTUIESoviiiiiiiiiiiiiiiicc s 5-7
Argument DesCIIPUioNcccoiiiiiiiiiiiiiiiiii s 5-8
Return Codesoucuiiiiiiiiiiiiiiii e 5-12
Detailed Function Descriptioncccoueivieiiiiniiiiniciniiiiieiceeeeeee e 5-12
INOTES wenvtentieieete ettt ettt sttt ettt et e b et b e et st e e bt e me e et e sane st e eaeesmeesreesae e neenns 5-13
Cross-Reference to Sample Programcceeveeeinieinieiniicniniciniccnecesccseeceeveeenene 5-13
LSMCO - Create OPemcouivuiviiiiniiiiiiiiieiiese ettt sa e st 5-14
Function Prototype DefInitioncoeceeiiiniirieiiiinineiceiieieeeeseceee e 5-14
DIAta STIUCTUIES ..niviiitiieiieieet ettt ettt ettt eb et be e 5-14
Argument Descriptioncccoviiiiiiiiiniiiiiiiiii 5-15
RetUrn COodes ...uoieuiiiiiiiiiiciieeecee et 5-18
Function Descriptioncccoiviviiiiniiniiiiiinicie ettt 5-19
INOLES ottt 5-19
Cross-Reference to Sample Programcccccoiviiiiniiiiiiiniiiicicccces 5-19
LSMOYV - Open VRAM ..ot 5-20
Function Prototype Definitionccccciieiiiiiniiiiiiiiiiincincsccceceeae 5-20
Data STIUCTUIES w.vviiieiieiieieeieettet ettt ettt et st s s s 5-20
Argument DeSCrIPtIONc.ceciiiuiiiiiiiiiiiiiiiicieiie ettt s 5-21
Return Codesooucuiiiiiiiiiiiiiii s 5-23
Detailed Function Descriptionccceeverieieinienieniiinienieieteenteeeeeresreseee e 5-23
INOLES ettt ettt ettt ettt b ettt b e bttt b e bt est e bt et e st et bt besa et eb e et nne e 5-24
Cross-Reference to Sample Programccccceiiiiiiiniiiiiiiiniiiiceiccccccee 5-25
LSMCP — CREeCKPOINT ..ouvviniiiiiiciiieieicteetetete ettt 5-26
Function Prototype DefInitionc.ccccivieeirieiinieineiniiiiictncesecse et 5-26
Argument DeSCIIPLON ...c.coviuiiiiiiiiiiiiieieteetee ettt 5-26
Return Codesoououiiiiiiiiiiiiiii e 5-26
Detailed Function Descriptionccccucivieuiiiniiiniiiniiiiieicceeieee e 5-26
INOEES vttt ettt et et b et s s et s e s e s e e e 5-27
Cross-Reference to Sample Programcccocvveeiiieiniiininiiniciecieceecceeenee 5-27
LSMCLO — ClOSE ...uviviiiiiiiiiiiiiiiiiiiccic e 5-28
Function Prototype DefInitioncccceoiieinieiiniiininiiinicinieciecesrcese e 5-28
Argument DesCriptioncccciiiiiiiiiiiiiiiiii e 5-28
Return Codes ...c.ooveuiiiiiiiiiiiciicc e 5-28
Detailed Function Descriptionccccucirieuiiiniciiniiiniiiiieiieeeeeeee e 5-29

FileTek, Inc.

Generic Callable Interface Programmer's Guide v

FileTek Confidential and Proprietary

. Contents

INOEES vttt ettt sttt st sttt e s e sttt e a e n e e r e e r e et eneene e 5-29
Cross-Reference to Sample Programccoevvevinieiniciniicninicinccnieeseeseceeenee 5-29
Data Transfer Control FUNCHONScovevviiiiiiriinieicirieneieitecsicee e 5-30
LSMR — Read ...uoiiiiiiiiiiiiiiiccc e 5-31
Function Prototype DefInitionc..cccceeiriiriciiiininicnieincnccececeeee e 5-31
Argument DesCIiPtioncccciiiiiiiiiiiiiiiiiiiic e 5-31
Return Codes ...c.oueuiiiiiiiiiiiiic e 5-31
Detailed Function Descriptioncceueuirieuininicinieinieieieieiieeeeieiee et 5-31
INOTE ettt ettt et et ettt st st st sate s e s st e ne e bt e s h e e sr e e ae e bt e neeneeas 5-32
Cross-Reference to Sample Programccceveeinieinieiniicninicineciecsceseeceeveeenee 5-32
LSMRS — Read Sequentialc..ccooevieiiininieieiiiniceeeieseteeeeeesreee sttt 5-33
Function Prototype DefInitionccecevirieniiiiininicieiiisieceeeeeeeese e 5-33
Argument Descriptioncccoviiiiiiiiiiiiiiiiiiiii 5-33
RetUrn COdes ..uvieiiieiiiiiiiiictetee et 5-33
Detailed Function DesCriptionc.civueuerieueninicinieinieieieieineeeeeeteree e enene 5-34
INOLES ettt s 5-34
Cross-Reference to Sample Programcccccviiiiiniiiiniiiiiiccicccccccces 5-34
LSMRR — Read ReCOTdoouiriiuiiiiiiiiiiciiisicceecteee ettt 5-35
Function Prototype Definitionccccceiiiiiiiniiiiiiiiiiiiiciicscecceeceae 5-35
Argument DesCriPtioncociviiiiiiiiiiiiiiii it 5-35
Return Codes ..o 5-35
Detailed Function Descriptiono.civueuerieueninieinieinieieieeinteeneeeteree et veseenene 5-36
INOTES ettt ettt et b et e s bt et a e be bt b e e b re e 5-36
Cross-Reference to Sample Programccccceiciiiiniiiiiiiiniiiicecccccceee 5-36
LSMRK — Read Keyedcoueieiimiiniiiiiriiieiceneeee ettt 5-37
Function Prototype DefInitioncccccciviiiiiiiiiiiiiniiiiiicccces 5-37
Argument DeSCrIPION ...cc.ceciiiiiriiiiiiiiiiiiii ettt 5-37
Return Codescouiuiiiiiiiiiiiiiiiii s 5-38
Detailed Function Descriptioncceeeerieieenienieninininieeeteenieeeeere et 5-38
INOEES vttt et e b ettt et e st e e s s e et s e e sae e e e e e 5-38
Cross-Reference to Sample Programccccceiciiiiiniiiiiiiiniiiicccccccceeee 5-38
LSMRNK — Read Next Keycoouiiiiiiiiiiniiiiciiicicicceceee e 5-39
Function Prototype DefInitionccccoireinieiniiiniicinicinicciecesrcesee et 5-39
Argument DeSCrIPtIONcociiviiniiiiiiiiiiiii ittt s 5-39
Return Codes ... 5-39
Detailed Function Descriptionccccuciviriiiiniiiniiiniiiieiceeeieee e 5-40
INOLES ettt ettt ettt ettt b ettt b s bbbt s bt et eb et et et bt e bt sttt ebenbennenee 5-40
Cross-Reference to Sample Programcccoovveinieinicininicniniciniccieesececeeenee 5-40
LSMW — WIEIEE euiiiiiiiiiiicteeeeee ettt 5-41
Function Prototype DefInitionccceoireinieiiniiininiciniciniciiecesrctere et 5-41
Argument DesCriptionccccuiuiiniiiiiiiiiiiiiic s 5-41
Return Codes ..c.oveuiiiiiiiiiiiiiicie e 5-41

Vi

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Contents .

Detailed Function Descriptionccccucirieiiiiiiiiniiiniiiieieicceeeeee e 5-41
INOTES ettt ettt ettt ettt ettt et b e bttt e e bt s bt e st e bt nb et eb e be st et et eb et b nee 5-42
Cross-Reference to Sample Programcccevveinieinieiniieniniciecieeseeeceeeenee 5-42
LSMWEK — WIite Keycoviiiiiiiiiiiiiiiiiiciceece e 5-43
Function Prototype DefInitionccccevirieniiiiiinincnieiicncceeeerceeee e 5-43
Argument DesCriptionccccuiiiniiiiiiiiiiiiic s 5-43
Return Codes ...c.oveuiiiiiiiiiiicicie e 5-43
Detailed Function Descriptioncccoueuerieuerinieinieinieieieieiieeeeeieee e 5-44
INOTES ettt ettt ettt ettt ettt et b ettt et b e bt bt et b e s bt en e e bt b et et eb e b st e st et ebenbe e nee 5-44
Cross-Reference to Sample Programc.cccevieinieinieiniicinicincciecsccsecceeveeenene 5-45
LSMDEL — Delete Recordcocoeiiiriniiniiiiiniiieietieceeeeeneeeeee et 5-46
Function Prototype DefInitioncccccveiriniinieiiiininieicininetceeeseceeeeeeeeee e 5-46
Argument Descriptioncccouiuiiiiiiiiiiiiiiiiicice s 5-46
RetUrn COodes ..uoieuiiiiiiiiiiriciieeeeeee et 5-46
Detailed Function DesSCriptiono.cevueuirieueninicinieinieieieieinietneeeteiee et 5-46
INOLE ot 5-46
Cross-Reference to Sample Programcccccoiiiiiiiniiiiiiiiiiiiiciccccce 5-46
LSMCH — Change Recordccccoiiiiiiiiiiiiiiiiiiicccec e 5-47
Function Prototype DefInitionccccciieiiiiiniiiiiiiiiiiicinccceceae 5-47
Argument DesCIIPtioncccciiiiiiiiiiiiiiiiiiieie e 5-47
Return Codes ..o 5-47
Detailed Function DesSCriptionc.civueuirieueninicrinieinieieieieinteeneeene et eveseenene 5-47
INOLE vttt ettt et et s a ettt bt e b e bt e ettt e a et ee 5-47
Cross-Reference to Sample Programccccceiiiiiniiiniiiiniiiniccicccccecee 5-48
StorHouse Command Submissioncccccviiiiiiiiniiiiniiiiiiiicees 5-49
LSMSCI - StorHouse Command Interfacecoecevvevveieinininieinenicieireneeeeeeseeseeee 5-50
Function Prototype DefInitionc.ccceoireinieiniiininiciniciniccecscesee e 5-50
Diata STIUCTUIES .ouvviiiiiiiiiiic s 5-50
Argument DesCriptioncccciiuiiiiiiiiiiiiiiiiiice s 5-50
Return Codesoviuiiiiiiiiiiiicec e 5-51
Detailed Function Descriptionccccuciviiuiiiiiiiniiiniiiiieiceceeeee e 5-52
INOLES +nvtenrieitete ettt ettt ettt et e b et b e et sab e sar e e et e et sane st e eaeesmeesreesrn e neenas 5-53
Cross-Reference to Sample Programcocceovveeinieinieinincninicinecniccseecseceeveeeenene 5-53
General Usage FUNCHONSooveuiiiiiiiiiiiiciiiccic ettt 5-54
LSMCK — CReck .vviiiiiiiciiiireecere et 5-55
Function Prototype Definitioncccccieiiiiiniiininiiiiicicsceccceeeene 5-55
Argument Descriptionccoviiiiiiiiiiiniiiiiiii s 5-55
RetUrn COodes ..uoueuiiiiiiiiiiiicieeee e 5-55
Detailed Function Descriptionc.cceueuivieueninierinieinieieieeineeeteeeesee e 5-55
INOLES oviteiicte ettt 5-55
Cross-Reference to Sample Programccoceeueiininiiiciininneeceeeeeeeeeeceeaes 5-56
LSMASY — Set Asynchronous Modecccccuvieiniiiniiiiniiiiiiicceeceeeeceee 5-57

FileTek, Inc.

Generic Callable Interface Programmer’s Guide vii

FileTek Confidential and Proprietary

. Contents

Function Prototype DefInitionccccciiiiiiiiniiiiiiiiiiinccccececeeeae 5-57
Argument DesCriPtioncociviiiiiiiiiiiiiiiiiiici e 5-57
RetUIN COES .nvniiiiiiiieiieiert ettt sttt 5-57
Detailed Function Descriptionc.ccvueuerieueninieinieinieieieieieeeneeee et veseenene 5-57
Cross-Reference to Sample Programcccccoiviiiiniiiiniiniiiccccce 5-58
LSMMSG — Message Retrieveccccoiiiiiiiiiiiiiiiiiini s 5-59
Function Prototype DefInitionccccciiiiiiiniiininiiiiiciccecceeceene 5-59
Argument Descriptioncciviiiiiiiiiiiniiiiiiiii e 5-59
ReEtUIN COES vttt sttt 5-59
Detailed Function DeSCriptionc.cccvueuirieueninieinieinieieieieinieeeeeeeiee e 5-59
INOTES ittt sttt s r e sttt r et n e bt et n e b sh e ebe e e n e re e 5-60
Cross-Reference to Sample Programcccccoiviiiiniiiiiiiiiiicicccces 5-60
LSMAB — ADOIT ..ottt 5-61
Function Prototype DefInitioncccccciviiiiiiiiiiniiiiiiiccces 5-61
Argument DeSCrIPION ...co.eiciiviiriiiiiiiiiiiiii ettt s 5-61
Return Codesoiiiiiiiiiiiiiiicicicc s 5-61
Detailed Function Descriptionccceeeerieirinenierininenieieteeneneee e 5-61
INOTES ettt ettt sttt s bt sbe bt et et e bt bt et e s bt s bt s st et et e sreebeemeenbenneeaee 5-62
Cross-Reference to Sample Programccccceiviiiiiniiiiiniiiniiiceeccccccee 5-62
Chapter 6: Sample Programccccccccviiiiiiiiniienic e, 6-1
LSMxxx Sample Programccocueiviiuiiiiiiniiinieiieiceeettetstee sttt 6-2
Appendix A: Checkpoint/Restart and Programming Guidelines A-1
CheckPOINT/RESTALT ...cuvviiiiieiiieicietctrte ettt ettt ettt A-1
EXAMPLES .ttt A-1
EXample T oottt A-2
EXamPle 2 oot A-2
EXamPle 3 oo A-3
EXample 4 ..ot A-3
Programming GUIAElINesc.coeeririerinieinieiniiiictrc e A-4
Defining RESOULCEScuiviiiiriiiiiiiiiiiciietiet ettt A-4
EXAMPLES .ottt A-5
User GUIAELINES ..vvviiiieiieiieiitetc ettt sttt A-6
Permanent FIXES ..oceeieririniiieieiinirtetc ettt A-6

Viii Generic Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Contents .

Appendix B: CREATE FILE Commandcccccoeveeiiiiiiiiiieecceeie e B-1
DESCIIPTON vttt B-1
FOIMAL wocviiiiiiccc e B-2
Parameterooviviiiiiiiiiiiiiii e B-3
Command ModifIercccciiiiiiiiiiiiiiiiii s B-3

Parameter MOdIfIErscoccoiviiuiiiiiiiiiiiiiciicic e B-3
Estimating a Value for /SIZEccoeiiiiiiiiiiiiiiicictee e B-12
Estimating Data Extent Size ... B-12
Estimating DF EXtent Sizeccccccoiviiniiiiiiiniiiiiiiiicicicesccce e B-13
AlLFILES ittt B-13
Checkpointed Filesc..ccoeviiiiiiiiniiiiiiieccecre e B-13

Files With Keys ...eeueruirieieiriinicicieeeeectet ettt B-13
Keysequential Filesccoiiviiiiiniiiniiiiiicccccceeee s B-14
Updated FIles ...cooouiviiiriiiiiiiiiiciicciccc et s B-14
Estimating K EXtent Sizecccccoviviiiiiiniiiiiiiiiiiciiiccceeeeeceseeee e B-14
EXamPple T oottt B-15
EXAMPLE 2 oottt B-17
Key-Definition Modeccocoiiiiiiiiiiiiiiiiiiiice s B-19
KEY Commandcooevieiiiniiiinieieeeerert ettt sttt sttt B-19
Defining Keys ..cooueiiiiiriiiiiiiniciicececc et B-20
Concatenating Keyscocceiviiiiiiiiiiniiiiiiiciceeee e B-21
Commenting KEY Commandsccccccviiiiiiiiiiiiiiiiicccccce B-21
Sample Key Definition Seriescoeveviriririinieiininenieieeseneeeseseeee e B-22
EXIT Commandc.cccouviiiniiiiiiiiiiniciieieeee st B-22
EXAMPLES ..ottt B-22

Appendix C: Installing and Using the StorHouse API for Windows C-1

Installing the Windows StorHouse APccooeiviiiniiiininiiniciiccceeeeceeeeeaes C-1
Installation REQUITEMENTSc.evieviriiuiiiieiirieiiieictntcerc ettt C-1
Installation Diskette CONTENLScueuiiriiueuiiiiriieieiiieee e C-2

Compiling and Linking the Sample Code With the StorHouse API for Windows C-2
Sample Programscccciviiiiiiiiiiiiiiiiicii s C-2
FILETEK.INI FAle oecuiiiieiiiiieeccreecceee ettt C-3
USING DLL ..ottt s e C-3

FileTek, Inc. Generic Callable Interface Programmer's Guide ix

FileTek Confidential and Proprietary

. Contents

Appendix D: Installing and Using the OS/2 StorHouse API D-1
Installing the OS/2 StorHouse APTcc.cooiiiiiiiiiiiiiiiiciccceeeeeee s D-1

Installation REQUITEMENTScveiiviirieuinieiiiiiciricie ettt D-1

Installation Disk CONENESevveuiriiuiriiiiiiieirieitrci ettt D-2

InStallation STEPS ..c..eeeuiruirieiiiiiricice et D-2

Compiling and Linking an Application With the OS/2 StorHouse APTcccccvvviurnnee D-3

Microsoft C 6.0 Compiler and Linker Switchescccoccciviiiiiiiiniiniiiiicce D-3

Linking the OS/2 StorHouse APTcccooviiiiiiiiniiiiiiiiceeeeceeeees D-3

Compiling and Linking Methodc.ccccviiniiininiiiiiicccccccces D-4

Sample Makefilec.coueiriiiiriiiriiiiicc e D-4

INAEX i Index-1

X Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Figures
and

Tables

Figures

Figure 1-1: Callable Interface Function Hierarchy ... 1-1

Tables

Table 2-1: Characters Allowed In StorHouse File Names

.. 2-3
Table A-1: DATAFILE REVISIONS ...cciieuviiiiiiiiiiitieeiiteieeeteeeeeiteeeesssneeesssseesssssessssssessssssseens A-2
Table A-2: Examples of Open Statements Resource Usageccoveerieveniiiiiincinicciniecnnen. A-5
Table B-1: Estimating /SIZE for a File without Checkpointscccccooeiiiinniiiinnnnn. B-16
Table B-2: Estimating /SIZE for a File with Checkpointsccccccoviiiinnniiiinnnee. B-18

FileTek, Inc. Generic Callable Interface Programmer's Guide Xi

FileTek Confidential and Proprietary

Tables

Xii Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Welcome

Welcome

The Generic Callable Interface Programmer's Guide describes the StorHouse® Callable
Interface for all hosts other than IBM™ MVS™ hosts. This interface provides access
to StorHouse from end-user applications. For information on the StorHouse Callable
Interface for IBM MVS hosts, please refer to the Callable Interface Programmer’s Guide
(publication number 900013).

Purpose of This Document

This document is a reference manual that describes the functions in the StorHouse
Generic Callable Interface. It presents a prototype definition, an argument
description, return codes, a detailed functional description, and a cross-reference to
the sample program in Chapter 6 for each function.

Intended Audience

The Generic Callable Interface Programmer's Guide was written for programmers who
write applications that invoke the Callable Interface.

Contents

This manual contains six chapters and four appendices.
e Chapter 1, “Introduction,” briefly describes the Callable Interface.

e Chapter 2, “StorHouse Parameters and Data Descriptions,” provides basic
information about StorHouse data items that are required arguments to the

FileTek, Inc. Generic Callable Interface Programmer’s Guide Xiii

Welcome

FileTek Confidential and Proprietary

Related Documentation

Callable Interface functions. These items include user identification, file
identification, and security information.

Chapter 3, “File Positioning,” discusses record sequencing and the effect of
different read functions on file position.

Chapter 4, “Control Structures for the C Interface,” discusses the general format
of data areas that are used in many of the LSMxxx functions.

Chapter 5, “Definition of the LSMxxx Functions,” contains a detailed definition
of all Callable Interface functions for the C language.

Chapter 6, “Sample Program,” provides a sample C program.

Appendix A, “Checkpoint/Restart and Programming Guidelines,” contains
information about using the checkpoint/restart capability and programming
guidelines.

Appendix B, “CREATE FILE Command,” describes the StorHouse Command
Language CREATE FILE command.

Appendix C, “Installing and Using the StorHouse API for Windows,” contains
information about installing and using the Windows StorHouse API.

Appendix D, “Installing and Using the OS/2 StorHouse API,” contains
information about installing and using the OS/2 StorHouse API.

Related Documentation

Programmers who use the Callable Interface should be familiar with the following
StorHouse documents found in the StorHouse User Document Set:

Introduction to the StorHouse User Document Set, publication number 900031,
describes the StorHouse User Document Set and the individual documents in
the set.

The Messages and Codes Manual, publication number 900032, describes the
messages and return codes generated by the StorHouse system and host software.

The Command Language Reference Manual, publication number 900005,
explains StorHouse Command Language in detail.

The StorHouse Concepts and Facilities Manual, publication number 900026,
explains StorHouse concepts, structures, and functions.

The StorHouse Glossary, publication number 900027, defines terminology used
in FileTek® publications.

Xiv

Generic Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Welcome
Notational Conventions

Notational Conventions

This book uses the following conventions for illustrating command formats,
presenting examples, and identifying special terms:

Convention Meaning

Angle brackets (< >) Enclose optional entries

Braces ({}) Enclose descriptive terms or a choice of entries
Courier font Code

Ellipses (...) A repetition of the preceding material

Italics New terms and emphasized text

lower case Helvetica font User entries

UPPER CASE System responses and StorHouse terms

FileTek, Inc. Generic Callable Interface Programmer’s Guide XV

FileTek Confidential and Proprietary

Welcome

Notational Conventions

XVi Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

1

Introduction

The StorHouse Callable Interface provides access to StorHouse from user application
programs. The Interface is a collection of callable subroutines that allow the

application to perform file maintenance and status operations, and data transfers to
and from StorHouse.

C Language Interface

The C language interface (also usable with C++ compilers) is a set of functions
named LSMxxx, where xxx varies with the specific StorHouse operation. Designed for

portable programs, this interface is available for most machine and operating system
environments.

Callable Interface Function Hierarchy

Figure 1-1 illustrates how Callable Interface functions are organized in a hierarchical
structure.

l Session |

| File Operation | StorHouse Command |

| Data Transfer ‘

Figure 1-1: Callable Interface Function Hierarchy

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 1-1

1

Introduction

FileTek Confidential and Proprietary

Callable Interface Function Hierarchy

To perform any StorHouse operation, an application must:

—_

Establish a session with StorHouse using the session function LIMCON.
Within a session, initiate file operations using one of the open functions.

3. Once afile is opened, issue data transfer operations using one of the read/write
functions; issue record update operations using the change or delete function; or
issue StorHouse maintenance/status commands.

b

In addition, with an established session, a program can issue StorHouse commands
such as SHOW FILE or SHOW ACCOUNT.

Session control, file operation, data transfer, and StorHouse command functions are
described in the following sections.

Session Control Functions

There are two Callable Interface session control functions: the connect function
LSMCON and the disconnect function LSMDIS.

* LSMCON establishes a session between a user application and StorHouse. The
application must supply an account identifier and password for the connect
function so that the StorHouse security system can validate the session and set
session privileges and defaults.

¢ LSMDIS ends the established session and releases all session-related host and
StorHouse resources.

One application can establish several sessions. StorHouse assigns each session a
unique session identifier to allow explicit application control of the operations that
are performed in that session. LSMCON returns the session identifier, the c_token, to
the application.

File Operation Functions

File operation functions initiate and terminate file operations. These functions
provide a data transfer path within the session. There are five file operation functions.

* LSMOS opens sequential files and allows file-oriented operations that read or
create a complete StorHouse file.

e LSMCO creates a new VRAM™ file on StorHouse and then establishes a data
transfer link for writing data to that file.

* LSMOV allows read, write, delete, and update access to individual records in
StorHouse VRAM files.

1-2

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Introduction 1

Callable Interface Function Hierarchy

* LSMCP synchronizes file transfer by ensuring that all previously written records
have been received and processed by StorHouse.

* LSMCLO terminates the file operation (indicating end-of-file for write
operations) and releases all resources used by the transfer operation.

The open functions establish a data transfer link between the user application and
StorHouse. These functions return the o_token, which identifies the data transfer
path within a given session. The o_token also identifies the file being processed in all
subsequent transfer-oriented functions (for example, read and write).

Data Transfer Functions

Data transfer functions operate in an established data transfer path on specific records
in a file. Sequential read and write functions move the next record from StorHouse to
the host and to StorHouse from the host, respectively. If VRAM file organization is
used, individual records can be retrieved by record number or record key with
change-record and delete-record capabilities.

StorHouse Command Functions

StorHouse command functions allow an application to send Command Language
commands to StorHouse and to retrieve response text from those commands. These
functions also allow administrative operations to be directed from an application
rather than from a user at a terminal through the Interactive Interface.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 1-3

1

FileTek Confidential and Proprietary

Introduction

Callable Interface Function Hierarchy

1-4

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

2

StorHouse Parameters and Data Descriptions

This chapter contains general information about StorHouse data transfer link
identifiers, accounts, file access groups, and files. For more information about these
topics, refer to the StorHouse Concepts and Facilities Manual and the Command
Language Reference Manual.

Session and Data Transfer Link Identifiers

There are two types of link identifiers: session and data transfer.

» Session identifier — LSMCON returns a c_token, the session link identifier.
* Data transfer link identifier — LSMOS, LSMCO, and LSMOV return an o_token,
the data transfer link identifier.

The c_token and o_token must be passed to all other Callable Interface functions that
perform operations with the session or data link. Token values can be moved from
one variable to another, but they must not be subjected to any arithmetic operations,
including type conversions.

StorHouse Accounts and Passwords

An account is a collection of administrative data that StorHouse uses to control a
session. Each account includes an account identification code (AID) and a password.
The AID is similar to the user name. It provides StorHouse with the user’s identity.

An AID must contain 1 to 12 characters and include only the following characters:
A-Z,0-9, $, and _ (underscore).

A program must include an account identifier to establish a session in the Callable
Interface. Multiple programs can use the same or different accounts and can access
StorHouse at the same time.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 2-1

FileTek Confidential and Proprietary

2 StorHouse Parameters and Data Descriptions

StorHouse Accounts and Passwords

Account Passwords

Account passwords help maintain system security. Passwords must contain 0 (null) to
32 characters and include only the following characters: A-Z, 0-9, $, or _
(underscore). Generally, long passwords provide better system protection than short
passwords. Passwords of three or fewer characters offer only marginal protection.

Default Access Groups and Rights

Generally, each account has a default access group as well as default access rights to that
group. When a command accesses a file, StorHouse assumes the file is in the default
group unless a different group is specified in the command.

An account may be set up to give read, write, delete, or no default access to the
default group. These are the access rights to the default group. Thus, a program does
not have to give a group access password to perform operations on files in the default
group if the account’s default access rights include the type of access required to
perform the operation. For example, if an operation requires write access and the
account has write access to the group by default, the write password need not be
specified.

In any case, if the default group has a null password, a program automatically receives
the corresponding type of access without having default access or specifying a

password. A program can switch to a different default access group during a session.

For information about specifying account information, refer to the section entitled
“Session Control Functions” on page 5-2 and to Chapter 6, “Sample Program.”

StorHouse Privileges

Each account has a set of privileges. Privileges fall into two categories:

* Access privileges — allow the program using the account to bypass various system
security checks.

* Command privileges — permit the program using the account to perform specific
commands or groups of commands.

The privileges assigned to an account determine the functions that an application
program can perform.

For a complete list of access and command privileges, see the Command Language
Reference Manual.

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions 2

StorHouse Files and File Access Groups

StorHouse Files and File Access Groups

A file is a named collection of logically related data treated as a unit by StorHouse and
located on a medium — for example, magnetic or optical disk. Any collection of data
generated by a host program can be stored in StorHouse. Each file has a set of
attributes that govern where and how it is stored in StorHouse.

Each file can be protected by passwords. A file can be locked to prevent programs
using other accounts from reading or writing to it, and unlocked to make it available

to other programs using other accounts.

StorHouse File Names

StorHouse uses file names to identify files. A file name is a unique name that
identifies a file within an access group. File names must contain 1 to 56 characters
and at least one character must be non-blank. Uppercase characters are distinct from
lowercase characters.

StorHouse file names must consist of printable ASCII characters, as shown in

Table 2-1.

Table 2-1: Characters Allowed In StorHouse File Names

PRINTABLE ASCIl CHARACTERS

A-Z uppercase letters + plus sign 0 parentheses
a-z lowercase letters ~ tilde <> angle brackets
0-9 digits , comma [] square brackets

! exclamation point - hyphen {} braces

guote period \ backslash

number sign / slash N circumflex

$ dollar sign colon _ underscore

% percent sign ; semicolon | vertical bar

& ampersand = equal sign ‘ reverse apostrophe

’ apostrophe ? question mark space

* asterisk @ at sign

FileTek, Inc.

Generic Callable Interface Programmer’s Guide

2-3

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Files and File Access Groups

File Access Groups

A file access group is a set of files. Program access may be restricted to a file access
group. To manipulate files in the set, a program must specify a group name and, if the
group is protected by passwords, a read password, a write password, and/or a delete
password. Each file in the StorHouse system is a member of one group. Within that
group, each file name is unique; however, two files may have the same name if they
are located in different file access groups. Group names must contain 1 to 8
characters and include only the following characters: A-Z, 0-9, $, or _ (underscore).

Group and File Access Passwords

StorHouse allows the specification of group and file passwords to protect user files
from unauthorized access. The following sections explain how to use group and file
passwords.

Group Passwords

Group passwords protect user files from unauthorized access. Passwords may be null
or contain 1 to 8 characters, and include the following characters: A-Z, 0-9, $, and _
(underscore).

Group passwords are used as follows:

* Ifagroup hasa read password, a program must specify the correct read password
to read a file from StorHouse to display group or file directory information.

e Ifagroup has a write password, a program must specify the correct write
password to write a file into the group or to UNDELETE a file.

* Ifagroup has a delete password, a program must specify the correct delete
password to delete the group, delete a file from the group, change the group’s
passwords, or change passwords or file attributes in the group.

* Ifagroup has a null password, a program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

* Ifa program specifies a null password where the group has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or
delete access). However, StorHouse returns an error if that type of access is
required.

File Passwords

A program can also give individual files read, write, and delete passwords. These file
passwords control access to files in the same way that group passwords control access
to file access groups.

2-4

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions 2

StorHouse Files and File Access Groups

File passwords can be null or contain 1 to 8 characters. Like group passwords, file
passwords may contain only the following characters: A-Z, 0-9, $, or _ (underscore).

File passwords are used as follows:

» Ifafile has a read password, the program must specify the correct read password
to read the file from StorHouse or display directory information about the file.

* Ifafile has a write password, the program must give the write password to write a
new version of the file into StorHouse or to UNDELETE a file.

» Ifafile has a delete password, the program must specify the correct delete
password to delete the file from StorHouse, or change the file’s attributes or
passwords.

» Ifafile has a null password, the program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

The account used by the program must have read, write, or delete access to a file’s
group before the system allows the program to gain the corresponding access to the

file.

If a program specifies a null password where the file has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or delete
access). However, StorHouse returns an error if that type of access is required.

For more information about specifying file access group names and group and file
access passwords, refer to “Data Transfer Control Functions” on page 5-30 and to
Chapter 6, “Sample Program.”

File Versions

A new file version is created whenever a program transfers a non-VRAM file from the
host to StorHouse. A new version of a VRAM file is created whenever a CREATE FILE
command is performed or a LSMCO (Create Open) call is issued with a checkpoint
of 0. The new file receives version number 0. If a file of the same name and the same
access group already exists in StorHouse, the number of each previous version
decreases by one. Previous versions may range in number from -1 through

-32767 or from -1 through the minimum version number allowed by the file’s LIMIT
attribute. If there was a previous version -32767, it is deleted when a new version is
added to the StorHouse system.

For example, when the file DATAFILE is first added to StorHouse, it becomes version
0. When a new version of DATAFILE is added, it becomes version 0, and the previous
version 0 of DATAFILE becomes version -1.

Refer to the description of LSMOS on page 5-7 or LSMOV on page 5-20 for
information about specifying version numbers.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 2-5

FileTek Confidential and Proprietary

StorHouse Parameters and Data Descriptions

StorHouse Files and File Access Groups

File Revisions

For RECORD, KEYED, or KEYSEQUENTIAL VRAM files, StorHouse assigns revision
number 1 to a file version when the file is created on the StorHouse system. Each
time a user changes the contents of the file version, StorHouse increments the
revision number by 1. A user can change the contents of a file version by opening the
file; by changing, deleting, or adding records; and by closing the file. Thus, a file

version can have multiple revisions, each identified by a unique revision number.

Revision numbers can be expressed as relative or absolute numbers. Relative revision
numbers range from 0, the current revision, through -65534, the oldest revision.
Absolute revision numbers range from 1 through 65535. For example, assume that
relative version 0 of the file DATAFILE has four revisions. A user can refer to the most
current revision of this file as relative revision number 0 or as absolute revision
number 4.

Refer to the description of LSMOV on page 5-20 for more information about
specifying values for revision numbers.

File Data Representation

StorHouse stores the record stream written by the user application program either as
binary (bitstream) data or as an ASCII character stream. The file format is determined
when the file is created, either by the LSMOS function for sequential files, or by the
CREATE FILE command or the LSMCO (Create Open) function for VRAM files.
(For information about the CREATE FILE command, refer to Appendix B,
“CREATE FILE Command.”) The record data is treated as a bitstream unless the
data translate flag in the file attributes array is positive in a LSMOS function or the
/ASCII modifier is specified on the CREATE FILE command.

Files created through the Callable Interface are considered transportable by
StorHouse. They can be accessed by host computers from different manufacturers
running different operating systems. For binary records, the user application program
is responsible for any required data conversion. For ASCII files, the host translates
from ASCII to the host character code.

Directory Information

The StorHouse directory entry for a file indicates whether the file’s record format is
binary bitstream or ASCII character stream by the value of the file system type. File
system type is set to 65 for ASCII files and 66 for binary files. Files created by FileTek
host file utility programs are given other file system type identifiers, based on the
specific utility used to copy the file.

2-6

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

3

File Positioning

This chapter discusses record resequencing and explains how the various functions
affect record positioning for files.

Record Sequencing

Records in a keyed VRAM file are sequenced by both entry and key. Entry sequenced
records are sequenced by the order in which they were written to the file. Key
sequenced records are sequenced by the values of key fields in each record.

Entry Sequence

The write operation that builds a file determines the entry sequence for records in
that file. Each new record is appended to the end of the file, independent of record
content. Entry sequence determines the order in which sequential read operations
retrieve records. Entry sequence has no effect on the order in which key value read
operations and next-key sequence read operations retrieve records.

Key Sequence

Each key that is defined for a file determines a key sequence for records in that file. In
key sequence, records are ordered by the increasing value of their key field, which is
considered only as a binary bitstring. Key sequence determines the order in which
next-key read operations retrieve records. The order in which records with duplicate
keys are returned is not necessarily the same as their entry sequence.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 3-1

File Positioning

FileTek Confidential and Proprietary

Current Record Position

Current Record Position

Any opened StorHouse file has a current record position. A keyed VRAM file has two
current record positions:

* Sequential position, which follows record entry sequence.
* Key position, which follows key sequence.

A file can have several keys but only one key position. Key position is always relative
to the last key that was used to read a record.

For a keyed VRAM file, open sets the sequential record position to the beginning of
the file, which is the first record in entry sequence. Open does not initialize key
position.

Read Functions and Current Record Position

Four functions can be used to read a VRAM file:

LSMRS - retrieves the next record in entry sequence order.

LSMRK - retrieves a record by exact match of a specified value for a given key.
LSMRNK - retrieves the next record in key sequence order.

LSMRR - retrieves a specific record by record number.

Read functions maintain current record position for a file as follows:

* Every read operation updates sequential record position.
e Only LSMRK and LSMRNK update key position. LSMRK sets the current key
position and must be called at least once prior to calling LSMRNK.

Record Sequencing Example

The following example shows a VRAM file with two keys: NAME and ENUM. The
file was created by writing the following records, where record number matches the
entry sequence.

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

File Positioning 3

Read Functions and Current Record Position

Record Number Value of Key NAME Value of Key ENUM
1 Jones 327
2 Smith 409
3 Doe 427
4 Johnson 283
5 Smith 265
6 Brooks 301

If the file is opened and read sequentially, then the records are read in the following

order: 1, 2, 3, 4, 5, 6.

The following table indicates how each read function affects the file’s current record
position.

Read Operation Function Rﬁgrd ENUM Key

1. LSMOV None

2. LSMRS 1 Jones 327

3. LSMRR 4 Johnson 283

4. LSMRS 5 Smith 265

5. LSMRK (Key=NAME 3 Doe 427
(Value=DOE)

6. LSMRNK 4 Johnson 283

7. LSMRS 5 Smith 265

8. LSMRK (Key=ENUM) 4 Johnson 283
(Value=283)

9. LSMRNK 6 Brooks 301

10. LSMRK (Key=NAME) 2 Smith 409

(Value=SMITH)
11. LSMRNK 5 Smith 265
12. LSMRS 6 Brooks 301

Note that in the preceding table, operations 10 and 11 may return record number 5,
then record number 2. The order of duplicate key records may be changed by the
file’s update and delete history.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 3-3

3

FileTek Confidential and Proprietary

File Positioning

Read Functions and Current Record Position

3-4

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

A

Control Structures for the C Interface

The include file LSMDEEFS is supplied with the C Interface. LSMDEFS contains
function prototype and structure definitions for all C Interface functions (LSMxxx).

Parameter Values

The following sections describe how to specify values for parameters.

Character Strings

The character set for a string-valued parameter consists of the uppercase letters (A-Z),
the lowercase letters (a-z), the digits 0-9, and the following special characters:

L) Lt

A character string must be supplied as a pointer to a standard C null-terminated
string (“char*”). The documentation for each string-valued parameter specifies
whether the value is restricted to a subset of this character set or the value is case-
sensitive. Values that are not case-sensitive can be supplied in either upper or lower
case. The documentation also specifies the maximum length of each string-valued
parameter. That length does not include the null terminator. The include file
LSMDEEFS contains definitions for all field length maximums. The parameter
documentation also indicates the defined name for each field length maximum.

Note that a key value is not a string-valued parameter; it is a variable-length array of
8-bit bytes.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 4-1

FileTek Confidential and Proprietary

Control Structures for the C Interface

Return Codes

Externally Specified Parameters

The values for some string-valued parameters can be externally supplied through
symbolic variables. (The mechanism is operating system dependent.) Where
applicable, these parameters are documented for each function. When the string
value specified by the program begins with the characters DD=, the characters
following the equal sign are used as a symbolic variable, which is translated (via
operating system dependent function calls). The result of the translation is used as
the actual parameter value.

Tokens

The session connection function and the file transfer open functions set up an object,
or token, to identify the session or transfer link, respectively.

* The connect token (c_token) is built by the session connection function.
* The open token (o_token) is built by the data transfer open functions.

Tokens are implemented as structures. The caller must supply memory for the token
structure and must pass a pointer to that structure as the first parameter to all
LSMxxx function calls.

The token structure is defined in the include file LSMDEEFS as structure
LSMS_TOKEN. The size of this structure is three pointers (of type “char*”).

The caller does not need to initialize this structure prior to calling LIMCON,
LSMOS, LSMCO, or LSMOV. The application program should not directly reference
or change the members of this structure. This is accomplished with the LSMASY
function.

Return Codes

Note

Return codes are of type int and are binary integer values between 0 and 8191. The
return code 0 always indicates normal completion. Common return codes for each
function are documented in the function description sections in Chapter 5,
“Definition of the LSMxxx Functions.”

In 16-bit and 32-bit environments, all function prototypes for the LSMxxx functions
return a short integer (2 bytes in length) rather than i nt . For more information,

see Appendix C, “Installing and Using the StorHouse API for Windows.”

All return code values are documented in the Messages and Codes Manual.

4-2

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Control Structures for the C Interface 4

Indicative Text Messages

Indicative Text Messages

A Callable Interface function may generate text messages that provide commentary,
warnings, or error diagnostics associated with the processing of the function. These
messages are text strings that can be printed or displayed at a terminal.

These messages are not returned directly by the function. They are placed in a
message stack and can be retrieved only by calling LSMMSG, the message retrieve
function. Users may ignore these messages; the stack is cleared when the next
function request is made.

The indicative text message stack is normally cleared when the session or the data
transfer operation is ended. However, clearing the text message stack in this manner
also deletes any messages that were generated during the session disconnect or during
the transfer close operation. It is the user’s responsibility to indicate whether these
messages are retrieved, either when the session is established or when the data transfer
is opened. The definition sections for LSMCON (Connect), LSMOS (Open
Sequential), LSMCO (Create Open), and LSMOV (Open VRAM) document the use
of a flag to control this message retention capability.

A non-zero return code does not guarantee that an indicative message is available.
Conversely, a zero return code does not guarantee that there are no messages in the
stack.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 4-3

4

FileTek Confidential and Proprietary

Control Structures for the C Interface

Indicative Text Messages

4-4

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

5

Definition of the LSMxxx Functions

Chapter 5 contains a detailed definition of all Callable Interface functions for the C
language. All Callable Interface capabilities for the C language are invoked through a
set of functions named LSMxxx. LSMxxx functions may operate in synchronous or
asynchronous mode.

Synchronous and Asynchronous Functions

This Callable Interface implementation does not provide truly asynchronous
processing. Asynchronous mode operation and the LSMCK function are provided
only to allow for future compatibility.

Synchronous Mode

In synchronous mode, control is returned to the user program only after all
processing associated with the requested function has been completed. For some
functions, this means that the request has been passed to StorHouse and that
StorHouse has completed all processing associated with that request. For other
functions, completion means only that the user program can continue as though all
processing associated with the function has been completed, although the request
may only have been queued for subsequent StorHouse processing. For example,
LSMW (Write) signals completion when data has been moved from the user buffer to
an internal buffer.

Asynchronous Mode

In asynchronous mode, control is returned to the user program as soon as the request
has been queued. The user must call the LSMCK (Check) function prior to using the
results of the request.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-1

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

Session Control Functions

All function calls are synchronous unless the application program explicitly calls
LSMASY to set the token to the asynchronous operation state. All tokens are set to the
synchronous processing state when they are initialized (by LIMCON, LSMOS,
LSMCO, or LSMOV). Once set for asynchronous processing by LSMASY, all
subsequent function calls using that token operate in asynchronous mode. LSMASY
also provides the capability to reset the mode to synchronous.

Function Statement Format

The LSMxxx functions are grouped in the following categories:

e Session Control

* File Operations

e Data Transfer Control

¢ StorHouse Command Submission
* General Usage.

The following sections describe these functions.

Session Control Functions

Two session control functions allow an application to begin or end a StorHouse
session. These functions are:

e LSMCON
e LSMDIS.

The following sections describe LIMCON and LSMDIS.

5-2

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMCON - Connect

LSMCON - Connect

Note

c_token

message_flag

account

password

LSMCON establishes a session with StorHouse. A session must exist before any other
functions can be called.

This function is slightly different for Microsoft® Windows™ environments. For
more information, see Appendix C, “Installing and Using the StorHouse API for
Windows.”

Function Prototype Definition

extern int LSMCON (struct LSMS TOKEN *c_t oken,
i nt nmessage_fl ag,
char *account,
char *password,
char *sm.dentifier,
char *subsystem.identifier

Argument Description

A pointer to a token (LSMS_TOKEN) structure. The structure need not be initialized;
it is filled in by the LSMCON function to contain session identification and to clear
the asynchronous processing indicator. The application program should not
manipulate the members of this structure. It should only be used as the connect
token (c_token parameter) to other LSMxxx calls for this session.

An integer that indicates how indicative text messages are handled. If non-zero
(defined value LIMF_MSGHOLD), then text messages from all session errors,
including connect/disconnect function errors, are retained in the message stack. If
zero (defined value LSIMF_NOMSGHOLD), messages may not be retrievable after the
session has terminated.

A character string containing the StorHouse account identification code (AID) for
the session. This field allows only a restricted character set. Lowercase characters may
be specified but are treated as uppercase characters. The only special characters
allowed are _ (underscore) and $. The maximum length for this string is 12 (defined
value LSML_AIC).

A character string containing the password associated with the StorHouse account.
The character set has the same restrictions as those for the account parameter. The
maximum length for this string is 32 (defined value LSML_SOPW).

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-3

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMCON - Connect

sm_identifier

subsystem_identifier

Any Non-Zero Value

A character string that identifies the specific StorHouse system to be accessed. If null,
the default or only StorHouse system is accessed. The maximum length for this string
is 6 (defined value LSML_SMID). This argument represents the sm_name entry in the
SMCONFIG file. For more information on the SMCONFIG file, see the Host Software
Installation Guide for UNIX Hosts.

A character string with a maximum length of 4. This argument is not used and

should be null.

Return Codes

Indicates that the session was not established. In this case, the LSMDIS (Disconnect)
function should not be called. If message_flag was set (non-zero), then the LSMMSG
(Message) function must be called until all messages have been retrieved.

Detailed Function Description

The first step in any interaction with StorHouse is to establish a session. This is
accomplished by calling LSMCON and by supplying the account identification code
and security information required by StorHouse. After the session is established,
other Callable Interface functions may be called.

If message_flag is set (non-zero), then LSMMSG must be called after the session ends.
The dynamic memory allocated for the session is not released until all messages have
been retrieved; that is, until a return code of 3065, indicating no more messages, is
received from LSMMSG.

Cross-Reference to Sample C Program

See Step 1 in the sample program in Chapter 6, “Sample Program.”

5-4

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMDIS - Disconnect

LSMDIS - Disconnect

c_token

Any Non-Zero Value

LSMDIS concludes a StorHouse session by terminating the connection that was
established by LSMCON.

Function Prototype Definition

extern int LSMDI'S (struct LSMS TOKEN *c_t oken);

Argument Description

A pointer to a session identifier token (connect token).

Return Codes

Indicates that the session was not concluded successfully and that resources allocated
by the Callable Interface routines may not be released.

Detailed Function Description

The final step in any interaction with StorHouse is to terminate the session. This is
accomplished by calling LSMDIS. The session is identified by the c_token returned by
LSMCON. A successful (return code zero) disconnect terminates the session and
releases all resources allocated by the StorHouse Callable Interface functions.

Notes

* File operations should be explicitly closed before signing off. Otherwise, LSMDIS
terminates the data transfer operation with an abort status.

* If the message flag was set when the session was established (see message_flag
under LSMCON on page 5-3), then LSMMSG should be called following the
LSMDIS call.

Cross-Reference to Sample C Program

See Step 23 and ECHECK Routine in the sample program in Chapter 6, “Sample
Program.”

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-5

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
File Operation Functions

File Operation Functions

The five file operation functions are:

* LSMOS — opens a non-VRAM file on StorHouse. Non-VRAM files are processed
sequentially.

e LSMCO creates a new VRAM file on StorHouse and then establishes a data
transfer link for writing data to that file.

* LSMOV - opens a StorHouse VRAM file. VRAM files may be processed
sequentially, or individual records may be accessed by record number or by key
value, depending on the file access method.

* LSMCP - synchronizes file transfer by ensuring that all previously written records
have been received and processed by StorHouse.

* LSMCLO - terminates the file operation.

LSMOS, LSMCO, LSMOV, LSMCP, and LSMCLO are described in the following
sections.

5-6 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOQOS - Open Sequential

LSMOS establishes a data transfer link between the user program and StorHouse, sets
the direction of data flow, and identifies StorHouse file being opened. Sequential
record transfer operations (read or write) may then be performed on the file.

LSMOS - Open Sequential

SETGROUP privilege is required to use LSMOS. For more information about
StorHouse privileges, refer to the Command Language Reference Manual.

Function Prototype Definition

extern int LSMOS (struct LSMS TOKEN *c_t oken,

i nt message_fl ag,

struct LSM5 TOKEN *o_t oken,

char *node,
char *file_nane,
| ong version,

struct LSM5 FPW*fil e_passwords,

char *group_nane,

struct LSMs_FPW *gr oup_passwor ds,
struct LSM5 FLOC *file_|l ocation,
struct LSM5 ATTR *file_attrib,
struct LSM5 OPTS *file_options

Data Structures
struct LSM5_FPW

{
char read_password] 9];
char wite password] 9];
char del ete _password[9];

}

struct LSM5_FLOC

{
char vol umeset _name[9];
char fileset_name[9];

b

FileTek, Inc.

Generic Callable Interface Programmer’s Guide

5-7

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOS - Open Sequential

c_token

message_flag

0_token

mode

file_name

struct LSM5_ATTR

{
long |ist_size;
long file_size;
long max_record_len;
long transport_flag;
long data_xlate flag;
long fixed record fl;
long cc_ansi_flag;
long cc_mach_fl ag;
l ong bl ock_si ze;
long retention_interval;
b
struct LSMS_OPTS
{
long |ist_size;
l ong | ock;
long wait;
long atf;
| ong edc;
long limt;
long new, /* This will be newx if conpiled with C++. */
l ong unl ock;
long vtf;
1

Argument Description

A pointer to a session identifier token (connect token).

An integer that indicates how indicative text messages are handled. If non-zero
(defined value LIMF_MSGHOLD), then text messages from all data transfer errors,
including close function errors, are retained in the message stack. If zero (defined
value LIMF_NOMSGHOLD), messages are not retrievable after LSMCLO (Close) has
been called.

A pointer to a token (LSMS_TOKEN) structure. The structure need not be initialized.
LSMOS fills in this structure with transfer operation identification and clears the
asynchronous processing indicator. The application program should not manipulate
the members of this structure. It should only be used as the open token (o_token
parameter) to other LSMxxx calls for this transfer operation.

A character string that identifies the file reference mode. The acceptable values are
READ and WRITE. These values may be specified in upper or lower case.

A 56-byte character string containing the StorHouse file name or the (operating
system dependent) symbolic variable to be referenced. If the symbolic variable is
specified, the string must begin with the characters DD=. In this case, the file name

5-8

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

version

file_passwords

group_name

group_passwords

file_location

file_attrib

LSMOS - Open Sequential

used is the operating system’s translation of the string following DD=. If the
file_name is longer than 56 characters, LSMOS fails with a return code of 2949.

A long integer containing the file’s version number. This argument applies only to
READ operations. Zero is the default (most current) version. A negative value
indicates a relative version number. Positive values are not supported.

A pointer to a structure containing three 9-character (eight data characters plus one
byte for null-termination) variables that contain the read, write, and delete
passwords, respectively, associated with the file name. The structure member for a
password that is not supplied should be set to null. The length of a file/group
password (eight characters) is defined value LSML_FILEPW.

The identifier for the file access group. If the file is stored under the user’s default
group, this parameter may be omitted; that is, its value may be null. The maximum
length for this string is 8 (defined value LSML_GROUPNAME).

A pointer to a password structure containing the read, write, and delete passwords for
the group. The structure format is the same as the structure format used for
file_passwords.

A pointer to a file location structure containing the identifiers for the file’s destination
volume set and file set. This argument applies only to WRITE operations. The file
location structure members are:

* volumeset_name — a character string that supplies the name of the file’s
destination volume set.

* fileset_name — a character string that supplies the name of the file’s destination
file set.

A pointer to a structure containing a list of long integers that provide file attributes.
The caller specifies a value for the first member in the structure, list_size, which
contains the number of other members in the structure. The value of block_size
should be set to 0. To supply or retrieve all available file attributes, set list_size to 9.

For a mode of WRITE, the caller specifies file attributes. The file_size member is
required. All other attributes are optional.

The caller must supply a value for all members included in the structure. Attributes
not included in the structure assume a value of 0, which indicates use of the default.

Note the following:
¢ The value of block_size should be set to 0.

* For a mode of WRITE, the caller specifies file attributes. The file_size member is
required. All other attributes are optional.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-9

5

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOS - Open Sequential

For a mode of READ, all file attributes, except block_size and retention_interval,
are returned to the caller.

For flag values, a negative value implies the opposite of the positive value; zero
indicates that the default is used.

The file attribute members are:

list_size — number of other members in the structure.

file_size — the total file size in bytes. This is an estimate that must be larger than
the actual number of bytes being transferred.

max_record_len — the maximum length for any record in the file.

transport_flag — a flag value. If positive, the file is in a transportable format that
can be retrieved by dissimilar host systems.

data_xlate_flag — a flag value. If positive, the data is stored as ASCII characters.
The data is translated from the native host character set to ASCII when the file is
stored. The data is translated from ASCII to the native character set of the
receiving host when retrieved. This allows the use of character files on host
systems with non-ASCII character sets.

fixed_record_fl — a flag value. If positive, the records are fixed-length records.

cc_ansi_flag — a flag value. If positive, the first character of each record is a print
carriage control character of the FORTRAN (or ANSI) type.

cc_mach_flag — a flag value. If positive, the first character of each record is a
machine-specific print carriage control character.

block_size — a user-defined value that specifies the size in bytes of a buffer area
used by the Callable Interface. This element is not used and should be set to 0.

retention_interval — the retention period for the file. Valid values are:
* Number of days specified as a non-zero, positive integer (for example, 60).
e LSMV_RETEN_FOREVER, which indicates infinite retention.

e LSMV_RETEN_ZERO, which indicates the file has no retention period and
can be deleted.

* LSMV_RETEN_DEFAULT, which indicates the retention period is not
specified at the file level and assumes the default value.

5-10

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

file_options

LSMOS - Open Sequential

e If the file’s resident file set has a retention attribute equal to FOREVER,
ZERQ, or a specified number of days, the file set retention attribute
determines the file retention attribute.

e If the file’s resident file set has a retention attribute of DEFAULT, the
RETENTION_MODE system parameter determines the file retention
attribute. If RETENTION_MODE is set to BASIC, the file retention is
ZERO. If RETENTION_MODE is set to STRICT, the file retention is
FOREVER.

A pointer to a structure containing a list of long integers that provide file transfer
options. These options correspond to the StorHouse GET and PUT command
modifiers. For more information about GET and PUT, refer to the Command
Language Reference Manual.

Each member is either an integer or a flag value. Integers are positive or zero. Zero
indicates that the default value is used. (Note that the actual default value may not
equal zero.) Flags are any positive non-zero value (indicates “true” and the option is
selected), any negative value (indicates the opposite of “true”), or zero (indicates use

of the default).

The caller must supply a value for all attributes included in the structure. Attributes
not included in the structure assume a value of 0, which indicates use of the default.

The first member in the structure, list_size, must contain the number of the other
members in the structure. To provide all options, set list_size to 8.

The structure members are:
e list_size — number of other members in the structure.

* lock — lock flag. A positive value indicates that the file is to remain explicitly
locked after the file operation completes.

* wait — wait for file lock flag.

* For READ operations, a positive value indicates that the data transfer
operation should wait for a locked file to be unlocked.

* For WRITE operations, this field is no longer used. It is not necessary to
change existing code. For new programs, set this field to 0.

* atf — Access Time Factor, a positive integer equal to 1, 2, or 3. This field is used
only for WRITE operations.

* edc — Error Detection Code (EDC) identifier, an integer equal to: 1 or 2 to
explicitly select the coding algorithm; 0 to indicate use of the default; or negative
to generate no codes. A value of zero is reccommended. This field is used only for
WRITE operations.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-11

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMOS - Open Sequential

Any Non-Zero Value

* limit — file version LIMIT value, a positive integer between 1 and 32768. This
field is used only for WRITE operations.

* new — new file flag. A positive value indicates that a previous version of the file
(same group and file name) must not exist in StorHouse. This field is used only
for WRITE operations. This will be newx if compiled with C++.

* unlock — unlock flag. This field is obsolete. It is not necessary to change existing
code. For new programs, set unlock to 0.

* vtf — Vulnerability Time Factor, an integer equal to 2, 3, or 4. A value of 2
indicates /VTF=NEXT; 3 indicates /VTF=NOW; and 4 indicates /VTF=DIRECT.
This field is used only for WRITE operations.

Refer to the Command Language Reference Manual for information about the
VTF attribute.

Return Codes

The file was not opened. No other Callable Interface functions relating to this file
should be issued. In particular, LSMCLO will fail due to an invalid o_token.

Detailed Function Description

LSMOS initiates a file transfer operation between the host and StorHouse. The
StorHouse file is identified by the file_name and group_name identifiers. The mode
parameter determines the type of processing, either READ or WRITE. The transfer is
performed during the session identified by the connect token (c_token).

After the file has been opened successfully (return code zero), read or write functions
may be called. The transfer operation is ended by issuing LSMCLO (Close).

LSMOS returns an open token (o_token), which identifies the transfer operation path
to subsequent data transfer operations such as read and write. A StorHouse file
opened with LSMOS can only be processed sequentially. Facilities implemented by
the optional VRAM component, such as reading a record by relative record number,
require that the file be created as a VRAM file and that transfer operations be initiated
with LSMOV (Open VRAM).

If the message flag is set (non-zero), then LSIMMSG must be called after the transfer
operation ends (in other words, after LSMCLO [Close] has been called). The dynamic
memory allocated for the operation is not released until all messages have been
retrieved; that is, until a return code of 3065, indicating no more messages, is
received from LSMMSG.

5-12

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMOS - Open Sequential

Notes

e IfLSMOS returns a non-zero status code, then any associated error messages can
be retrieved with the LSMMSG function. The token parameter for LIMMSG
should be the connect token, not the open token.

* Refer to Appendix A, “Definition of the LSMxxx Functions,” for programming
guidelines on using multiple open statements.

Cross-Reference to Sample Program

See steps 2 and 5 in the sample program in Chapter 6, “Sample Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-13

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMCO - Create Open

LSMCO - Create Open

LSMCO creates a new VRAM file on StorHouse and establishes a data transfer link for
writing information to that file. LSMCO is equivalent to issuing a StorHouse
Command Language CREATE FILE command followed by LSMOV in mode

APPEND.

LSMCO requires RECORD privilege. For more information about StorHouse
privileges, refer to the Command Language Reference Manual in the StorHouse User
Document Set.

LSMCO also requires the StorHouse VRAM component.

Function Prototype Definition

extern

int LSMCO (struct LSMS TOKEN *c_t oken,
i nt message_fl ag,
struct LSM5 TOKEN *o_t oken,
char *file_nane,
char *file_password,
char *group_nane,
char *group_password,
char *nodel fil e_nane,

struct LSM5 FLOC *file_l ocation
struct LSMS CATTR *file_attrib

Data Structures

struct
{
char
char

s

struct

{
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong

LSMS_FLOC

vol uneset _name[9];
fileset _name[9];

LSMS_CATTR

list_size;

bl ock_si ze;
checkpt ;
file_size;
data_xl ate_fl ag;
atf;

cache;

edc;

5-14

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

c_token

message_flag

0_token

file_name

file_password

group_name

group_password

Definition of the LSMxxx Functions 5
LSMCO - Create Open

long limt;
| ong vtf;
long retention_interval;

Argument Description

A pointer to a session identifier token (connect token).

An integer that indicates how text messages are handled. If non-zero (defined value
LSMF_MSGHOLD), then text messages from all data transfer errors, including
LSMCLO (close) errors, are retained in the message stack. If zero (defined value
LSMF_NOMSGHOLD), messages are not retrievable after LIMCLO has been called.

A pointer to a token (LSMS_TOKEN) structure. It is not necessary to initialize this
structure, because LSMCO sets it to the file identifier. The application program
should not manipulate the members of this structure. It should be used only as the
o_token parameter to other LSMxxx calls for this transfer operation.

A 56-byte character string containing the StorHouse file name or the (operating
system dependent) symbolic variable to be referenced. If the symbolic variable is
specified, the string must begin with the characters DD=. In this case, the file name
used is the operating system’s translation of the string following DD=. If file_name is
longer than 56 characters, LIMCO fails with a return code of 2949.

An 8-character variable containing the write password for the newly created file. The
value of file_password must match the model file’s write password (see
model_file_name). The read and delete passwords for the new file are copied from the
model file’s read and delete passwords.

If the model file has no write password, file_password should point to a null or all-
blanks string.

If no model file name is specified, the file_password value becomes the read, write,
and delete passwords for the newly created file. The file_password value also supplies
the write and delete passwords for any existing version of that file.

An 8-byte character string that identifies the file access group name for the newly
created file and for the model file (see model_file_name). If the file is stored under the
account’s default group, group_name may point to a null or all-blanks string.

SETGROUP privilege is required to specify any group other than the default group.
An 8-character variable containing the write password for the StorHouse file access

group. If no write password is defined for the group, group_password should point to
a null or all-blanks string.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-15

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions

LSMCO - Create Open

model_file_name A 56-byte character string containing the StorHouse model file name or the
(operating system dependent) symbolic variable to be referenced. If the symbolic
variable is specified, the string must begin with the characters DD=. In this case, the
file name used is the operating system’s translation of the string following DD=. If
model_file_name is longer than 56 characters, LSMCO fails with a return code of

2949.

The model file must already exist on the StorHouse system. File characteristics for
file_name are determined by copying the characteristics of the model file. Non-default
values in the file_attrib list override these characteristics.

Only RECORD files can be created without a model file specification. If
model_file_name is specified as a blank or null string, then file attributes are
determined from the file_attrib list and from system/user defaults.

A prior version of a file cannot be used as a model for a new version of that same file;
in other words, model_file_name may not be the same as file_name.

file_location A pointer to a file location structure containing the identifiers for the file’s destination
volume set and file set. The file location structure members are:

* volumeset_name — an 8-byte character string that supplies the name of the file’s
destination volume set.

* fileset_name — an 8-byte character string that supplies the name of the file’s
destination file set.

If a volume set or file set member is blank or null, the default for the StorHouse
account is used. If the account default is also blank, then the specification is copied
from the model file.

file_attrib A pointer to a structure containing a list of long integers that provide file attributes.
The caller specifies a value for the first member in the structure, list_size, which
contains the number of other members in the structure. To supply or retrieve all
available file attributes, set list_size to 10. The value of block_size should be set to 0.
The file_size member is required. All other attributes are optional. The caller must
supply a value for all members that are included in the list. Attributes not included
assume a value of 0.

The values for file_attrib members are either integers or flags. Integer-valued members
are either positive or zero. A positive value supplies the specific value used for the

parameter. Zero indicates use of the default value.

Note The actual value of the default may not equal 0.

5-16 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

LSMCO - Create Open

Flags have one of three values:

* DPositive indicates true (the option is selected).
* Negative indicates false (the option is not selected).
e Zero indicates use of the default value.

Non-default values override attributes that are determined from the model file. If no
model file name is specified, non-default values override normal StorHouse file
attribute defaults.

The members of the LSMS_CATTR structure are:
e list_size — the number of other members in the list.

* block_size — a user-defined value that specifies the size in bytes of a buffer area
used by the Callable Interface. This member should be set to 0.

* checkpt — a caller-supplied value that indicates the checkpoint number where file
processing should be restarted. A value of 0 indicates normal (non-restart)
operations. If a non-zero value is specified, the remaining structure members are
ignored.

* file_size — the number of bytes of storage space (in units of 1000 bytes) allocated
whenever a file is opened for an append operation and whenever a checkpoint is
issued. The value must contain enough space for the largest extent set that is
written. This extent set includes a data extent, a DF extent, and for KEYED files,
a K extent. A file size must always be specified (non-zero) for file creation (in
other words, checkpt=0). Refer to Appendix B, “CREATE FILE Command,” for
information about specifying file size.

* data_xlate_flag — a flag value. If positive, data is stored as ASCII characters. Data is
translated from the native host character set to ASCII when the file is stored and
translated from ASCII to the native character set of the receiving host when data
is retrieved. This allows use of character files on host systems with non-ASCII
character sets.

e atf — the StorHouse Access Time Factor (ATF). Values may equal 1, 2, or 3. Refer
to the Command Language Reference Manual in the StorHouse User Document
Set for more information about ATE

* cache — the number of sequential records that VRAM caches for an LSMRS,
LSMRR, or an LSMRK function for this file when it is opened with an access
mode of READ or UPDATE and an access method including RECORD and/or
KEYED. The system can use this cache to optimize subsequent sequential reads.

* edc — a flag value. A positive value indicates that error detection coding (EDC) is
enabled. A negative value indicates that error detection coding is disabled.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-17

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMCO - Create Open

2629

2635

Any Other Non-Zero

Value

* limit — file version limit value, which may equal a positive number between 1 and
32768. A value of 0 indicates use of the default limit value.

e vif — Vulnerability Time Factor (VTF), which may equal 2, 3, or 4. A value of 2
indicates VTF=NEXT; 3 indicates VIF=NOW; and 4 indicates VTF=DIRECT.
Refer to the Command Language Reference Manual in the StorHouse User
Document Set for more information about VTE

* retention_interval — the retention period for the file. Valid values are:
* Number of days specified as a non-zero, positive integer (for example, 60).
e LSMV_RETEN_FOREVER, which indicates infinite retention.

e LSMV_RETEN_ZERO, which indicates the file has no retention period and
can be deleted.

* LSMV_RETEN_DEFAULT, which indicates the retention period is not
specified at the file level and assumes the default value.

e If the file’s resident file set has a retention attribute equal to FOREVER,
ZERQ, or a specified number of days, the file set retention attribute
determines the file retention attribute.

e If the file’s resident file set has a retention attribute of DEFAULT, the
RETENTION_MODE system parameter determines the file retention
attribute. If RETENTION_MODE is set to BASIC, the file retention is
ZERO. If RETENTION_MODE is set to STRICT, the file retention is
FOREVER.

Return Codes

Specifies that the caller supplied an invalid checkpoint number.

May be caused by the following errors:

e LSMCO was used to create a new version of the model file.

* The specified model file is open for write or update by another user.

* A user tried to create-open a file whose highest version was already in use.

Refer to the message text retrieved by LSMMSG to identify the specific cause of error.
Indicates that the file was not created and is not open. Any other StorHouse

functions relating to this file should not be issued. In particular, LSMCLO will fail
because of an invalid o_token.

5-18

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMCO - Create Open

Function Description

LSMCO creates a VRAM file on the StorHouse system and builds an open data
transfer path to allow write operations to this new file. The value of file_name
identifies the VRAM file. The c_token is the session identifier returned by LSMCON.
LSMCO returns a file identifier in the o_token structure. After a successful LSMCO,
users may perform operations for the newly created file.

Notes

e FEach LSMCO establishes another transfer link and returns another file identifier
(o_token). It is the user’s responsibility to maintain the integrity of the open
tokens.

* If the amount of space indicated by file_size cannot be allocated, StorHouse
returns an error code. Refer to Appendix B, “Definition of the LSMxxx
Functions” and the Command Language Reference Manual (CREATE FILE
command description) for information about how to estimate VRAM file sizes.

* A non-zero return code indicates that there may be associated error messages.
These messages may be retrieved using LIMMSG. Specify the c_token rather than
the o_token in the LSMMSG call.

* Generally model files should be created only for use as models, not for use as data
files. When a file is used as a model, it is referenced (mounted) as part of LSMCO
processing. If the model is on optical, a physical platter mount may be required.
Allocating models as empty files on level F storage prevents this extra platter
mount.

* Appendix A, “Definition of the LSMxxx Functions,” contains programming
guidelines for using multiple open statements and checkpoints. These guidelines
also apply to LSMCO.

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-19

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOQV - Open VRAM

LSMOV - Open VRAM

LSMOV establishes a data transfer link between the application program and
StorHouse, sets the direction of the data flow, indicates the type of processing to be
performed, and identifies the StorHouse file being opened. Sequential or record-
oriented data transfer operations may then be performed on the file.

LSMOV requires the StorHouse VRAM software component.

Function Prototype Definition

extern int LSMOV (

Data Structures

struct LSM5 TOKEN *c_t oken,

i nt message_fl ag,

struct LSM5 TOKEN *o_t oken,

char *node,

char *access_net hod,

char *file_nane,

| ong revi sion,

struct LSM5 VPW*fil e_passwords,
char *group_nane,

struct LSMs VPW *gr oup_passwor ds,
long rel _rec_num

struct LSMS VATTR *file_attrib

91;

on_num

struct LSM5_VPW
{
char read_password] 9];
char wite_password|
b
struct LSM5_VATTR
{
long |ist_size;
long max_record_| en;
long |ast_phy_rec_num
long last_|og rec_num
long file_revisi
long file_type;
l ong bl ock_si ze;
I ong version;
I ong checkpt;
1

5-20

Generic Callable Interface Programmer's Guide

FileTek,

nc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

c_token

message_flag

0_token

mode

access_method

file_name

revision

file_passwords

LSMOQOV - Open VRAM

Argument Description

A pointer to a session identifier token (connect token).

An integer that specifies how indicative text messages are handled. If non-zero
(defined value LIMF_MSGHOLD), then text messages from all data transfer errors,
including close function errors, are retained in the message stack. If zero (defined
value LSMF_NOMSGHOLD), messages are not retrievable after close has been called.

A pointer to a token (LSMS_TOKEN) structure. The structure need not be initialized.
It is filled in by LSMOV to contain transfer operation identification and to clear the
asynchronous processing indicator. The application program should not manipulate
the members of this structure. The structure should only be used as the open token
(o_token parameter) to other LSMxxx calls for this transfer operation.

A character string that identifies the file reference mode. The acceptable values are
READ, APPEND, and UPDATE. These values may be upper or lower case.

A character string that identifies the type of file processing. The acceptable values are
SEQUENTIAL, KEYED, RECORD, ALL, or a combination of any two or three of
SEQUENTIAL, KEYED, and RECORD, separated by commas. These values may be
upper or lower case. Specify KEYED or ALL for KRA-type VRAM files only. If you
specify KEYED or ALL for RRA-type VRAM files, LSMOV fails. The access_method
argument is ignored when mode is set to APPEND.

A 56-byte character string containing the StorHouse file name or the (operating
system dependent) symbolic variable to be referenced. If the symbolic variable is
specified, the string must begin with the characters DD=. In this case, the file name
used is the operating system’s translation of the string following DD=. If the file_name
is longer than 56 characters, LSMOV fails with a return code of 2949.

An integer set by the user to indicate the file version’s revision number.

e Zero is the default (most current) revision.
* A positive integer indicates an absolute revision number.
* A negative integer indicates a relative revision number.

It is the user’s responsibility to keep track of absolute revision numbers.

A pointer to a structure containing two 9-character (eight data characters plus one
byte for null-termination) variables that contain the read and write passwords,
respectively, associated with the file name. The structure member for a password that
is not being supplied must be set to null. The length of a file/group password (eight
characters) is defined value LSML_FILEPW.

group_name The identifier for the file access group. If the file is stored under the user’s default
group, this parameter may be omitted; that is, its value must be all blanks. The
maximum length for this string is 8 (defined value LSML_GROUPNAME).
FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-21

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOV - Open VRAM

group_passwords

rel_rec_num

file_attrib

SETGROUP privilege is required to use LSIMOV unless the user’s default group is
used. For more information about StorHouse privileges, refer to the StorHouse
Concepts and Facilities Manual and the Command Language Reference Manual in the
StorHouse User Document Set.

A pointer to a password structure containing the read and write passwords for the
group. The structure format is the same as the structure format used for
file_passwords.

A long integer containing the relative record number of the first record to be read
from StorHouse. This value is only meaningful when mode is READ and
access_method is SEQUENTIAL.

A pointer to a structure containing a list of long integers that provide file attributes.
The caller must set the first entry in the structure, list_size, to the number of other
members in the structure. The minimum number allowed is 1. The caller also
specifies a value of 0 for block_size. The caller may specify a value for file_version and,
when applicable, checkpt.

All other file attribute values are returned to the caller when the file is opened. The
checkpt value is returned to the caller only if:

* The caller supplies a zero checkpt value, and

* The caller attempts to open a checkpointed, software disabled file with LSMOV,
mode=APPEND.

In this case, the returned value in checkpt is the file’s last checkpoint number.

The file attribute members are:

e list_size — the number of other elements in the structure.

* max_record_len — the maximum length for any record in the file.

* last_phy_rec_num — the last physical record number in the file.

* last_log_rec_num — the last logical record number in the file. If records are deleted
from the end of the file, the last logical record number is less than the last
physical record number.

e file_revision_num — the absolute revision number of the file version.

* file_type — the VRAM file type. A value of 0 indicates an RRA file, and a value of 1
indicates a KRA file. VRAM file type is specified when the file is created on the

StorHouse system with the StorHouse Command Language CREATE FILE
command. (For information about the CREATE FILE command, refer to

Appendix B, “CREATE FILE Command.”)

5-22

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

2629

2630

2636

2637

Any Other Non-Zero

Value

Definition of the LSMxxx Functions 5
LSMOQOV - Open VRAM

* block_size — a user-defined value that specifies the size in bytes of a buffer area
used by the Callable Interface. This element is not applicable to VMS™ systems
and should be set to 0.

* version — a user-supplied value that indicates the version of the file to be opened.

* To open the latest version, omit the attribute or supply a 0, which is the

default.

e To open a specific version, supply its relative version number as a negative
y 28

number (-1 through -32767).
* Dositive values are not supported.

* checkpt— a value supplied by the caller at open (mode=APPEND) to indicate the
checkpoint number where file processing should be restarted. If 0 or omitted, a
normal (nonrestart) LSMOV occurs.

After LSMOV is issued, the value of checkpt is rezurned to the caller only if
mode=APPEND, the file being opened is checkpointed and software disabled,
and the caller set checkpt to 0.

Return Codes

The caller supplied an invalid checkpoint number.

The file was not opened because it is software disabled. A valid checkpoint exists. The
last checkpoint number is returned in checkpt.

The caller supplied a checkpoint number but mode was not APPEND.

The caller attempted to open a noncurrent revision of a file at a checkpoint. Only the
current revision of a file may be opened at a checkpoint.

The file was not opened. In this case, no other Callable Interface functions relating to
this file should be issued. In particular, do not issue LSMCLO (Close).

Detailed Function Description

LSMOV initiates a file transfer operation between the host and StorHouse for the
VRAM file identified by the file name and group identifier. The type of processing is
determined by the access_method and mode parameters. The session under which the
transfer is to be performed is identified by the connect token. After the file has been
opened, other data transfer functions may be called. The transfer operation is ended
by calling LSMCLO (Close).

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-23

5

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMOV - Open VRAM

LSMOV returns an open token, which identifies the transfer operation path to
subsequent data transfer operations, such as read record or update.

If the message flag is set (non-zero), then the LSMMSG function must be called after
the transfer operation is closed. The dynamic memory allocated for the transfer
operation is not released until all messages have been retrieved; that is, until a return
code of 3065, indicating no more messages, is received from LSMMSG.

Notes

e FEach LSMOV call establishes another transfer link and returns another file
identifier (o_token). It is the user’s responsibility to maintain the integrity of the
file identifiers.

* A VRAM file may be opened with a mode of APPEND either to write records into
a newly created (empty) file or to add records to a file that already contains data.
The two cases can be distinguished by checking the last_phy_rec_num attribute
after open; for a new file, it is set to zero.

* Issuing LSMOV with a mode of APPEND attempts to allocate the amount of
space that was specified as the value of the /SIZE modifier on the CREATE FILE
command for the file that is currently being opened. If this amount of space
cannot be allocated (for example, the file’s destination file set is filled and cannot
extend), StorHouse returns an error code. Refer to Appendix B, “CREATE FILE
Command,” for more information about how to estimate VRAM file size.

* If the caller attempts to open a checkpointed, software-disabled file and does not
supply a checkpoint number, LSMOV returns a 2630 return code and the last
checkpoint number. To open the software-disabled file at the returned
checkpoint, the caller can issue another LIMOV (mode=APPEND) and supply
the previously returned checkpoint number as the current value of the checkpt
attribute.

* Only the current (most recent) revision of a file version may be opened at a
checkpoint.

The following example illustrates how logical and physical record numbers change. If
the last physical record number in the file is record number 8 and that record is
deleted, the last physical record number in the file remains 8. The last logical record
number becomes record number 7. New records appended to the file begin at record
number 9.

If LSMOV returns a non-zero status code, then any associated error messages can be
retrieved with LSMMSG. The token parameter for LSMMSG should be the connect
token, not the open token.

Refer to Appendix A, “Definition of the LSMxxx Functions,” for programming
guidelines on using multiple open statements.

5-24

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMOQOV - Open VRAM

Cross-Reference to Sample Program
See Steps 9, 12, and 15 in the sample program in Chapter 6, “Sample Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-25

FileTek Confidential and Proprietary
5 Definition of the LSMxxx Functions
LSMCP — Checkpoint

LSMCP — Checkpoint

LSMCP synchronizes file transfer by ensuring that all previously written records have
been received and processed by StorHouse.

LSMCP requires the VRAM StorHouse software component.

Function Prototype Definition

extern int LSMCP (struct LSMS TOKEN *o_t oken,
I ong *return_ckpt_num

);

Argument Description

o_token The file identifier returned by LSMOV or LSMCO.

return_ckpt_num An integer set by StorHouse to the binary number associated with this checkpoint.

Return Codes

Any Non-Zero Value The file was not successfully checkpointed. No other operation may be performed
against a file that returns an error during LSMCP except LSMCLO.

Detailed Function Description

LSMCP synchronizes file transfer to ensure that all records have been written to
StorHouse.

LSMCP returns the checkpoint number (value of return_ckpt_num) that must be used
to restart the file transfer operation at this position. A data transfer operation (mode
of APPEND only) can be restarted by specifying this checkpoint number in the
LSMOV (Open VRAM) function (checkpt parameter) or in the LSMCO (Create
Open) function (checkpt parameter).

5-26 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMCP — Checkpoint

Notes

* To perform LSMCP using LSMOV, the value of mode in the LSMOV call must
have been set to APPEND. The access-method is ignored when mode is APPEND.

* Refer to Appendix A, “Checkpoint/Restart and Programming Guidelines,” for
information about using LSMCP and LSMOV.

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-27

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMCLO - Close

LSMCLO - Close

0_token

xfer_abort_flag

LSMCLO terminates a data transfer operation that was initiated by LSMOS (Open
Sequential), LSMCO (Create Open), or LSMOV (Open VRAM).

Function Prototype Definition

extern int LSMCLO (struct LSM5 TOKEN *o_t oken,
int xfer_abort flag

);

Argument Description

A pointer to an open token initialized by LSMOS, LSMCO, or LSMOV.

An integer that indicates whether this is a normal close or a close that is issued to
abort the data transfer operation.

e A zero value (defined value LSMF_NORMAL) indicates a normal close.

e A non-zero value (defined value LSMF_ABORT) indicates that StorHouse should
abort the data transfer operation. This prevents the file from being cataloged on
StorHouse and purges any buffers that may be in transit. The xfer_abort_flag is
set (non-zero) when the data stream to StorHouse must be terminated due to an
error.

This flag should be set to LSMF_ABORT only for write operations.

Return Codes

For a file write operation, a non-zero return code indicates that the file cannot be
guaranteed to be stored in StorHouse.

For a sequential read operation, close is expected to be issued after end-of-file status
has been returned to a read or read sequential function. Otherwise, close returns the
code 2189; this is 7ot an error if the application intended to close before end-of-file.

If xfer_abort_flag is set to LSMF_ABORT, the host abruptly terminates the data
transfer link. LSMCLO returns an error code indicating this.

5-28

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary
Definition of the LSMxxx Functions 5
LSMCLO - Close

Detailed Function Description

For a sequential write operation, LSMCLO indicates end-of-file. All “in-transit” data
buffers are written to StorHouse, and transfer end is signaled. StorHouse completes
file storage and directory update operations, and honors the requested VTF level prior
to returning operation status. A return code of zero from LSMCLO indicates that the
file has been stored in StorHouse.

For a sequential read operation, LSMCLO terminates the transfer and flushes any “in-
transit” data buffers. A non-zero return code indicates that all data from the file has
not been delivered to the application program.

For record-oriented transfers, LSMCLO causes completion of all file and index
updates. A return code of zero indicates that the file state in StorHouse is
synchronized with the state expected by the application program.

LSMCLO always releases all StorHouse resources used for the transfer operation. If
the message_flag was clear (zero) in the LSMOS, LSMCO, or LSMOV function call,
then LSMCLO also releases all host resources used by the transfer. Otherwise,
LSMMSG must be called to retrieve all indicative text messages before host resources
are completely released.

Notes

* When closing a VRAM file, some record pointers or data must still be posted to
the file. If the allocated file size is too small, the file becomes software disabled,
and data that was written to the file is lost. Refer to Appendix B, “CREATE FILE
Command,” for more information about how to estimate VRAM file size.

* If the message flag was set when the session was established (reference the
LSMOS, LSMCO, and LSMOV function descriptions), then the LSMMSG
function should be called until it returns a return code of 3065, indicating no
more messages.

Cross-Reference to Sample Program

See Steps 4, 7, 11, 14, 22, and ECHECK Routine in the sample program in Chapter
6, “Sample Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-29

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions

Data Transfer Control Functions

Data Transfer Control Functions

Data transfer control functions can be performed once a session has been established
and files have been opened. These functions are:

* LSMR - requests the next sequential record of a non-VRAM file from StorHouse.
* LSMRS - requests the next sequential record from a VRAM file.

* LSMRR - requests a record from a VRAM file. The record is identified by its
relative record number.

* LSMRK - retrieves a record from a VRAM file. The record is identified by user-
supplied key information.

* LSMRNK - requests the next key entry sequenced record from a VRAM file.
* LSMW — sends a record to StorHouse.

* LSMWEK — transfers an external key record and a data record to StorHouse.
* LSMDEL — deletes the last record read from a VRAM file.

* LSMCH - changes the last record read in a VRAM file.

The following sections describe these functions.

5-30 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMR — Read

LSMR — Read

0_token

buffer

buffer_size

return_rec_len

5650

2188

Any Other Non-Zero
Value

LSMR transfers the next sequential data record from a non-VRAM StorHouse file to
the caller’s buffer.

Function Prototype Definition

extern int LSMR (struct LSM5 TOKEN *o_t oken,
char *buffer,

| ong buffer_size,

long *return_rec_len

);

Argument Description

A pointer to an open token initialized by LSMOS.

A pointer to an area where the data record is placed. The data record is treated as an
array of bytes and is 7o# null-terminated.

A long integer value indicating the size, in bytes, of the area pointed to by the buffer
parameter.

A pointer to a long integer that will be set to the length, in bytes, of the record read.

Return Codes

Indicates that end-of-file was encountered. No data record is returned.

Indicates that the buffer supplied for the record is too small. A truncated record was
returned. This is a warning only; it is possible to continue the data transfer operation.

A record was not successfully read.

Detailed Function Description

LSMR reads from StorHouse file identified in the LSMOS (Open Sequential) call that
initialized the open token. The data record is placed into the user-supplied buffer,
and the length of that record is returned in the area pointed to by the return_rec_len
parameter. The mode must be set to READ.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-31

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMR — Read

LSMR can only be used for non-VRAM files. For a VRAM file (opened with LSMOV),
the LSMRS (Read Sequential) function must be used.

Note

LSMR updates a file’s sequential record position. For more information about file
positioning, refer to Chapter 3, “Definition of the LSMxxx Functions.”

Cross-Reference to Sample Program
See Step 6 in the sample program in Chapter 6, “Sample Program.”

5-32 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMRS — Read Sequential

LSMRS — Read Sequential

0_token

buffer

buffer_size

return_rec_len

return_rec_num

5650

2188

Any Other Non-Zero
Value

LSMRS requests the next sequential record from a VRAM file.

LSMRS requires the StorHouse VRAM software component.

Function Prototype Definition

extern int LSMRS (struct LSM5 TOKEN *o_t oken,
char *buffer,
| ong buffer_size,
long *return_rec_len,
long *return_rec_num

Argument Description

A pointer to an open token initialized by LSMOV.

A pointer to an area where the data record is placed. The data record is treated as an
array of bytes and is 7o# null-terminated.

A long integer value indicating the size, in bytes, of the area pointed to by the buffer
parameter.

A pointer to a long integer that will be set to the length, in bytes, of the record read.

A pointer to a long integer that will be set to the record number of the record read.

Return Codes

End-of-file was encountered. No data record is returned.

The buffer supplied for the record is too small. A truncated record is returned. This is
a warning only; it is possible to continue the data transfer operation.

A record was not successfully read.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-33

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMRS — Read Sequential

Detailed Function Description

LSMRS reads the next sequential record from the VRAM file identified in the LSMOV
(Open VRAM) call that initialized the open token. The data record is placed into the
user-supplied buffer. The length of that record is returned in the area pointed to by
the return_rec_len parameter. The record number is returned in the area pointed to by
the return_rec_num parameter.

Notes

* LSMRS updates a file’s sequential record position. For more information about
file positioning, refer to Chapter 3, “File Positioning.”

e To perform LSMRS, the mode for LSIMOV must be set to UPDATE or READ. The
access_method must include SEQUENTIAL.

Cross-Reference to Sample Program
See Step 13 in the sample program in Chapter 6, “Sample Program.”

5-34 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMRR — Read Record

LSMRR — Read Record

0_token

buffer

buffer_size

return_rec_len

rel_rec_num

2188

2587

2588

Any Other Non-Zero
Value

LSMRR requests a specific record from a VRAM file. The record is identified by its
relative record number.

LSMRR requires the StorHouse VRAM software component.

Function Prototype Definition

extern int LSMRR (struct LSMS TOKEN *o_t oken,
char *buffer,
| ong buffer_size,
long *return_rec_len,
long rel _rec_num

Argument Description

A pointer to an open token initialized by LSMOV.

A pointer to an area where the data record is placed. The data record is treated as an
array of bytes and is 7o# null-terminated.

A long integer value indicating the size, in bytes, of the area pointed to by the buffer
parameter.

A pointer to a long integer that will be set to the length, in bytes, of the record read.

A long integer value that specifies the record number of the record to be read.

Return Codes

The buffer supplied for the record is too small. A truncated record is returned. This is
a warning only; it is possible to continue the data transfer operation.

The record number was out of range. The record could not be found. No data record
is returned.

The record with the requested record number was deleted from the file. No data
record is returned.

A record was not successfully read.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-35

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMRR — Read Record

Detailed Function Description

LSMRR reads the specific record with the relative record number supplied by the
rel_rec_num parameter. The VRAM file must have been opened with LSMOV (Open
VRAM). The record that is read is placed into the user-supplied buffer. LSMRR
returns the length of the record.

Notes

* LSMRR updates a file’s sequential record position. For more information about
file positioning, refer to Chapter 3, “File Positioning.”

* To perform LSMRR, the mode for LSMOV (Open VRAM) must be set to
UPDATE or READ. The access_method must include RECORD.

Cross-Reference to Sample Program
See Step 17 in the sample program in Chapter 6, “Sample Program.”

5-36 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMRK — Read Keyed

LSMRK — Read Keyed

LSMRK retrieves a record from a VRAM file. The record is identified by user-supplied
key information.

LSMRK requires the StorHouse VRAM and KRA software components.

Function Prototype Definition

extern int LSMRK (struct LSMS TOKEN *o_t oken,
char *buffer,
| ong buffer_size,
long *return_rec_len,
char *key_nane,
char *key_val ue,
| ong key_ | ength,
long *return_rec_num

Argument Description

o_token A pointer to an open token initialized by LSMOV.

buffer A pointer to an area where the data record is placed. The data record is treated as an
array of bytes and is 7o# null-terminated.

buffer_size A long integer value indicating the size, in bytes, of the area pointed to by the buffer
parameter.

return_rec_len A pointer to a long integer that will be set to the length, in bytes, of the record to be
read.

key_name A character string containing the name of the key used to locate the record. The
maximum length for this string is 56 (defined value LIML_KEYNAME). An example
of a key_name is LASTNAME.

key_value A pointer to an area containing the value of the key used for the record search. This
area is an array of binary-valued bytes. It is 707 a null-terminated string. An example

of a key_value is Kelly.

key_length A long integer that provides the length of the value in the area pointed to by the
key_value parameter. The maximum length is 254 bytes (defined value LSIML_KEY).

return_rec_num A pointer to a long integer that will be set to the record number of the record read.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-37

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMRK — Read Keyed

2188

2587

2588

Any Other Non-Zero
Value

Return Codes

The buffer supplied for the record is too small. A truncated record is returned. This is
a warning only; it is possible to continue the data transfer operation.

The record was not found. There are no records with the supplied key in the file. No
data record is returned.

The requested record was deleted from the file. No data record is returned.

A record was not successfully read.

Detailed Function Description

LSMRK reads a single record from the VRAM file identified in the LSMOV (Open
VRAM) call that initialized the open token. The record is identified by the key
parameters key_name and key_value. The record that is read is placed into the user-
supplied buffer. LSMRK also returns the length of the record.

Notes

* LSMRK updates a file’s sequential and key record positions. For more
information about file positioning, refer to Chapter 3, “File Positioning.”

* To perform this function, the mode for LSMOV (Open VRAM) must be set to
UPDATE or READ. The access_method must include KEYED.

Cross-Reference to Sample Program
See Steps 16, 18, 20, and 21 in the sample program in Chapter 6, “Sample Program.”

5-38

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMRNK — Read Next Key

LSMRNK — Read Next Key

0_token

buffer

buffer_size

return_rec_len

return_rec_num

5650

2188

Any Other Non-Zero
Value

LSMRNK requests the next key entry sequenced record from a VRAM file. LSMRNK
requires the StorHouse VRAM and KRA software components.

Function Prototype Definition

extern int LSMRNK (struct LSM5 TOKEN *o_t oken,
char *buffer,
| ong buffer_size,
long *return_rec_len,
long *return_rec_num

Argument Description

A pointer to an open token initialized by LSMOV.

A pointer to an area where the data record is placed. The data record is treated as an
array of bytes and is 7o# null-terminated.

A long integer value indicating the size, in bytes, of the area pointed to by the buffer
parameter.

A pointer to a long integer that will be set to the length, in bytes, of the record read.

A pointer to a long integer that will be set to the record number of the record read.

Return Codes

End-of-file was encountered; no data record is returned.

The buffer supplied for the record is too small. A truncated record is returned. This is
a warning only; it is possible to continue the data transfer operation.

A record was not successfully read.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-39

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMRNK — Read Next Key

Detailed Function Description

LSMRNK retrieves the next key entry sequenced record from the VRAM file that was
previously opened with LSMOV (Open VRAM). The record is placed in the user-
supplied buffer. This function returns the length and the record number of the
record.

Notes

* LSMRNK updates a file’s sequential and key record positions. For more
information about file positioning, refer to Chapter 3, “File Positioning.”

* To perform LSMRNK, the mode specified to LIMOV (Open VRAM) must be set
to UPDATE or READ. The access_method must include KEYED.

Cross-Reference to Sample Program
See Step 18 in the sample program in Chapter 6, “Sample Program.”

5-40 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMW — Write

LSMW — Write

0_token

buffer

record_length

return_rec_num

2210

Any Other Non-Zero
Value

LSMW transfers the next sequential data record from the caller’s buffer to a
StorHouse file.

Function Prototype Definition

extern int LSMV (struct LSM5 TOKEN *o_t oken,
char *buffer,
| ong record_| ength,
long *return_rec_num

Argument Description

A pointer to an open token initialized by LSMOS, LSMCO, or LSMOV.

A pointer to an area containing the record to be written. The data record is
considered as an array of bytes; null terminators are ignored.

A long integer value that specifies the number of bytes of data to be written.

A pointer to a long integer that is set to the number of the record that is written. This
value is set by StorHouse software.

Return Codes

Is a warning that the record is too short. For a KEYED file, this warning is returned if
the record is too short to contain all of its key fields.

Indicates that the record was not written to StorHouse.

Detailed Function Description

LSMW writes a record to a file in StorHouse that is identified by the LSMOS (Open
Sequential), LSMCO (Create Open), or LSMOV (Open VRAM) call that initialized
the open token. The record is copied from the user-supplied buffer to an internal
buffer maintained by the Callable Interface. When the internal buffer fills, it is
transmitted to StorHouse.

The record that is written is always assigned the next sequential record number for

the file.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-41

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMW — Write

Notes

LSMW moves data from the user record area (buffer) to internal buffers controlled
by the Callable Interface. LSMW may return to the caller without actually
transferring all user data to StorHouse. Therefore, you can guarantee that the
data is stored in StorHouse only after a successful LSMCLO (Close) or LSMCP
(Checkpoint).

Any insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file is lost.

To perform this function, you must either call LSMOV (Open VRAM) with mode
set to APPEND or call LSMCO (Create Open). The access_method parameter is

ignored.

For a sequential file opened with LSMOS (Open Sequential), the value of the
mode parameter must be set to WRITE.

LSMW and LSMWK may be used in the same session.

Cross-Reference to Sample Program
See Steps 3 and 10 in the sample program in Chapter 6, “Sample Program.”

5-42

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMWK — Write Key

LSMWK — Write Key

LSMWK transfers an external key record and a data record to StorHouse. LIMWK
requires the StorHouse VRAM and KRA software components.

Function Prototype Definition

extern int LSMNK (struct LSMS TOKEN *o_t oken,
char *buffer,
| ong record_| ength,
char *key,
| ong key_ | ength,
long *return_rec_num

Argument Description

o_token A pointer to an open token initialized by LSMCO or LSMOV.

buffer A pointer to an area containing the data record to be written to StorHouse. The data
record is considered an array of bytes; null terminators are ignored.

record_length A long integer value that specifies the number of bytes of data to be written.

key A pointer to an area containing the external key. This area is not a null-terminated
string; it is an array of binary-valued bytes.

key_length A long integer that provides the length, in bytes, of the external key in the area
pointed to by key.

return_rec_num A pointer to a long integer that is set by StorHouse to the record number of the last
data record written to StorHouse.

Return Codes

2210 A warning indicating that the external key record is too short to contain all of its key

fields.

Any Other Non-Zero The record was not written to StorHouse.
Value

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-43

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMWK — Write Key

Detailed Function Description

LSMWK writes an external key record and a data record to StorHouse file that is
identified by the o_token returned by LSMOV or LSMCO. The file must have been
created either with the CREATE FILE command using the /EXTERNAL modifier, or
with LSMCO using a model file with external keys. Refer to Appendix B, “CREATE
FILE Command,” for information about the CREATE FILE command.

The record is copied from the user-supplied buffer to an internal buffer maintained
by the Callable Interface.

The data record becomes the next sequential record in the file.

Notes

LSMWK moves data from the user record area (buffer) to internal buffers
controlled by the Callable Interface. LSMWK may return to the caller without
actually transferring all user data to StorHouse. Therefore, data can only be
guaranteed to be stored in StorHouse after a successful LSMCLO or LSMCP.

To perform LSMWK, the mode parameter in LSMOV must be set to APPEND.
The access_method parameter is ignored.

The Callable Interface considers an LSIMWK with a specified key_length of 0 the
same as an LSMW. LSMW and LSMWK may be used in the same session.

To write a data record and no external key record, specify a value of 0 for the
key_length field when you issue LSMWK. To write one external key record and
five associated data records, issue LSMWK to write the external key record and
the first data record. Then issue four LSMWKs with a specified key_length of 0 to
write the remaining four data records.

The actual external key record cannot be accessed by an application. Key
information is extracted from the record and stored in a key data base on
StorHouse. Therefore, users cannot change an external key record once it is
written or read the external key file to determine its keys.

By definition, external keys are external to, or not part of, the data record.
Therefore, data records associated with a given external key should contain
control information that allows an application to determine when it has
processed the last data record belonging to that external key.

Any insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file since the last close or checkpoint is
lost.

5-44

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary
Definition of the LSMxxx Functions 5
LSMWK — Write Key

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-45

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMDEL - Delete Record

LSMDEL - Delete Record

LSMDEL deletes the last record read from a VRAM file. LSMDEL requires the
StorHouse VRAM software component.

Function Prototype Definition

extern int LSMDEL (struct LSMS TOKEN *o_token);

Argument Description

o_token A pointer to an open token initialized by LSMOV.

Return Codes

2612 An attempt was made to delete a record without reading the record first.

Any Other Non-Zero The record was not deleted.
Value

Detailed Function Description

LSMDEL logically removes the last record read from the VRAM file that was
previously opened with LSMOV (Open VRAM). The file is identified by the open
token initialized by the LSMOV call.

Note

To perform this function, the mode for LIMOV (Open VRAM) must be set to
UPDATE. For a more complete description of mode and the associated
access_method parameter, refer to the LSMOV function description on page 5-20.

Cross-Reference to Sample Program
See Step 20 in the sample program in Chapter 6, “Sample Program.”

5-46 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMCH - Change Record

LSMCH - Change Record

0_token

buffer

record_length

2612

Any Other Non-Zero

Value

LSMCH logically changes the last record read from a VRAM file by transmitting a
replacement record to StorHouse.

LSMCH requires StorHouse VRAM software component.

Function Prototype Definition

extern int LSMCH (struct LSMS TOKEN *o_t oken,
char *buffer,
| ong record_ | ength

);

Argument Description

A pointer to an open token initialized by LSMOV.

A pointer to an area containing the record to be written. The data record is
considered as an array of bytes; null terminators are ignored.

A long integer value that specifies the number of bytes of data to be written.

Return Codes

An attempt was made to change a record without reading the record first.

The record was not changed.

Detailed Function Description

LSMCH logically replaces the last record read from the VRAM file that was previously
opened with LSMOV (Open VRAM). The file is identified by the open token
initialized by the LSMOV call.

Note

To perform this function, the mode for LIMOV (Open VRAM) must be set to
UPDATE. For a more complete description of mode and the associated
access_method parameter, refer to the LSMOV function description.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-47

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMCH - Change Record

Cross-Reference to Sample Program
See Step 19 in the sample program in Chapter 6, “Sample Program.”

5-48 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

StorHouse Command Submission

StorHouse Command Submission

There is one StorHouse command submission function: LSMSCI. LSMSCI allows an
application to:

* Send selected StorHouse Command Language commands to StorHouse and to
retrieve response text from those commands.

* Direct administrative operations from an application rather than from a user at a
terminal through the Interactive Interface.

LSMSCI is described in the following section.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-49

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMSCI — StorHouse Command Interface

LSMSCI — StorHouse Command Interface

c_token

cr_buf

LSMSCI sends a text string to StorHouse to be processed as a StorHouse Command
Language command. For descriptions of the available commands, refer to the

Command Language Reference Manual.

Function Prototype Definition

extern int LSMSCl (struct LSMS TOKEN *c_token,
char *CR buf,
char *resp_buf,
| ong resp_bufsi ze,
struct LSM5 SCIR *resp_info

Data Structures

struct LSM5_SCI R
{

long |ist_size;
| ong | engt h;
| ong st at us;
| ong severity;
| ong cnd_ended;
| ong pronpt;
| ong suppress;

Argument Description

A pointer to a session identifier token (connect token).

A pointer to a null-terminated character string that is sent to StorHouse. The

maximum length of this character string is 255.

This string may be either a StorHouse command or a reply to a previous prompt

from StorHouse:

e The first LSMSCI call or any LSMSCI call following a call that returned a “true”
cmd_ended flag sends this character string to StorHouse as a command.

* An LSMSCI call following a call that returned a “true” prompt flag sends this

character string to StorHouse as a reply to the prompt.

5-50

Generic Callable Interface Programmer's Guide

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5

resp_buf

resp_bufsize

resp_info

Any Non-Zero Value

Zero

LSMSCI — StorHouse Command Interface

* Inany other case, this string is not used, and a null pointer may be specified.

A pointer to an area where the response text from StorHouse is placed. The response
is a character string and is null-terminated.

A long integer value indicating the size, in bytes, of the area pointed to by resp_buf.
This value should be no smaller than 132 (defined value LSML_MAXTEXT). If the
response buffer is too small to contain the response text, the text is truncated to fit in
the supplied buffer, and the return status indicates an error.

The resp_bufsize may not equal zero. A zero value causes a 3022 return code,
indicating that a zero buffer size was passed to a StorHouse read function.

A pointer to a structure containing a list of long integers that LSMSCI uses to return
information about the StorHouse response. The members in the structure are:

e list_size — the number of other members of the resp_info structure. The caller
must set this entry to 6.

* length — the length of the response text, not including the null terminator.

* status — the status code associated with execution of the command. This code is
returned only when command end is indicated. Refer to the cmd_ended member
description below. Note that this code refers to the StorHouse status, while the
value returned by LSMSCI indicates the status of the function request processing.

* severity — the severity of the error indicated by the status code (above). This value
is between 0 and 20 (see “Return Codes” below).

* cmd_ended — a flag indicating (if 1) that the command has completed execution

(ended).

* prompt — a flag indicating (if 1) that the response text is actually a prompt from
StorHouse.

* suppress — a flag indicating (if 1) that StorHouse suggests suppression of print or
display of any information supplied in response to the prompt. This flag is valid
only if the prompt flag is set. This flag usually indicates that StorHouse is
prompting for security information, such as a password.

Return Codes

The command text was not processed by StorHouse. The resp_info structure
members should not be used.

The command was successfully passed to StorHouse, and a response was received.
The status associated with the StorHouse command execution is indicated by the
status member of the resp_info structure. Severity can be used to examine the general

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-51

5

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMSCI — StorHouse Command Interface

condition associated with command execution without testing for specific status
codes.

The severity codes are:

e 0 — Normal, no errors detected.

* 4 — Warning, results may not be as expected.

* 8 — Error, results are probably incorrect, and corrective action may be required.
e 12 — Severe errors occurred, corrective action is required.

* 16 — Request could not be processed.

* 20— Hardware or system software error prevented command processing. (Partial
execution may have occurred, or StorHouse may have processed the command,
but responses may have been lost.)

Detailed Function Description

LSMSCI allows direct user access to the StorHouse command processing facilities by
sending user-provided text strings to StorHouse. The first parameter to LSMSCI must
point to a connect token for an established session (refer to the function description
for LSMCON).

The caller supplies a pointer to a buffer containing the command text, a pointer to a
buffer where a response message can be copied, the length of the response buffer, and
a pointer to a structure where response status information can be returned. The caller
must also set the number of members in the response status structure.

Text messages generated by StorHouse in response to the submitted command are
returned to the user-supplied response buffer. A cmd_ended flag indicates when all
response messages have been returned. LSMSCI must be called repeatedly until
cmd_ended is set.

LSMSCI is only intended for accessing informational commands such as SHOW FILE.
GET and PUT commands do not function correctly if issued using this function.
Data transfers must be accomplished through the open and read/write functions. In
addition, the SET USER command cannot be used to change session defaults. For
more information about StorHouse Command Language commands that can be
accessed with LSMSCI, consult your StorHouse system administrator or your FileTek
customer support representative.

Some commands or command options cause StorHouse to request additional
information from the host by prompting for a text string. A reply to the prompt is
required to complete execution of any such command. The LSMSCI function allows
the user to provide a response string to a StorHouse prompt. Whenever StorHouse

5-52

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMSCI — StorHouse Command Interface

prompts for additional information, a prompt flag is set in the status returned by
LSMSCI, and the returned text is the StorHouse prompt string. The user must place
the reply to this prompt in the command text buffer and call LSMSCI to send the
contents of that buffer to StorHouse in reply to the prompt.

Notes

* LSMSCI must be called repeatedly until the cmd_ended flag is set. Failure to do so
makes the session link unusable.

* Whenever the prompt flag is set, the next call to LSMSCI supplies a response. If
the string pointed to by cr_buf is empty (contains only a null terminator), then a
null response is sent to StorHouse. In this case, the cr_buf argument may no#
contain a null pointer.

Cross-Reference to Sample Program
See Step 8 in the sample program in Chapter 6, “Sample Program.”

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-53

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions

General Usage Functions

General Usage Functions

The general usage functions are:

* LSMCK - waits for and tests the completion status of any asynchronous
operation.

* LSMASY- sets the supplied token so that subsequent function requests are
processed in asynchronous mode.

* LSMMSG- retrieves indicative messages associated with a previous LSMxxx
function.

* LSMAB - attempts to terminate the last asynchronous request for the supplied
token or attempts to terminate a StorHouse command passed to StorHouse with

LSMSCI.

These functions are described in the following sections.

5-54 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMCK — Check

LSMCK — Check

LSMCK waits for and tests the completion status of any asynchronous operation.

Function Prototype Definition

extern int LSMK (struct LSM5_ TOKEN *any_token);

Argument Description

any_token A pointer to a token structure. The token structure may be either a connect token
(session identifier) initialized by LSMCON (Connect) or an open token (transfer
operation identifier) initialized by LSMOS (Open Sequential), LSMCO (Create
Open), or LSMOV (Open VRAM).

Return Codes

LSMCK returns the final status from the previously issued asynchronous LSMxxx
function call.

2974 The prior LSMxxx function was not issued in asynchronous mode.

Detailed Function Description

LSMCK ensures that the previous asynchronous function has completed and returns
the completion status from that function. If a c_token is supplied, the check applies to
the last function issued on a session link. If an o_token is supplied, the check applies
to the last data transfer function associated with that o_token.

Notes

* Asexplained in the beginning of this chapter, this implementation of the
Callable Interface does not provide truly asynchronous capability.

* A function call is asynchronous only if the LSIMASY function has been previously
called pointing to the same token.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-55

FileTek Confidential and Proprietary
5 Definition of the LSMxxx Functions
LSMCK — Check

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

5-56 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMASY — Set Asynchronous Mode

LSMASY — Set Asynchronous Mode

any_token

pl_value

set_flag

Zero

LSMASY sets the supplied token so that subsequent function requests are processed in
asynchronous mode.

Function Prototype Definition

extern int LSMASY (struct LSMS TCKEN *any_t oken,
| ong pl_val ue,
int set_flag

)

Argument Description

A pointer to a token structure. The token structure is either a connect token (session
identifier) returned by LSMCON (Connect) or an open token (transfer operation
identifier) initialized by LSMOS (Open Sequential), LSMCO (Create Open), or
LSMOV (Open VRAM).

A long integer value that provides system-dependent information required for
synchronization of operation completion. The use of this value is system dependent
and is not applicable to VMS systems.

An integer that indicates whether the token is set for asynchronous or synchronous
operation. If zero (defined value LSMF_ASYNC), the token is set for asynchronous
operation. If non-zero (defined value LSMF_SYNC), the token is reset to the default
(synchronous) state.

Return Codes

The return code from this function is always zero.

Detailed Function Description

LSMASY allows the synchronous/asynchronous state of a token to be changed.
LSMCON (Connect), LSMOS (Open Sequential), LSMCO (Create Open), and
LSMOV (Open VRAM) initialize a token to the synchronous state, so that all LSMxxx
functions issued against that token are synchronous (that is, they return only after the
requested operation has been performed). If the application program must issue
asynchronous requests, the token state must be set to asynchronous by calling

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-57

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMASY - Set Asynchronous Mode

LSMASY with a set_flag value of LSMF_ASYNC. The token can be restored to the
default state by calling LSMASY with set_flag set to LSMF_SYNC.

Application programs that use asynchronous operations are generally portable only if
the synchronization code is isolated in modules that are replaced when the program is
moved to another computer/operating system.

LSMASY and LSMCK may be used in this implementation, but keep in mind that any
LSMxxx function called with the token set to asynchronous mode still returns control
only after the requested operation has completed. Refer to the beginning of this
chapter for more information.

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

5-58 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMMSG — Message Retrieve

LSMMSG — Message Retrieve

LSMMSG retrieves indicative messages associated with a previous LSMxxx function.

Function Prototype Definition

extern int LSMVBG (struct LSMS TOKEN *any_t oken,
char *nmessage_buffer,
| ong nessage_ buffer_size,
| ong *returned _nessage | en

Argument Description

any_token A pointer to a token structure. The token structure is either a connect token (session
identifier) returned by LSMCON (Connect) or an open token (transfer operation
identifier) initialized by LSMOS (Open Sequential), LSMCO (Create Open), or
LSMOV (Open VRAM).

message_buffer A pointer to the area where the error message text will be moved. The message is
returned as a null-terminated string.

message_buffer_ A long integer value that provides the size of the message_buffer area.
size
returned_message_ A pointer to a long-integer that is set to the length of the error message retrieved.
len

Return Codes

3065 No more messages are available.

Detailed Function Description

LSMMSG retrieves indicative text messages created during execution of the prior
LSMxxx function.

* Ifac_token is supplied, LSMMSG returns messages from the last session-related
function.

* Ifano_token is supplied, LSMMSG returns error messages from the last file-
related function call.

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-59

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMMSG — Message Retrieve

LSMMSG returns one message in the user-supplied buffer. This function also returns
the length of the message.

Notes

The maximum buffer length required to retrieve an error message is 132 bytes
(defined value LSML_MAXTEXT). If the user-supplied buffer is shorter than 132
bytes, messages longer than the length of the supplied buffer are truncated when
returned. Messages are null-terminated after the last non-blank character.

If message_flag was set for LSMCON (Connect), LSMOS (Open Sequential),
LSMCO (Create Open), or LSMOV (Open VRAM), then LSMMSG must be
called after an LSMDIS (Disconnect) or LSMCLO (Close) call or after a failing
LSMCON. LSMMSG must be called repeatedly until a return code of 3065,
indicating no more messages, is received. Otherwise, dynamically allocated
memory used by the Callable Interface functions may not be released.

The correct token for an LSMMSG call following any type of open is the c_token.

Cross-Reference to Sample Program

See Steps 4, 7, 11, 14, 22, 23, and EMSGS Routine in the sample program in
Chapter 6, “Sample Program.”

5-60

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMAB — Abort

LSMAB — Abort

any_token

2989

2990

LSMAB attempts to terminate the last asynchronous function request for the supplied
token or attempts to terminate a StorHouse command passed to StorHouse with
LSMSCI.

Function Prototype Definition

extern int LSMAB (struct LSM5 TOKEN *any_t oken);

Argument Description

A pointer to a token structure. The token structure is either a connect token (session
identifier) returned by LSMCON (Connect) or an open token (transfer operation
identifier) initialized by LSMOS (Open Sequential), LSMCO (Create Open), or
LSMOV (Open VRAM).

Return Codes

No asynchronous function was outstanding and no LSMSCI sequence was active.
The function to be ABORTed was LSMCON (Connect). This is not allowed.

Otherwise, the return code from LSMAB is always zero. LSMCK (Check) must be
issued to retrieve the return code associated with ABORT.

Detailed Function Description

LSMAB unconditionally attempts to terminate the last function issued for a session or
a data transfer function.

» Ifac_token is supplied, the ABORT applies to the last function started on a
session link.

* Ifan o_token is supplied, then the ABORT applies to the last data transfer
function associated with that open token.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 5-61

5

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions

LSMAB - Abort

Notes

LSMAB can be issued for asynchronous functions or during a sequence of
LSMSCI calls, prior to receiving the command end indication. For synchronous
functions, the operation is complete when control returns to the user program;
hence, LSMAB has no effect.

LSMAB can only request termination of function processing. The function may
have already completed or may complete before the ABORT request is forwarded.
The return code associated with the original function must be interrogated to
determine the actual outcome of the ABORT attempt.

ABORT is intended as a mechanism to terminate a pending asynchronous
operation for a data transfer or session, when that transfer or session is to be
subsequently terminated. For some operations, such as sequential read or write
functions, an ABORT causes the entire data transfer to fail.

When LSMARB is issued during an LSMSCI sequence, termination of processing
of the command by StorHouse is requested. However, the user must continue
calling LSMSCI until command end is indicated.

Cross-Reference to Sample Program

There is no cross-reference to the sample program contained in Chapter 6, “Sample
Program.”

5-62

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Definition of the LSMxxx Functions 5
LSMAB — Abort

FileTek, Inc. Generic Callable Interface Programmer’s Guide 5-63

FileTek Confidential and Proprietary

5 Definition of the LSMxxx Functions
LSMAB — Abort

5-64 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Chapter

6

Sample Program

The following sample program in C illustrates the use of the LSMxxx subroutine to
invoke the StorHouse host Callable Interface. This program:

Establishes a StorHouse session.

Creates, opens, and closes sequential and VRAM files (with both internal and
external keys).

Accesses all files in all available modes (READ, WRITE, UPDATE, APPEND) and
performs all file operations at least once.

Performs synchronous and asynchronous functions.
Checks for errors and function completion.
Retrieves informational and error messages.

Disconnects from StorHouse.

If an error occurs, this program closes files and stops. An error message is displayed.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide 6-1

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

LSMxxx Sample Program

/***

This programillustrates using the LSMkxx subroutine to invoke the
St or House host Cal l abl e Interface.

If an error occurs, this programcloses files and stops. An error
nessage i s di splayed.

The program perfornms the foll owi ng functions:

Step 1 - connects to StorHouse (LSMCON).

Step 2 - opens a sequential (non-VRAM) file on StorHouse for witing
(LSMDS) .

Step 3 - wites 100 80-byte records to the sequential file (LSMN.

Step 4 - closes the sequential file (LSMCLO and retrieves any nessages
(LSMVBG) .

Step 5 - opens the sequential (non-VRAM file for reading (LSMRS).

Step 6 - reads 100 records fromthe sequential file (LSMRS).

nmessages (LSMVSG) .

Step 8 - creates a KEYED VRAM file on StorHouse (LSVSCl).

Step 9 - opens the KEYED VRAM file for witing (LSMWV).

Step 10 - wites 100 80-byte records to the KEYED VRAM fil e (LSMN

Step 11 - closes the KEYED VRAM file (LSMCLO) and retrieves any nessages
(LSMVBG) .

Step 12 - opens the KEYED VRAM file with a node of READ and a nethod of
SEQUENTI AL (LSMOV) .

Step 13 - reads 100 records in the VRAMfil e (LSMRS).

Step 14 - closes the VRAMfile (LSMCLO and retrieves any
nessages (LSMVEG) .

Step 15 - opens the VRAMfile with a node of UPDATE and a net hod
of ALL (LSMV).

Step 16 - reads the VRAMfile in reverse key order (LSVRK).

L R . e T e TN I e R R R e e T e B e I R R T R R R T N N U R T R T I A R

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Step 7 - closes the sequential file (LSMCLO and retrieves any
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6-2 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

Step 17 - reads the VRAMfile in reverse record nunmber order (LSMRK).

Step 18 - reads a specific key in the file (LSMRK); then reads the next
key (LSMRNK) .

Step 19 - reads a specific key in the file (LSMRK); then changes the
key (LSMCH).

Step 20 - reads a specific key in the file (LSMRK); then deletes the
record with the specified key (LSMDEL).

Step 21 - reads a specific keyed record and checks that the record has
been del et ed.

Step 22 - closes the KEYED VRAM file (LSMCLO) and retrieves any
nessages (LSMVEGQ) .

Step 23 - disconnects from StorHouse (LSMDI'S) and retrieves any error
nmessages (LSMVEG) .

¥ 0% % 3k 3k X 3k X o 3k X X % X X X X X X F F

LR I I O

e T T I T N T R R T R R e T R

#i ncl ude <stdi 0. h>
#i ncl ude "I sndefs. h"

/*****'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k***
* *
* GLOBAL DECLARATI ONS *
* *
***/

/*

* Tokens returned by LSMCON, LSMOS, and LSMOV.

*/

static struct LSM5 TOKEN ct oken; /* Connect token for session */
static struct LSMS_TOKEN ot oken; /* Open token for data transfer */
/*

* File-is-opened switch

*/

static long fil e_open; /* File-is-opened switch */
/*

* Structures used by LSMOS, LSMsClI and LSMOV.

*/

static struct LSMS FPWfil epassword; /* File passwords */
static struct LSMS_FPW gr oupassword; /* Group passwords */
static struct LSM5 FLOC | ocati on; /* Volume set and file set */
static struct LSM5 ATTR attr; /* File attributes (LSMOS) */
static struct LSMS OPTS options; /* File transfer options */

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-3

Sample Program

FileTek Confidential and Proprietary

LSMxxx Sample Program

static struct LSMS SCIR i nfo; /* StorHouse cnd interface response */

static struct LSM VATTR vattr; /* File attributes (LSMV) */

/*

* ROUTI NES

*/

static void echeck(); /* Error checker */

static void ensgs(); /* Message retriever */

/*

* MAI N PROGRAM

*/

mai n()
long i, j; /* Scratch registers */
| ong negfl ag; /* Message flag */
long return_rec_num /* Record nunber witten */
long return_rec_|en; /* Length of record read */
| ong abort flag; /* Flag for abort option */
| ong return_code; /* Conpl etion status */
char cmdbuf[60]; /* Command buffer for LSMSCI */
char respbuf[133]; /* Response buffer for LSMSC */
char buffer[80]; /* Data buffer area */
char cnprbuf[80]; /* Data buffer area */
char group[LSM._GROUPNAME + 1]; /* Group nane */
char filename[LSML_FNAME + 1]; /* File name */
char account[LSM._AIC + 1]; /* Account nane */
char password[LSM._SOPW+ 1]; /* Account, or signon, password */

/*

* |nitialize some variabl es.

*/

file open = 0; /* Set to file NOT opened */

abort _flag = LSM-_NORMAL; /* Performa nornmal close */

nmegfl ag = LSMF_MSGHOLD, /* Al session nsgs returned */

6-4 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

/***

* *
* Step 1 *
* *
* Connect to StorHouse (LSMCON). *
* *
***/
strcpy(account, "SYSTEM); /* StorHouse account to use */
strcpy(password, "SYSTEM); /* StorHouse password to use */
return_code = LSMCON(&ctoken, nsgflag, account, password, "", "");

enmsgs(&ctoken); /* Retrieve nessages if any */
echeck(return_code, "LSMCON'); /* Check for errors */
/*

* Group and file passwords are NUL, indicating no passwords

* VSET, FSET, and GROUP NAME are NUL, indicating use of the

* signon account defaults.

*

*/

strcpy(fil epassword.read _password, ""); /* Passwor d=none */
strcpy(fil epassword.wite password, ""); /* Passwor d=none */
strcpy(fil epassword. del ete_password, ""); [/* Password=none */
strcpy(groupassword.read_password, ""); /* Passwor d=none */
strcpy(groupassword.wite_password, ""); /* Passwor d=none */
strcpy(groupassword. del ete_password, ""); [/* Password=none */
strcpy(location.voluneset _nane, ""); /* Use account default VSET */
strcpy(location.fileset_nane, ""); /* Use account default FSET */
strcpy(group, ""); /* Use account default GROUP*/
/***
* *
* Step 2 *
* *
* Open a sequential (non-VRAM file for witing (LSMOS). *
* *
***/
strcpy(filenane, "sequential file"); /* Setup file nane */
attr.list_size = 7; /* Number of desired attributes */
attr.file_size = 50000; /* Maximumfile size for WRITE */
attr.max_record_| en = 80; /* Maxi mum | ength for any record*/
attr.transport _flag = 1; /* File in transportable format */
attr.data xlate flag = 1; /* Data stored in ASCII */
attr.fixed record fl = 1; /* Records are fixed |l ength */

FileTek, Inc. Generic Callable Interface Programmer’s Guide

6-5

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

attr.cc_ansi _flag = -1; /* No carriage control character*/
attr.cc_mach _flag = -1; /* No carriage control character*/
options.list_size = 8§; /* Nunber of desired options */
options.lock = O; /* Do not lock file at close */
options.wait = O; /* Do not wait for locked file */
options.atf = 0; /* Use system default */
options.edc = O; /* Use system default */
options.limt = 0; /* Use system default */
options.new = -1; /* A previous version may exist */
options. unlock = 0; /* Do not release explicit lock */
options.vtf = 2; /[* VTF = NEXT */

return_code = LSMOS(&ctoken, nsgflag, &otoken, "WRI TE",
filenane, 0, &filepassword, group, &groupassword, & ocation,
&attr, &options);

emsgs(&ctoken); /* Retrieve messages if any */
echeck(return_code, "LSMOS"); /* Check for error */
file_open = 1; /* Set to file is opened */

/***

* *
* Step 3 *
* Wite 100 80-byte records to the file (LSMA. *
* *
* /

khkhkkhhkhkhhhhhhdhhhhhhhhhhhhhhhdhhddhdhdhdhdhddhddhdhhdhhdhhddhddhddhrddhdddrrhdrx*x

for(i =0; i < 100; i++)
{
sprintf(buffer, "This is record nunber 9%8.3d ", i);

for(j =28, j < 80; j++)
buffer[j] =" "; /* blank fill record */

return_code = LSMN &ot oken, buffer, sizeof(buffer), &eturn_rec_num;

echeck(return_code, "LSMW);
}

/***

Step 4

Retri eve any nessages (LSMVBG).

TS %k ok ok 3k * *

*
*
*
* Cl ose the sequential file (LSMCLO).
*
*
*

LR R R R R R R R R R R R R R R R R I R I R R S R I O

6-6 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

return_code = LSMCLO(&ot oken, abort _flag);

enmsgs(&ot oken); /* Retrieve nessages if any */
echeck(return_code, "LSMCLO'); /* Check for error */
file_open = 0; /* Set to file NOT opened */
/***
* *
* Step 5 *
* *
* Open a sequential file for reading (LSMOS). *
* *
***/
attr.list_size = 0; /* Number of desired attributes */
options.list_size = 2; /* Number of desired options */
options.lock = O; /* Do not lock file at close */
options.wait = 1; /* Wait for |ocked file */

return_code = LSMOS(&ctoken, nsgflag, &otoken, "READ',
filenane, 0, &filepassword, group, &groupassword, &l ocation
&attr, &options);

enmsgs(&ctoken); /* Retrieve nessages if any */
echeck(return_code, "LSMOS"); /* Check for error */
file_open = 1; /* Set to file is opened */

/***

* *
* Step 6 *
* *
* Read the sequential file until return code 5650 (EOF) *
* is received (LSMR). The program should be able to *
* read 100 records. *
* *
***/
for(i =0; i < 100; i++)
{

sprintf(cnprbuf, "This is record nunber 98.3d ", i);

for(j =28, j < 80; j++)

cnprbuf[j] =" "; /* blank fill record */

return_code = LSMR(&otoken, buffer, sizeof(buffer), &eturn_rec_len);

echeck(return_code, "LSMR');
FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-7

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

if(strncnp(buffer, cnprbuf, sizeof(buffer)) !'=0)
printf("record data m smatch for record %d.\n", i);

}

return_code = LSMR(&otoken, buffer, sizeof(buffer), & eturn_rec_len);

if(return_code != 5650)
printf("Expected EOF did not occur.\n");

/***

Step 7

* *
* *
* *
* Cl ose the sequential file (LSMCLO). *
* Retrieve any nessages (LSMVEG) . *
* /

KRR R S R R e O S R R R S kR R Ik ok R R Rk kO S b R

return_code = LSMCLO(&ot oken, abort _flag);

enmsgs(&ot oken); /* Retrieve nessages if any */

echeck(return_code, "LSMCLO'); /* Check for error */

file_open = 0; /* Set to file NOT opened */

/***
* *
* Step 8 *
* *
* Create a VRAMfil e using LSMsSCI. *
* *
*********-k***/

info.list_size = 6; /* Nunber of desired options */
strcpy(respbuf, "");
strcpy(cndbuf,

"CREATE FI LE VRAMKEYED / SI ZE=50K / TYPE=KEYED / REPLACE");

printf("%\n", cndbuf);
return_code = LSMSCl (&ct oken, cndbuf, respbuf, sizeof (respbuf), & nfo);
| *

:/ Print out all messages from StorHouse.
while (return_code == 0)

printf("%\n", respbuf);

6-8 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

strcpy (respbuf, "");

if (info.cnd_ended !'= 0)

{
return_code = info.status;
br eak;

}

/*

* Respond to the StorHouse pronpt with key definitions
* for the VRAMfile.
*/
if (info.pronpt == 1)
{
strepy(cndbuf, "KEY KEY1 1:4");

printf("%\n", cndbuf);

return_code LSMSCI (&ct oken, cndbuf , respbuf, si zeof (respbuf), & nfo);

br eak;

}

el se
return_code

LSMSCI (&ct oken, "", respbuf, sizeof (respbuf), & nfo);

}

/*
* Print out all messages from StorHouse.
*/

while (return_code == 0)

{
printf("%\n", respbuf);

strcpy (respbuf, "");

if (info.cnd_ended !'= 0)
{

return_code = info.status;
br eak;

}
/*
Respond to the StorHouse pronpt with the EXIT conmmand to exit

key definition node.
*/

if (info.prompt == 1)
{

strcpy(cndbuf, "EXIT");

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-9

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

printf("%\n", cndbuf);

LSMSCI (&ct oken, cndbuf, respbuf, sizeof (respbuf), & nfo);

return_code

br eak;
}
el se
return_code = LSMSClI (&ctoken, "", respbuf, sizeof(respbuf), & nfo);
}
/*
* Print out all nessages from StorHouse.
*/

while (return_code == 0)

printf("%\n", respbuf);

strcpy (respbuf, "");
/*
* Look for end of command, then break out.
*/
if (info.cnd_ended !'= 0)
{
return_code = info.status;
br eak;
}
el se
return_code = LSMSCl (&ctoken, "", respbuf, sizeof(respbuf), & nfo);
}

echeck(return_code, "LSMSCI");

/***

Step 9

Open a VRAM file for witing (LSMWV).

Thi s sanmpl e program uses no attribute fields.
They are om tted.

*
*
*
*
*
*
*
*
*
*
*

T R T T T

EIE R I R R I R I R R I R I I R I R R R R R I R R I R I R R O R O R S O

6-10 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

vattr.list_size = 1; /*Nunber of desired attributes /*

return_code = LSMOV(&ctoken, nsgflg, &otoken, "APPEND', "KEY",

"VRAMKEYED', 0, &filepassword, "", &groupassword, 0, &attr);
emsgs(&ctoken); /* Retrieve nmessages if any */
echeck(return_code, "LSMWVW"); /* Check for error */
file_open=1; /* Set to file is opened */

/***

* *
* Step 10 *
* *
* Wite 100 80-byte records to the file *
* usi ng keys 1000 t hrough 1099 (LSMW . *
* *
***/
for(i = 1000; i < 1100; i++)

{

sprintf(buffer, "9%l.4d The key for this record is %.4d", i, i);

for(j =36, j <80; j++)
buffer[j] ="' "; /* blank fill record */

return_code = LSMN &ot oken, buffer, sizeof(buffer), & eturn_rec_num);

echeck(return_code, "LSMWN);

}

/***

Step 11

*

*

* Close the VRAM file (LSMCLO).
* Retrieve any nessages (LSMVEG) .

TS * * * X * *

EIE R I I R R R O I O I I R I R R R R I R R R I R R R O R O R

return_code = LSMCLO(&ot oken, abort _flag);

enmsgs(&ot oken); /* Retrieve nessages if any */
echeck(return_code, "LSMCLO'); /* Check for error */
file_open = 0; /* Set to file NOT opened */

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-11

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

/***

Step 12

* *
* *
* *
* Open the VRAM file with node=read and *
* nmet hod=sequenti al (LSMV). *
* *
* *

LR R R R R R R R R R R R R R R R R I R I R R R

return_code = LSMOV(&ctoken, nsgflg, &otoken, "READ', "SEQUENTI AL",

"VRAMKEYED', 0, &filepassword, "", &groupassword, 0, &attr);
ensgs(&ctoken); /* Retrieve nmessages if any */
echeck(return_code, "LSMOV'); /* Check for error */
file_open = 1, /* Set to file is opened */

/***

Step 13

*
*
*
* Read the VRAM file until return code 5650 (EOF) is
* received (LSMRS). The program should be able to

* read 100 records.

*

*

T AR T T

EE R L I R S R R R A I R R S R S R I R S S I S R R R R S I b S I I A
for(i = 1000; i < 1100; i++)
sprintf(cnprbuf, "%. 4d The key for this record is %. 4d", i, i);

for(j =36; j <80; j++)

cnprbuf[j] = - /* blank fill record */

return_code = LSMRS(&otoken, buffer, sizeof(buffer),
& eturn_rec_len, &eturn_rec_nun;

echeck(return_code, "LSMRS");

if(return_rec_len I'= 80)
printf("returned record length is incorrect.\n");

if(strncnp(buffer, cnprbuf, sizeof(buffer)) !'=0)
printf("record data msmatch for record %.\n")

}

return_code = LSMRS(&otoken, buffer, sizeof(buffer),
& eturn_rec_len, &eturn_rec_nun;

if(return_code != 5650)
printf("Expected EOF did not occur.\n");

6-12 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

/***

*
*
*
*
*
*
*

r

Step 14

Close the VRAM file (LSMCLO).
Retrieve any nessages (LSMVSG) .

LR R R R R R R R R R R R R R R R R I R I R R R

eturn_code = LSMCLO(&ot oken, abort flag);

emsgs(&ot oken); /* Retrieve nmessages if any */
echeck(return_code, "LSMCLO'); /* Check for error */
file_open = 0; /* Set to file NOT opened */
/**

*
*
*
*
*
*
*

r

Step 15

Open the VRAMfile with nmode=update and met hod=al |
(LSMV) .

R S S S R R R S O S R Ik I kS kR bk S S R R S S S S

eturn_code = LSMOV(&ctoken, nsgflg, &otoken, "UPDATE", "ALL",

*
*
*
*
*
*
/

*
*
*
*
*
*
*
/

"VRAMKEYED', 0, &filepassword, "", &groupassword, 0, &attr);
emsgs(&ctoken); /* Retrieve messages if any */
echeck(return_code, "LSMOV'); /* Check for error */
file_open = 1; /* Set to file is opened */
/***
* *
* Step 16 *
* *
* Read the VRAMfile in reverse key order (LSMRK). *
* The program shoul d be able to read 100 records. *
* *
***/
for(i = 1099; i > 999; i--)
{

sprintf(cnprbuf, "%.4d The key for this record is %.4d", i, i);

for(j =36, j < 80; j++)

cnprbuf[j] =" "; /* blank fill record */
return_code = LSMRK(&otoken, buffer, sizeof(buffer), &eturn_rec_|en,
"KEY1", cnprbuf, 4, &eturn_rec_nunj;

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-13

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

echeck(return_code, "LSMRK");

/*
* Since records were witten in key order, record nunber 1
* shoul d be key 1000, and record nunber 100 shoul d be key 1099.
*/

if(return_rec_num!= (i - 999))
printf("returned record nunber is incorrect.\n");

if(return_rec_len !'= 80)
printf("returned record length is incorrect.\n");

if(strncnp(buffer, cnprbuf, sizeof(buffer)) !=0)
printf("record data msmatch for record %d.\n", i);

}
/*
LSMRK shoul d return error code 2587 because there is

* no record with key ABCD.
*/

return_code = LSMRK(&otoken, buffer, sizeof(buffer), &eturn_rec_|en,
"KEY1", "ABCD', 4, &eturn_rec_nun);

if(return_code != 2587)

printf("Expected return code 2587, but received %.\n",
return_code);

/***

Step 17

*
*
*
* Read the VRAMfile in reverse record nunmber order (LSVRR)
* The program should be able to read 100 records.

*

*

Rk S S S R R I S O R R Ik S Sk S S Rk S R R bk S S o kS O S R

S~ sk 3k * ¥ * *

for(i =100; i >0; i--)

{

/*
* Since records were witten in key order, record nunber 1
* shoul d be key 1000, and record nunber 100 shoul d be
* key 1099.

/

sprintf(crprbuf, "%.4d The key for this record is %. 4d"
i+ 999, i + 999);

for(j =36; j <80; j++)

cnprbuf[j] = - /* blank fill record */

6-14 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program
LSMxxx Sample Program

return_code = LSMRR(&ot oken, buffer, sizeof(buffer),
& eturn_rec_len, i);

echeck(return_code, "LSMRR');

if(return_rec_len !'= 80)
printf("returned record length is incorrect.\n");

if(strncnp(buffer, cnprbuf, sizeof(buffer)) !=0)
printf("record data nmismatch for record %d.\n", i);

}

/*
* The next LSMRR should return error code 2587,
* indicating an invalid record nunber. Record nunber
* 999 does not exist.
*/

return_code = LSMRR(&ot oken, buffer, sizeof(buffer),
& eturn_rec_len, 999);

if(return_code != 2587)

printf("Expected return code 2587, but received %.\n",
return_code);

/***

Step 18

*
* Read- keyed using key 1050 (LSMRK). |ssue a
* read- next-key (LSMRNK) to read the record with key 1051

TS * ok 3k 3k * *

LR R R R R R R R R R R R R R S R R R R I I I R S I R I

return_code = LSMRK(&otoken, buffer, sizeof(buffer), &eturn_rec_|en,
"KEY1", "1050", 4, & eturn_rec_nun;

echeck(return_code, "LSMRK");

return_code = LSMRNK(&otoken, buffer, sizeof(buffer), &eturn_rec_|en,
& eturn_rec_nunj;

echeck(return_code, "LSVMRNK');

if(strncnp(buffer, "1051", 4) !'=0)
printf("LSMRNK did not return record with key 1051.\n");

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-15

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

/***

Step 19

* Read- keyed using key 1011 (LSMRK). *
* Then change the key to 9999 (LSMCH). *
* *
* /

LR R R R R R R R R R R R R R R R R I R I R R R

return_code = LSMRK(&otoken, buffer, sizeof(buffer), &eturn_rec_|en,
"KEY1", "1011", 4, & eturn_rec_nun;

echeck(return_code, "LSMRK");

strncpy(buffer, "9999", 4);

return_code = LSMCH(&otoken, buffer, sizeof(buffer));
echeck(return_code, "LSMCH');

/**

Step 20

* *
* *
* Read- keyed usi ng key 9999 (LSMRK). *
* Then delete the record with key 9999 (LSMDEL). *
* /

EIE R I R I R I R R R I I R I R R R R I R R R I R R R R I R O R S O

return_code = LSMRK(&otoken, buffer, sizeof(buffer), & eturn_rec_l|en,
"KEY1", "9999", 4, &return_rec_num;

echeck(return_code, "LSMRK");
return_code = LSMDEL(&ot oken);
echeck(return_code, "LSMDEL");

/***

Step 21

return code indicates that the record with key 9999

*
* Read- keyed using key 9999 (LSMRK). The resulting
*
* has been del et ed.

TS * * * * * * *

EIE R I I I R I R R R I O I R I R R R R R I R R R I R R R O R O O

return_code = LSMRK(&otoken, buffer, sizeof(buffer), &eturn_rec_|len,
"KEY1", "9999", 4, &return_rec_num;

if(return_code != 2588)
printf("Expected return code 2588, but received %.\n",
return_code);

6-16 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

/***

Step 22

Retrieve any nessages (LSMVSG) .

LR R R R R R R R R R R R R R R R R I R I R R R

* *
* *
* *
* Close the VRAM file (LSMCLO). *
* *
* *
* /

return_code = LSMCLQ(&ot oken, abort flag);

emsgs(&ot oken); /* Retrieve nmessages if any */

echeck(return_code, "LSMCLO'); /* Check for error */

file_open = 0; /* Set to file NOT opened */

/***
* *
* Step 23 *
* *
* Di sconnect from StorHouse (LSMDIS). *
* Retri eve any nessages (LSMVSG) . *
* *
***/

return_code = LSMDI S(&ct oken);

emsgs(&ctoken); /* Retrieve nmessages if any */
echeck(return_code, "LSMDI S"); /* Check for error */
exit();

}

/***

EMSGS Routi ne

*

*

*

* Retrieve all error and informational nessages

* (LSMVBG . Continue until all nmessages have been read.
*
*

EE R o R R S I S R R kS S S Sk SRR S R R kS S o S S S Rk S S

S~ %k 3k 3k * * X

static void emsgs(token)
struct LSMS TOKEN *t oken;
| ong bufsize;

[ong msgl en;
| ong return_code;

FileTek, Inc. Generic Callable Interface Programmer’s Guide 6-17

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

char buffer[133];

buf si ze = si zeof (buffer);

return_code = LSMMSE token, buffer, bufsize, &nmsglen);
while (return_code == 0)

printf("%\n", buffer);
return_code = LSMVSE token, buffer, bufsize, &rsglen);

}

return;

}

/***

* *
* ECHECK Routi ne *
* *
* If the return code is not equal to zero, then *
* print the return code, close the file, disconnect *
* from Stor House, and exit. *
* *
***/
static void echeck(return_code, func)
| ong return_code;
char *func;
{
| ong abort _fl ag; /* cl ose argunent */
if(return_code == 0) /* Return if no error */
return;
printf(" $$$$$ Bad return return_code = %. From %s.\n",
return_code, func);
/*
* | f the StorHouse file is open, close it (LSMCLO).
*/
if(file_open == 1)
abort _flag = LSM-_ABORT,; /* Performa normal close */
LSMCLQ(&ot oken, abort flag); /* lgnore return code */
6-18 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

ensgs(&ot oken); /* Retrieve nessages if any
/*
* Di sconnect from StorHouse (LSMDI S)
*/
LSMDI S(&ct oken) ; /* lgnore return code
emsgs(&ctoken); /* Retrieve nessages if any

printf("\ n\n***** abnormal termnation *****\n\n");

exit() ;

*/

*/
*/

FileTek, Inc. Generic Callable Interface Programmer’s Guide

6-19

FileTek Confidential and Proprietary

Sample Program

LSMxxx Sample Program

6-20 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

A

Checkpoint/Restart and Programming
Guidelines

This appendix contains additional technical information about programming with
the Callable Interface. Information is presented in two sections:

* Checkpoint/Restart

* Programming Guidelines.

The purpose of these sections is to provide additional examples and programming
tips.

Checkpoint/Restart

Checkpoints can be issued only during append operations to VRAM files. That is, the
file must have been opened using either LSMOV and a mode of APPEND or LSMCO.
A successful LSMCP guarantees that all data written up to the time of the checkpoint
has been received and processed by StorHouse.

Only the current (most recent) revision of a file version, either accessible or software
disabled, can be opened at a checkpoint. Opening a file at a checkpoint is referred to
as a restart.

Examples

This section contains four examples that open VRAM files and issue checkpoints. The
examples assume that the current version of the VRAM file DATAFILE has three
revisions (see Table A-1). Revisions 1 and 2 contain no checkpoints. Revision 3
contains three checkpoints, which are referenced here as checkpoints a, b, and c.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide A-1

A

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines

Checkpoint/Restart

Note

(Actual checkpoints are binary numbers, not alphanumeric characters. The caller
should keep track of checkpoint numbers and make no assumptions about their
value.)

Table A-1: DATAFILE Revisions

Revision Number Checkpoint Open
1 None LSMQV, any MODE
2 None LSMQV, any MODE
3 a,b,c LSMOV, any MODE or
LSMOV, mode=append at any
checkpoint

Revisions 1 and 2 can be opened in any mode. Revision 3 can be opened without
supplying a checkpoint in any mode or in mode=append at checkpoint a, b, or c.

Example 1

The caller opens Revision 3 shown above with mode=append at checkpoint a and
issues LSMCP and LSMCLO. The resulting revisions and their checkpoints are:

Revision Number Checkpoint

LsSMovV 1 None
mode=append

LSMCP 2 None

LSMCLO 3 a,d

Checkpoints b and c in the original Revision 3 are no longer accessible. The last
checkpoint in the current Revision 3 is checkpoint d.

Example 2

The caller opens Revision 3, generated in Example 1, with mode=update and issues
LSMCH, LSMDEL, and LSMCLO. The resulting revisions are:

Revision Number Checkpoint

LSMOV 1 None
mode=update

LSMCH 2 None
LSMDEL 3 None
LSMCLO 4 None

A-2

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines A
Checkpoint/Restart

There are now four revisions. Any previous checkpoints are no longer accessible.
Checkpoints are accessible only in the current revision.

Example 3

The caller opens Revision 3 (generated in Example 2), using mode=append and issues
LSMW, LSMCP, LSMW, LSMCP, and LSMAB. The resulting revisions are:

Revision Number Checkpoint

LsSMov 1 None
mode=append 2 None

LSMW 3 None

LSMCP

LSMW 4 None

LSMCP

LSMCLO 5 a, b (software disabled)
with abort flag set

There are now five revisions. Revision 5 has two checkpoints, a and b, and is marked
as software disabled because of the LSMAB.

If the caller opens Revision 5 in mode=append and supplies a checkpoint of 0 or no
checkpoint number, StorHouse returns a status code of 2630 and the last checkpoint
number, in this case checkpoint b.

Example 4

The caller opens Revision 4 (from Example 3) with mode=append and issues LSMW
and LSMCLO. The resulting revisions are:

Revision Number Checkpoint

LSMOV 1 None
mode=append 2 None
LSMW 3 None
LSMCLO 4 None
5 None

In this example, the user opened an older, accessible revision of the file to 70// back the
current revision, which was software disabled. A new Revision 5 containing the
appended data now supersedes the software disabled Revision 5 from Example 3.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide A-3

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines

Programming Guidelines

Programming Guidelines

The guidelines in this section apply to programs that use:

LSMOS

LSMOV with the StorHouse system parameter VRAM_FILE_OPEN set to true,
and any mode and access method

LSMOV with VRAM_FILE_OPEN set to false, a mode of READ, and an access
method of SEQUENTIAL

LSMOV with VRAM_FILE_OPEN set to false and a mode of APPEND or
UPDATE

LSMCO.

A program using one or more of the types of access listed above will never run to
completion if the program attempts to have open at the same time files that require
use of the same resource.

Defining Resources

Resources include:

Optical volumes (for write)
Tape volumes (for write)
Optical disk drives (ODUs)
Tape drives

Transfer Manager processes.

The system parameter XFR_COUNT limits the number of Storage Manager
processes.

The following situations require use of the same resource:

Attempting to have files open on more level L volumes than available level L
drives

Attempting to have open for write two or more files that are on the same optical
or tape volume

Attempting to have open more files than the value of XFR_COUNT.

A4

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines A

Programming Guidelines

Examples

The two examples in Table A-2 illustrate what can happen when open statements
require the use of the same resource. Both examples assume that:

* There are two available optical disk drives.

* All files reside on different optical disks.

* Files are opened using LSMOS with a mode of READ or LSMOV with a mode of
READ and an access method of SEQUENTIAL:

Table A-2: Examples of Open Statements Resource Usage

Example 1 Example 2

OPEN FILE1 OPEN FILE1
READ FILE1 OPEN FILE2
CLOSE FILE1 OPEN FILE3
OPEN FILE2 READ FILE1
READ FILE2 READ FILE2
CLOSE FILE2 READ FILE3
OPEN FILE3 CLOSE FILE1
READ FILE3 CLOSE FILE2
CLOSE FILES3 CLOSE FILES3

Example 1 executes successfully because an ODU is always available to satisfy each
LSMOS request. Because the close statement for each file releases an ODU, there are
no conflicts for shared resources.

In contrast, Example 2 will not run to completion. It attempts to have three level L
files open at the same time when there are only two available optical disk drives.
Example 2 will wait indefinitely for an available ODU to satisfy the OPEN FILE3
request. In Example 2, contention for the optical drive is causing the problem.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide A-5

A

FileTek Confidential and Proprietary

Checkpoint/Restart and Programming Guidelines

Programming Guidelines

Note

User Guidelines

Applications and files should be set up to avoid resource conflicts.

Do not plan to write to files that are in the same volume set at the same time.

If you must read files concurrently, ensure that there are enough optical or tape
drives configured in the system to handle the read requests. If there are enough
drives, understand that your application may not run if a drive goes down.

To prevent problems resulting from an insufficient number of StorHouse
processes, use the interactive SHOW SYSTEM command to display the value of
XFR_COUNT. If more files must be open at the same time than the value of
XFR_COUNT, refer the problem to your system administrator.

Permanent Fixes

The following suggestions are permanent fixes to a resource conflict involving optical
drives. They should not be used as a temporary solution for a resource conflict caused
by a drive that goes down.

To prevent problems resulting from an insufficient number of optical or tape
drives when level L files that must be open at the same time reside on different
optical volumes, verify that there are at least as many optical drives available in
the selected library device as level L files. If there are not enough available optical
drives, RELOCATE, or move, some of the level L files to a level F file set.

RELOCATE is a permanent move that deletes the source. Do not RELOCATE to
level F unless you are willing to lose your original level L copy (FileTek does not
recommend this action).

To prevent problems resulting from writing to files residing on the same level L
volume, ensure that all level L files that must be open for write at the same time
are in different volume sets. If files belong to the same volume set(s):

e RELOCATE one or more files to a different volume set(s).

* Write one or more files to the performance buffer rather than directly to a
level L volume set. In other words, use VIF=NEXT.

A-6

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

B

CREATE FILE Command

Description

The StorHouse Command Language CREATE FILE command creates a new VRAM
file or file version. This is functionally equivalent to using LSMCO without writing
any data. The CREATE FILE command must be used to create files with new key
definitions, as LSMCO cannot be used to do this.

The CREATE FILE command can be sent to StorHouse using LSMSCI. Note that
your program will become less portable; some mainframe implementations do not
allow CREATE FILE to be submitted using LSMSCI, because some mainframe
security processing may be bypassed.

The CREATE FILE command creates a new VRAM file or file version in StorHouse. If
you specify KEYED or KEYSEQUENTIAL as the value of /TYPE, StorHouse asks you
to enter key definitions. This procedure is described in the section “Key-Definition
Mode,” presented on page B-19.

The /SIZE modifier is required. It specifies the maximum number of bytes needed to
store the largest extent set created in an append operation. An extent set consists of a
data extent, a DF extent, and for KEYED files, a K extent. If a file is not checkpointed,
it has one extent set created from OPEN to CLOSE. If a file is checkpointed, a new
extent set is created each time a checkpoint is issued.

If the file is not checkpointed, the amount of space specified by /SIZE is allocated to
store the extent set that is written from OPEN to CLOSE. If the file is checkpointed,
the amount of space specified by /SIZE is allocated when the file is opened and each
time a CHECKPOINT is taken.

The section “Estimating a Value for /SIZE” is presented later in this command
description on page B-12 to help you determine a suitable size.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-1

FileTek Confidential and Proprietary

CREATE FILE Command
Format

When you write records into the file, the system places the records in the
performance buffer and allows the backup function to copy the records to their
primary file set (the file set specified by /VSET and /FSET) unless the file is created in
a level F volume set and file set. If it is created in a level F volume set, the
performance buffer is not used. If you specify /DIRECT, the system transfers the
records directly to the primary file set, bypassing the performance buffer. The system
writes file updates to the file set’s update space, if available.

Format
The command text string required is:
CREATE FILE filename [/modifier...]

This text must be placed in the command buffer (CR-BUF argument) for LSMSCI.

COMMAND FORMAT SUMMARY

COMMAND, REQUIRED REQUIRED REQUIRED MINIMUM
PARAMETER, OR COMMAND GROUP FILE ACCOUNT DEFAULT
MODIFIER PRIVILEGE ACCESS ACCESS ACCESS
CREATE FILE RECORD - - - -

/REPORT - - - - -

filename - w - - (Required)
IASCII - - - - Binary format
IATF=... ATF D - - See text
/CACHE-=... - - - - /CACHE=0
IDIRECT - - - - -
/EDC - - - - See text
IEXTERNAL - - - - No external keys
/FSET=... - - - - Current default
/GROUP=... SETGROUP w - - Current default
JLIMIT=... DELETE D - - See text
INEWPASSWORDS-=... PASSWORD D D - See text
/PASSWORDS-=... - - - - -
IREPLACE-=... DELETE D D - -
/RETENTION=... - - - - DEFAULT
ISIZE=... - - - - (Required)
ITYPE=... - - - - /ITYPE=RECORD
IVSET=... - - - - Current default
INTF=... VTF D - - See text

B-2 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command

Parameter

filename

Parameter

Specifies the StorHouse name of the VRAM file version to be created.
* FORMAT: filename

File names must be unique within an access group. The StorHouse file name
must contain 1 to 56 printable ASCII characters. At least one character must be
non-blank. StorHouse translates lowercase letters to uppercase letters and
compresses multiple consecutive spaces to a single space unless they are enclosed
in quotes. File names containing special characters (defined in the Command
Language Reference Manual) must be enclosed in quotes, unless the characters are
any of the following:

“11:%$.;_

You can use the quote symbol (“) in the file name as long as you enclose the name
in quotes and you place two quotes (“ ”) wherever a single quote (“) is to appear.

Because this file name is in a StorHouse command, it is subjected to StorHouse
command processing. The file names used in Callable Interface functions (for
example, OPEN-VRAM) are not subjected to command processing. You must use
caution with file names containing lowercase or special characters.

e DEFAULT: None; you must specify this parameter.

* ACCESS REQUIREMENTS: Write access to the file’s group.

Command Modifier

/REPORT

IASCII

Controls the generation of a special text response for the completion of the
command. The text includes the file identifier (fid) of the new file or file version
created.

/REPORT instructs StorHouse to generate a text response. /NOREPORT instructs
StorHouse not to generate a text response.

* FORMAT: /REPORT or /NOREPORT

¢ DEFAULT: /NOREPORT

Parameter Modifiers

Causes the host interface to translate a host file’s data from the host’s native character
set into ASCII characters. The host interface formats the translated data into a

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-3

FileTek Confidential and Proprietary

CREATE FILE Command

Command Modifier

IATF

/CACHE

transportable ASCII character-stream file format while transferring the file to
StorHouse.

* FORMAT: /ASCII

* DEFAULT: If you omit /ASCII, StorHouse formats the file data into transportable
binary bit-stream format.

* RESTRICTIONS: Do not specify /ASCII with a different format indicator, such as
/BINARY, or with files that cannot be translated into ASCII characters.

e HOST DEPENDENCIES: The native UNIX character set is ASCII, so no
character translation is necessary.

The IBM MVS Callable Interface translates data between EBCDIC characters and
ASCII characters.

Specifies a value for the ATF (Access Time Factor) attribute for a file version. The ATF
attribute indicates the importance of access time for the file. Setting an ATF value
does not initiate a file transfer directly, but it may cause the file to be migrated in a
subsequent migration.

* FORMAT: /ATF={1,2,3}

A value of 1 indicates that a short access time for the file is very important; 2
indicates that access time is moderately important; 3 indicates that it is
minimally important. The MIGRATE function migrates files off of the
performance buffer, beginning with files with the largest ATF values.

* DEFAULT: If you omit /ATF when creating a new file version, the default is the
current value of the ATF system parameter.

Specifies the number of sequential records that VRAM will cache for a READ-
SEQUENTIAL, READ-RECORD, or READ-KEYED function for this file when it is
opened with an access mode of READ or UPDATE and an access method of RECORD
and/or KEYED. The system can use this cache to optimize subsequent reads. VRAM
caches n-1 records preceding the current record through n records following the
current record; in other words, VRAM caches twice the specified number of records
including the current record. (This assumes that there is enough cache memory
available to accommodate the total number of records.)

¢ FORMAT: /CACHE=number_of records
The number of records can range from 0 to 65,535; however, StorHouse limits

the number of records it caches to a number less than or equal to the number of
bytes specified by the VRAM_CACHE_MAX system parameter.

B-4

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

IDIRECT

/IEDC

/IEXTERNAL

CREATE FILE Command
Command Modifier

Note that VRAM caches records preceding the current record up to and including
the current record only if the records already reside in memory and begin in the
currently loaded frame.

DEFAULT: If you omit /CACHE, the default value is /CACHE=0 (no cache).

Indicates that when you write data records to the file, the system is to write the
records directly to the primary file set (specified by /VSET and /FSET) specified in
this command.

FORMAT: /DIRECT

DEFAULT: If you omit /DIRECT, the system writes the records to the
performance buffer and allows the backup function to copy the data to the
specified primary file set.

PRIVILEGE: None.

RESTRICTIONS: This modifier has the same function as /VTF=DIRECT. If you
specify /DIRECT, the system ignores /VTE

Controls the generation of error detection codes by the host interface during data
transfer to StorHouse.

FORMAT: /EDC or /NOEDC

If you specify /EDC when executing CREATE FILE, the host interface will
generate or check error detection codes when the file is transferred to or from
StorHouse. If you specify /NOEDC, the host interface will not generate or check
error detection codes.

DEFAULT: If you omit /EDC, the default is given by the EDC system parameter.
If the value of the parameter is TRUE, the default is /EDC. If the value of the
parameter is FALSE, the default is /NOEDC.

Indicates that you will define external keys—key data provided in special records that
are not a part of the file's data records.

Note: External key values cannot be changed if file records are updated. Also, records
with duplicate external key values cannot be distinguished unless the record data
contains information that you can use for this purpose.

FORMAT: /EXTERNAL

DEFAULT: If you do not specify /JEXTERNAL for a KEYED file, the system
assumes that the keys will be internal to the user data records.

RESTRICTIONS: /EXTERNAL is valid only if you also specify /TYPE=KEYED.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-5

FileTek Confidential and Proprietary

CREATE FILE Command

Command Modifier

[FSET

/IGROUP

Specifies the primary file set for the file. The performance buffer file set is not
allowed. The specified file set must exist.

If /ESET and /VSET specify or default to a level F file set and volume set, StorHouse
does not use the performance buffer when you write data into the file. Data is written
directly to the primary file set and volume set on level E regardless of the value of the
/VTF or /DIRECT modifier, if specified.

¢ FORMAT: /FSET=fset_name
e RESTRICTIONS:

* You cannot use a wild card.
* Do not specify the performance buffer file set name.

Specifies a file access group name and, optionally, group passwords. The specified
group must exist.

* FORMAT:

* /GROUP=groupname<:writepw>
* /GROUP=groupname

* FORMAT RESTRICTIONS: Wild cards are not allowed in the group name.

* ACCESS REQUIREMENTS: You must have write access to the group. Also, you
must specify the group’s write password unless:

* The group is not protected by a write password.
* Your privilege bypasses write access password checks.
* Your default access to the group includes write access.

If you enter parameter modifiers that require delete access to the group, you must
also have delete access to the group.

e DEFAULT:

* If you omit /GROUD, the default is your current default group and default
access rights.

* Ifyou specify the current default group name and omit the write password,
the defaults for your group access rights apply.

* Ifyou specify a group name that is not the current default group and omit
the write password, the write password defaults to null.

e PRIVILEGE: SETGROUP is required to specify any group except your default
group.

B-6

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

/LIMIT

INEWPASSWORDS

IPASSWORDS

CREATE FILE Command
Command Modifier

Specifies a value for the LIMIT attribute for a file.
¢ FORMAT: /LIMIT=maximum_versions
The value of maximum_versions can range from 1 through 32768.

e DEFAULT: If you omit /LIMIT and this is a new file, the default limit is specified
by the LIMIT system parameter. If this is a new version of an existing file, the
default is the limit for the existing file.

e PRIVILEGE: DELETE privilege.
Assigns file access passwords to the file.

Note: You cannot obtain access to the file by specifying /NEWPASSWORDS (see the
next modifier /PASSWORDS).

e FORMAT:

e /NEWPASSWORDS=<readpw>:<writepw>:<deletepw>
* /NEWPASSWORDS=<readpw>:<writepw>

e /NEWPASSWORDS=readpw

e /NONEWPASSWORDS

Specifying INONEWPASSWORDS is equivalent to specifying
/NEWPASSWORDS with null read, write, and delete passwords.

Passwords must be null or contain 1 to 8 characters, consisting of the following
ASCII characters: A-Z (uppercase), 0-9, _ (underscore), and $ (dollar sign).
StorHouse always translates passwords to uppercase characters, even if they are
enclosed in quotes.

* DEFAULT: If you do not specify /NEWPASSWORDS and the file already exists,
the system retains the existing passwords, if any. If you do not specify
INEWPASSWORDS and the file does not exist, the system assigns null passwords
to it.

If you specify /NEWPASSWORDS but do not specify one or more passwords, the
system assigns a null password for each unspecified password.

e ACCESS REQUIREMENTS: You must have delete access to the file and group
and PASSWORD privileges.

Specifies passwords to gain access to an existing file protected by passwords. Specify a
delete password to change file attributes. Specify a write password to create a new
version of an existing file. If your privilege bypasses the access password checks, you
do not have to specify a password.

If the file does not already exist, StorHouse ignores /PASSWORDS.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-7

FileTek Confidential and Proprietary

CREATE FILE Command

Command Modifier

/REPLACE

/PASSWORDS must be used in conjunction with /REPLACE.
e FORMAT:

e /PASSWORDS=<readpw>:<writepw>:<deletepw>
* /PASSWORDS=<readpw>:writepw
* /PASSWORDS=readpw

A file password can be null or contain 1 to 8 characters, and can consist of the
following characters: A-Z (uppercase), 0-9, _ (underscore), and $ (dollar sign).
StorHouse always translates passwords to uppercase characters, even if they are
enclosed in quotes.

* DEFAULT: If you omit /PASSWORDS, the passwords default to nulls.

Indicates that after creating a new version of the file, the system will delete all older
versions. If no file of the same name exists, StorHouse ignores this modifier. If a file
of the same name exists, StorHouse verifies that you have the required access to the
file and that the file is not retained before deleting it. If the existing file is retained,
the CREATE FILE/REPLACE operation fails.

After StorHouse deletes the file, it does not retain the old passwords and file
attributes. You must specify new passwords or attributes on the CREATE FILE
statement.

¢ FORMAT: /REPLACE

* DEFAULT: If you omit /REPLACE and a file of the same name already exists in
the directory, the system does not delete the existing version.

* PRIVILEGE: DELETE privilege

* ACCESS REQUIREMENTS: If a file with the same group and file names already
exists, you must obtain delete access to the group and file.

B-8

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Command Modifier

/IRETENTION Specifies the retention attribute (retention period) for the file being created.

¢ FORMAT:

Option Description

/RETENTION=DEFAULT Sets the retention period to the default value.

/RETENTION=number_of_days | Sets the retention period to the specified number of
days. The retention period ends when the current date
is beyond the file’s last modification date plus the
specified retention value.

A value of 0 indicates no retention period (same as
specifying ZERO).

Example: /RETENTION=3

In this example, the retention period is 3 days. The

retention period for a file that was last modified at 11
p.m. on December 12 expires at 11 p.m. on December

15.

/RETENTION=ZERO Sets no retention period, which indicates the file may
be deleted.

/RETENTION=FOREVER Sets an infinite retention period, which indicates the

file may never be deleted.

e DEFAULT: If you omit /RETENTION or Specify /RETENTION=DEFAULT,
StorHouse determines the file’s default retention attribute as follows:

e If the file’s resident file set has a retention attribute equal to FOREVER,
ZERQ, or a specified number of days, the file set retention attribute
determines the default file retention attribute.

e If the file’s resident file set has a retention attribute of DEFAULT, the
RETENTION_MODE system parameter determines the default file retention
attribute. If RETENTION_MODE is set to BASIC, the default file retention
is ZERO. If RETENTION_MODE is set to STRICT, the default file retention
is FOREVER.

e RESTRICTIONS: None.

ISIZE Specifies the number of bytes of storage space to allocate for the file whenever the file
is opened for an append operation and whenever a checkpoint is issued. The value
must contain enough space for the largest extent set that is written. This extent set
includes a data extent, a DF extent, and for KEYED files, a K extent.

* If the file is not checkpointed, /SIZE specifies the space required to store the
extent set that is written from OPEN to CLOSE.

FileTek, Inc. Generic Callable Interface Programmer’s Guide B-9

FileTek Confidential and Proprietary

CREATE FILE Command

Command Modifier

ITYPE

» If the file is checkpointed, the space specified by /SIZE is allocated when the file
is opened and each time a CHECKPOINT is taken.

Note: The largest value that you can specify for /SIZE is 2G. Do not assign a value for
ISIZE greater than the size of the volume (or performance buffer) that will contain
the extent set. Otherwise, CREATE FILE returns an error.

If the system cannot allocate enough space when the file is opened, it rejects the open.
If the system cannot allocate enough space after a checkpoint, it rejects the next write.
After a file has been closed or checkpointed, StorHouse returns any unused file
storage space to the file set as free space.

For updates, StorHouse does not use the /SIZE value. It automatically allocates space
for each extent separately. It allocates as much space as required, up to the file set
LIMIT.

Caution: After you have used CREATE FILE to create the file, you cannot change the
value of /SIZE.

* FORMAT: /SIZE=number_of_bytes
The number_of_bytes value can be specified as n, nK, nM, or nG.

The letter n represents a numeric field. The value of n can range from 0 up to
2000000000. (Do not include commas when specifying a number with more
than three digits.) K indicates that the number is in 1,000-byte units; M
indicates 1,000,000-byte units; and G indicates 1,000,000,000-byte units. If K,
M, or G is not present, the number defaults to 1-byte units.

The maximum value of /SIZE is limited by the capacity of the volume to which
the file is to be written. If you do not use /DIRECT or /VTF=DIRECT, the value
must be smaller than the capacity of the largest partition of the performance

buffer.
* DEFAULT: None; you must specify this modifier.
Specifies the type of file organization desired. A /TYPE value of RECORD indicates
that the file can only be accessed sequentially or by record number. KEYED or
KEYSEQUENTIAL indicates that the file can be accessed sequentially, by record
number, or by key.
KEYSEQUENTIAL files are like KEYED files, but with the following restrictions:
* You can define only one key.

* Duplicate key values are not allowed.

* When writing records into the file, you must write the records in ascending key
value order.

B-10

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Command Modifier

* When updating a record, you cannot change the key value.

If /TYPE is KEYED or KEYSEQUENTIAL, StorHouse requests you to enter key
definitions. For further information about key definitions, refer to the Command
Language Reference Manual.

e FORMAT:
e /TYPE=KEYSEQUENTIAL
e /TYPE=KEYED
e /TYPE=RECORD

¢ DEFAULT: /TYPE=RECORD

* RESTRICTIONS: The VRAM_KEYED system parameter must be set to TRUE for
VRAM_KEYED files to be created.

IVSET Specifies the file’s primary volume set.

If /VSET and /FSET specify or default to a level F volume set and file set, StorHouse
does not use the performance buffer when you write data into the file. Data is written
directly to the primary file set and volume set on level F, regardless of the value of the
/VTEF or /DIRECT modifier, if specified.

e FORMAT: /VSET=vset_name
* DEFAULT: If you omit /VSET, the default is your current default volume set.
¢ RESTRICTIONS:

e Wild cards are not allowed.
* The volume set must be a primary volume set.

IVTF Specifies a file version’s Vulnerability Time Factor (VTF) attribute, which determines
how long StorHouse can leave new extents of the file version in the performance
buffer before copying them to their primary file set.

* FORMAT: /VTF=NEXT, /VTF=NOW, or /VTF=DIRECT

* Ifyou specify /VTF=NEXT, the file is written to the performance buffer. The
next time a backup occurs, the file is copied to its primary file set.

* Ifyou specify /VTF=NOW, StorHouse copies the new version from the
performance buffer to its primary file set as part of the command.

* Ifyou specify /VTF=DIRECT, the file bypasses the performance buffer.
Extents are written directly to their primary file set.

* DEFAULT: If you omit /VTE, the default is the value of the VTF system
parameter.

FileTek, Inc. Generic Callable Interface Programmer’s Guide B-11

FileTek Confidential and Proprietary

CREATE FILE Command

Estimating a Value for /SIZE

* RESTRICTIONS: If you specify /DIRECT on the command, /VTF is ignored.

* ACCESS REQUIREMENTS: Delete access to the group and VTF privilege.

Estimating a Value for /SIZE

Formula 1

Formula 2

The value of /SIZE should be based on the size of the largest extent set in the file.
Each time the file is opened with a mode of APPEND or checkpointed, StorHouse
allocates the amount of space specified by /SIZE.

The minimum value of /SIZE should be set to the size of the largest data extent that
will be written plus the sizes of the largest DF and K extents (for KEYED files) that are
created.

Note: The largest value that you can specify for /SIZE is 2G. Do not assign a value for
ISIZE greater than the size of the volume (or performance buffer) that will contain
the extent set. Otherwise, CREATE FILE returns an error.

During an append to a VRAM file, whenever a CHECKPOINT is issued, or the file is
closed, StorHouse produces a DF extent, a data extent, and for KEYED files, a K
extent. If you plan to issue CHECKPOINT for the file being created, base your /SIZE
estimate on the largest extents. The latest DF and K extents are usually the largest.

Once you have executed CREATE FILE, you cannot change the value of /SIZE.
Therefore, you may want to increase your estimate to avoid running out of space.

In the formulas that follow, all sizes are in units of bytes.

Estimating Data Extent Size

The size of a data extent written during an append operation for a KEYED or
RECORD file is given by Formula 1, where D is the largest number of bytes of user
data that will be written in one extent set, and nrecs_e is the largest number of
records in one extent set:

data size = 32,000 + (1.006 O(D + (nrecs_e 07)))
If there are no checkpoints, nrecs_e is the same as the number of records in the file.

Formula 2 gives the size of a data extent written during an append operation for a
KEYSEQUENTIAL file, where K1 is the size of the key:

data size = 32,000 + (1.006 O(D + nrecs_e O(7 + K1)))

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Formula 3

Formula 4

Formula 5

Formula 6

CREATE FILE Command
Estimating a Value for /SIZE

Estimating DF Extent Size

For VRAM files, DF extents normally range from a minimum of 1.2 KB (1,200 bytes)
to a maximum of 10 KB (10,000 bytes) with the average being about 6 KB (6,000
bytes) or less. Files with keys, checkpoints, and/or a large number of updates have
larger DF extents. In addition, whenever a checkpoint is issued during an append to a
VRAM file, StorHouse produces another DF extent. The newer DF extents are usually
larger because they contain additional entries.

The DF extents include various tables. Calculate the sizes of these tables, as
applicable, as described in the following paragraphs.

To compute DF size, always add the minimum DF size of 1.2 KB to the sum of the
estimated table sizes.

All Files

For all files, estimate the size of the data table as follows, where data_xtnts is the total
number of data extents in the file:

data table size = 13 + (12 Odata_xtnts)

A new data extent is created when a file is opened in mode=APPEND and cither a
checkpoint is performed or the file is closed normally.

Checkpointed Files

For files that will be checkpointed, estimate the size of the checkpoint table as
follows, where max_cpts is the maximum number of checkpoints in one append
operation:

checkpoint table size = 13 + (8 Omax_cpts)

Files with Keys

For files with keys, estimate the size of the key name and key segment location tables.
Estimate the size of the key name table as follows, where nkeys is the total number of
keys defined for the file:

key name table size = 13 + (58 Onkeys)

Estimate the size of the key segment location table as follows, where nsegs is the total
number of key segments defined for the file:

key segment location table size = 13 + (6 [Onsegs)

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-13

FileTek Confidential and Proprietary

CREATE FILE Command

Estimating a Value for /SIZE

Formula 7

Formula 8

Formula 9

Keysequential Files

For keysequential files, estimate the size of the key index table as follows, where K1 is
the size of the key in bytes; data_xtnts is the total number of data extents in the file (a
new data extent is created when the file has been opened in APPEND mode and either
a checkpoint is performed or the file is closed normally); and nrecs_t is the total
number of records in the file:

key index table size = 13 + (K1 + 6) O(data_xtnts + (nrecs_t O(K1 + 2) /31711))

A key index table is created only for KEYSEQUENTIAL files.

Updated Files

For files that will be updated (records changed or deleted), estimate the size of the
change and record modification tables.

Note: These tables need to be included in your estimate only if you plan to write
additional records after updates have been performed.

Estimate the size of the change table as follows, where chg_xtnts is the total number of
change extents:

change table size = 13 + (8 Ochg_xtnts)

Change extents exist only for files created with the StorHouse system parameter
VRAM_UPDATE set to 1. A new change extent is created each time a file is opened
with mode=UPDATE, records are changed (not just deleted), and the file is closed
normally.

Estimate the size of the record modification table as follows, where nupds is the
number of update entries:

record modification table size = 13 + (9 Onupds)

An entry represents either an update of a single record or an updated group of
consecutive records (all changed or all deleted) in order during one update operation.

Estimating K Extent Size

For KEYED files, the K (key data base) extent consists of an area for key data and one
index area for each user-defined key. The size of a K extent is the sum of the
allocations made for all areas. The amount of data stored in each area can be
estimated, but the actual amount may vary due to storage overhead, index
compression, and the distribution of keys.

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Estimating a Value for /SIZE

Note: Whenever CHECKPOINT is issued during an append to a keyed VRAM file,
StorHouse produces another K extent. Your estimate for each checkpoint should be
based on the size of the last (largest) K extent.

Estimate the size of the key data area as follows, where nrecs_t is the total number of
records with keys that are written to the file in all extent sets, and K is the sum of the
sizes of all user-defined keys:

Formula 10 key data area size = 4096 + (K + 12) Onrecs_t (01.03
Estimate the size of each key index area for user-defined keys as follows, where Kn is
the size of key number n:
Formula 11 Kn index area size = (Kn + 12) [Onrecs_t [12.06
Note: These formulas are estimates. It is advisable to increase your calculated value
for /SIZE to avoid running out of space.
Example 1
The following example illustrates how to use formulas 1, 3, 5, 6, 10, and 11 to
estimate the value of /SIZE for a file without checkpoints (one data extent). This
example assumes that:
* You are creating a KEYED VRAM file with one internal key and one key segment.
* Thekey is 10 bytes long.
* Each record is 500 bytes long and contains a key.
* 1,000 records will be written to the file.
* No checkpoints will be issued during the APPEND to this file.
Because there are no checkpoints, there will be one extent set containing 500 KB of
user data (500 * 1000).
In this example, the value of /SIZE equals the sum of the allocations for the following:
¢ Data extent
* DF extent, which includes the sum of the following:
* Minimum value of 1.2 KB
* Data table size
* Key name table size
* Key segment location table size.
e Kextent.
FileTek, Inc. Generic Callable Interface Programmer’s Guide B-15

FileTek Confidential and Proprietary

CREATE FILE Command

Estimating a Value for /SIZE

Table 2-1 shows the /SIZE calculations for the preceding example.

Table 2-1: Estimating /SIZE for a File without Checkpoints

Formula Definitions

Formula 1 Data Size D = Largest number of bytes of user data in one
= 32,000 + (1.006 x (D + (nrecs_e x 7))) extent set 1
= 32,000 +(1.006 x (500,000 + (1000 X 7))
= 32,000 + 510,042 nrecs_e = number of records in one extent set 2

= 542,042 bytes or 543KB

Formula 3 Data Table Size data_xtnts = number of data extents
=13 + (12 x data_xtnts)
=13+ (12x1)
=13 +12
=25

Formula 5 Key Name Table Size nkeys = number of keys
=13 + (58 x nkeys)
=13 + (58 x1)
=13 +58
=71 bytes

Formula 6 Key Segment Location Table Size nsegs = number of key segments
=13 + (6 x nsegs)
=13+ (6x1)
=13+6
=19

DF Extent Size = 1,200 + 25 + 71 + 19 = 1,315 bytes or 2KB

Formula 10 Key Data Area K = sum of the sizes of all user-defined keys
=4,096 + (K +12) x nrecs_t x 1.03
=4,096 + (10 + 12) x 1000 x 1.03 nrecs_t = total number of records containing
=4,096 + 22,660 keys in the file
= 26,756 bytes or 27KB

Formula 11 Key Index Area Kn = size of key number n
= (Kn +12) x nrecs_t x 2.06
= (10 +12) x 100 x 2.06 nrecs_t = total number of records containing
=22 x 1000 x 2.06 keys in the file

= 45,320 bytes or 46KB

The value of /SIZE = 543KB + 2KB + 27KB + 46KB = 618KB

!Total number of bytes because there are no checkpoints

2 Same as nrecs_t because there are no checkpoints

K extent size is cumulative; it grows as more records with keys are appended to the
file. In the preceding example, the file was appended only once. Instead, suppose that
your application appends 1,000 records to the file three times. Therefore, after the
third append, the key data base contains 3,000 key values. When determining the
value for /SIZE in this application, you should use 3,000 for the value of n in
formulas 10 and 11.

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Estimating a Value for /SIZE

Example 2

The following example illustrates how to use formulas 2 through 7 to estimate the
value of /SIZE for a file with checkpoints. This example assumes that:

* You are creating a VRAM KEYSEQUENTIAL file.

* The key is 50 bytes long and contains one key segment.
* The user records are 2 KB long.

* The total size of the user data is no larger than 6 GB.

* The file will be checkpointed because it is too large to fit on available media in
one extent set.

e No more than 250 MB and no less than 240 MB of user data will be written for
each checkpoint.

* Because the user data is no larger than 6 GB, and the minimum amount of data
for one checkpoint is 240 MB, the maximum number of checkpoints (including
the final close) is 25.

* Because the maximum amount of data in one checkpoint is 250 MB and the size
of one record is 2 KB, the maximum number of user records in one extent set is

125,000.

* The file will not be updated.
In this example, the value of /SIZE equals the sum of the allocations for the following:
* Largest data extent
* Largest DF extent, which includes the sum of the following:
* Minimum value of 1.2 KB
* Data table size
e Checkpoint table size
* Key name table size
* Key segment location table size

* Key index table size.

Table 2-2 shows the /SIZE calculations for the preceding example.

FileTek, Inc. Generic Callable Interface Programmer’s Guide B-17

FileTek Confidential and Proprietary

CREATE FILE Command

Estimating a Value for /SIZE

Table 2-2: Estimating /SIZE for a File with Checkpoints

Formula Definitions

Formula 2 Data Size D = largest number of bytes of user data
= 32,000 + (1.006 x (D + nrecs_e x (7 +K1))) that is written in one extent set
= 32,000 + (1.006 x (250,000,000 + (125,000 x
57))) nrecs_e = number of records in one extent
= 32,000 + 258,667,750 set
= 258,699,750 bytes or 258,700KB
K1 = size of key
Formula 3 Data Table Size data_xtnts = number of data extents
=13 + (12 x data_xtnts)
=13+ (12 x 25)
=13+ 300
= 313 bytes
Formula 4 Checkpoint Table Size max_cpts = maximum number of check-
=13 + (8 x max_cpts) points
=13+ (8x25)
=13+ 200
=213 bytes
Formula 5 Key Name Table Size nkeys = number of keys
=13 + (58 x nkeys)
=13 + (58 x1)
=13 +58
=71 bytes
Formula 6 Key Segment Location Table Size nsegs = number of key segments
=13 + (6 x nsegs)
=13+ (6x1)
=13+6
=19 bytes
Formula 7 Key Index Table Size K1 = length of key
=13 + (K1 + 6) x (data_xtnts + (nrecs_t x
(K1 + 2)/31,711)) data_xtnts = number of extents
=13+ (50 + 6) x (25 + (3,000,000 x (50 +
2)/31,711)) nrecs_t = number of records in the file
=13 + 56 x (25 + 4,920)
=13 + 276,920
= 276,933 bytes
DF Extent Size = 1,200B + 313B + 213B + 71B + 19B + 276,933B =287,749B or 288 KB
The value of /SIZE = 258,700KB + 288KB = 258,988KB

B-18

Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Key-Definition Mode

Key-Definition Mode

There are two types of keys: internal and external. Internal keys are fields that are
contained within each data record. External keys are fields that are located in special
key records that are associated with separate data records.

Internal keys can be defined for KEYED or KEYSEQUENTIAL files. External keys can
be defined for KEYED files only. However, a single KEYED file can have only one type
of key: either internal or external.

When you enter a CREATE FILE command and specify /TYPE=KEYED and
/EXTERNAL, StorHouse puts you in external key-definition mode with the following
prompt:

You may now enter EXTERNAL KEY definitions.
HELP is available.
COMMAND?

When you enter CREATE FILE with /TYPE=KEYED (and omit /EXTERNAL) or
/TYPE=KEYSEQUENTIAL, StorHouse puts you in internal key-definition mode with
the following prompt:

You may now enter KEY definitions.
HELP is available.
COMMAND?

Your program must cycle through these text lines and must supply responses to the
prompt.

StorHouse provides six commands to help define internal or external keys: KEY,
DELETE, EXIT, HELP, INSERT, and LIST. KEY and EXIT are generally the only
commands used from a program. For descriptions of the other commands, see the
Command Language Reference Manual.

KEY Command

You must enter at least one key definition for KEYED and KEYSEQUENTIAL files.
Otherwise, StorHouse does not create the VRAM file and returns an error status when
you exit key-definition mode (using the EXIT command). Once you exit from key-
definition mode, you cannot define more keys for the file.

You can enter a maximum of 31 internal or external keys for KEYED files but only one
key for KEYSEQUENTIAL files. If you define more than the maximum number of
keys allowed for a given file type, StorHouse returns an error message but allows you
to process other commands.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-19

FileTek Confidential and Proprietary

CREATE FILE Command
Key-Definition Mode

Defining Keys

In the following discussion, angle brackets (< >) enclose optional entries and ellipses
(...) indicate a repetition of the preceding information.

To define a key, your program must supply the following text string in response to the
COMMAND? prompt:

KEY key_name start_position:length <start_position:length <...>>

A key definition is composed of three items: key name, starting-byte position of the
key in the user data record (or in the external key record), and key length in bytes. A
space separates key_name from start_position. A colon separates start_position from the
length of the key.

Key_name identifies the name of the key. Key names must contain 1 to 56 characters
and include the characters A-Z (lowercase letters are translated to uppercase), the
numbers 0-9, and hyphen (-). No other special characters are allowed.

Start_position specifies the byte position in the record where the key data begins.
Length indicates the number of consecutive bytes of key data that begin at the
start_position. For example, 5:10 indicates that the key begins in byte position 5 and
has a length of 10 bytes.

Each key has one or more starting-byte positions and lengths. Start_position must be a
number from 1 (the first byte of a record) to the size of a record. Each start_position
has a corresponding length. Length must be a number from 1 to 254.

After each key definition is entered, the COMMAND? prompt is received.

In the following example, only one starting byte and length are specified for the key:

COMMAND? KEY LAST-NAME 16:15

LAST-NAME is the name of the key. The key begins at byte position 16 in the record
and is 15 bytes long.

More than one key can reference the same information. For example:

COMMAND? KEY FIRST-INITIAL 1:1
COMMAND? KEY FIRST-NAME 1:15

The keys FIRST-INITIAL and FIRST-NAME both start in byte-position 1 and include
the first character in the data record.

B-20 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

CREATE FILE Command
Key-Definition Mode

Concatenating Keys

Key definitions can be concatenated by entering more than one start_position and
length combination on one KEY command. Each start_position and length
combination defines a key segment. StorHouse extracts key data specified by each
combination and combines the extractions in the order that they are listed on the
KEY command. The sum of the lengths of each segment is the total length of the key,
with the maximum key length remaining 254 bytes. Start_position and length
combinations can overlap.

In the following command, CLAIM-HISTORY is the key name. Six key segments are
defined, starting at byte positions 86, 100, 125, 145, 195, and 220. The total key
length is 65 bytes, which is the combined length of all key segments.

COMMAND? KEY CLAIM-HISTORY 86:3 100:6 125:9 145:22 195:10 220:15

If a key definition is longer than one command line, type a hyphen as the last
character on the current line and press (Enter<2]. StorHouse prompts for the

continuation with “...?”.

For example:

COMMAND? KEY CLAIM-HISTORY 86:3 100:6 125:9 145:22 195:10 220:15 -
...7 300:100 405:6

Commenting KEY Commands

To comment key definitions, type an exclamation point as the first character after the
COMMAND:? prompt:

COMMAND? ! THIS KEY IS FOR LAST NAME
COMMAND? KEY LAST-NAME 16:15

Comments are not saved by StorHouse but may be useful for host program
documentation.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide B-21

FileTek Confidential and Proprietary

CREATE FILE Command
Examples

Sample Key Definition Series

The following commands represent a sample key definition series:

COMMAND? ! Last name of client

COMMAND? KEY LAST-NAME 16:15

COMMAND? ! Street address of client

COMMAND? KEY ADDRESS 31:25

COMMAND? KEY CITY 56:15

COMMAND? KEY STATE 71:2

COMMAND? KEY CLAIM-HISTORY 86:3 100:6 125:9 145:22 195:10 220:15 -
...7 300:100 405:6

StorHouse assigns a number to each key. In the preceding example, LAST-NAME is
key number 1, ADDRESS is key number 2, CITY is key number 3, STATE is key
number 4, and CLAIM-HISTORY is key number 5.

EXIT Command

The EXIT command causes StorHouse to exit from key-definition mode. The
following command terminates the key definition process, completes the CREATE
FILE command, and returns you to the command-ended state:

COMMAND? EXIT

Examples

For illustrations of how to create VRAM files, see Sections 8 and 9 of the sample
program in Chapter 6.

B-22 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

C

Installing and Using the StorHouse API for
Windows

The StorHouse API software for Windows allows you to communicate with
StorHouse from a user application program running on an IBM PC or compatible
computer under Microsoft® Windows NT™, 2000, or XP using TCP/IP. This
release of the StorHouse API works with all versions of the Win32 API.

The Windows StorHouse API consists of one Dynamic Link Library (DLL) that is

called from your application. You must install the DLL in the same directory as the
application that uses it or ensure that the DLL is in the application’s path.

Installing the Windows StorHouse API

This section describes how to install the StorHouse API for Windows. It lists the
installation requirements, installation diskette contents, and installation steps.

Installation Requirements

To install and run the StorHouse API for Windows, you must have the following:

* A FileTek StorHouse system attached to a local area network with TCP/IP
support

e Windows NT, 2000, or XP operating system
e TCP/IP network software
* At least 4 MB of hard disk space

e A 3.5-inch diskette drive

FileTek, Inc. Generic Callable Interface Programmer’s Guide C-1

FileTek Confidential and Proprietary

C Installing and Using the StorHouse API for Windows
Compiling and Linking the Sample Code With the StorHouse API for Windows

* The 3.5-inch FileTek installation diskette containing the StorHouse API for
Windows software.

Installation Diskette Contents

The installation diskette contains one file called install.exe that installs the SM.DLL,
sample C source code, and import libraries for Borland® and Microsoft. The sm.dll
function stubs (sm.lib files) needed to link your code are located in either the
BORLANDLIib or MSCLib directories. Use the directory appropriate for your compiler.

The installation creates the following directories and files:

Files and Directories Description

\SMAPI\BORLANDLib\sm.lib Import library for Borland projects

\SMAPI\MSCLib\sm.lib Import library for Microsoft projects
\SMAPI\Sample\COPYRIGHT Copyright notice

\SMAPI\Sample\readme Release information for the build

\SMAPN\Sample\sample.c Sample C program

\SMAPI\Sample\testthrd.c Sample multithreaded program

\SMAPN\Ismdefs.h Header file for functions

\SMAPN\sm.dll StorHouse API for Windows DLL

\SMAPI\filetek.ini Sample FILETEK.INI file

\SMAP\readme.txt Installation and use instructions for StorHouse API for Windows

Compiling and Linking the Sample Code With the
StorHouse API for Windows

The sample code provided on the installation diskette may be compiled and linked
with either the Microsoft or Borland C compilers.

Sample Programs

There are two sample programs included with the StorHouse API for Windows:

* SAMPLE.C — This is the same program that is documented in Chapter 6,
“Sample Program.” It is a single-threaded application that communicates with a
single StorHouse system. It exercises most of the StorHouse API for Windows
functions.

C-2 Generic Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Installing and Using the StorHouse API for Windows C

Compiling and Linking the Sample Code With the StorHouse API for Windows

e TESTTHRD.C — This is a variation of the sample.c program. It uses two threads
and can access one StorHouse system in each thread. Both threads can access the
same StorHouse system for testing. This program shows how to use the
StorHouse API for Windows in a multi-threaded environment. It is critical that
all activity for a single c-token occur in the same thread that creates the c-token.
In other words, the thread that executes LSMCON to connect to StorHouse and
obtain a c-token must be the thread that opens, reads, writes, closes, and executes
LSMDIS with that c-token. Multiple connections can occur concurrently in
different threads. Therefore, separate operations can take place at the same time,
but each operation must have its own c-token. Each set of operations from
LSMCON to LSMDIS using the same c-token must occur in separate threads. See
the sample program for more information.

FILETEK.INI File

The filetek.ini file is required to use DLL in Windows. This file requires only one
section for use with SM.DLL, formatted as follows:

[SMLi st]
sm.i dentifier=address, port

Bel ow i s an exanpl e:

[SMLi st]
smeys=100. 99. 98. 1, 1200

The sm_identifier must contain a maximum of six characters, as specified in the
“LSMCON - Connect” section on page 5-3. The address must be the IP address of

the StorHouse system or its domain name server (DNS) name. The port is 1200.

The filetek.ini file must reside in the WINDOWS directory and must contain the SMList
section with an entry for each StorHouse system that you intend to access.

Using DLL

To use DLL with your program, you must create a project in Microsoft Visual
C++™, Borland C++, or Borland C++ Builder™. Any program that calls a
StorHouse API for Windows function must include the Ismdefs.h header file. Your
project must include the Microsoft or Borland version of the sm.lib import library

file.

The sm.dll file must be included in the directory where your executable file resides, or
in your executable file’s working directory.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide C-3

C

FileTek Confidential and Proprietary

Installing and Using the StorHouse API for Windows

Compiling and Linking the Sample Code With the StorHouse API for Windows

c-4

Generic Callable Interface Programmer’s Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Appendix

D

Installing and Using the OS/2 StorHouse API

The StorHouse API software allows you to communicate with StorHouse from a user
application program running on an IBM PC or compatible computer under OS/2 on
PC/TCP™ network software for OS/2.

Installing the OS/2 StorHouse API

This section tells you how to install the OS/2 StorHouse API. It lists the installation
requirements and presents the installation steps.

Installation Requirements

To install and run the OS/2 StorHouse API, you must have the following:

OS/2 operating system version 1.3 or higher

PC/TCP network software for OS/2 (version 1.2 or higher) and one of the
interface cards that it supports

Microsoft C 6.0 compiler and linker for OS/2, or any other 16-bit compiler that
generates Microsoft-compliant code for OS/2

At least 4 MB of hard disk space for the PC/TCP runtime library
A 3.5-inch disk drive

The 3.5-inch FileTek installation disk containing the OS/2 StorHouse API
software.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide D-1

FileTek Confidential and Proprietary

Installing and Using the OS/2 StorHouse API
Installing the OS/2 StorHouse API

Installation Disk Contents

The installation disk contains the following directories:
* \LIB - contains the host interface library for OS/2 (HOST.LIB).
* \SAMPLE — contains the following files:

¢ ERR

e ENV.CMD (an OS/2 batch file used to set the OS/2 StorHouse software
communications parameters)

e LSMDEFS.H

e READ.ME (software release notes)

* SAMPLE.C (a sample program)

e SAMPLE.EXE

* SAMPLE.MAK (a sample makefile)

e SAMPLE.MAP

e SAMPLE.OB]J

e WFN.H

e WFW.H

e WMILH

e WVLH

* WVN.H

e WVWH
e WYCN.H
e WYLH

e WYWH

e WZILH

e README and README.WRI—contain the software release notes.

Installation Steps
v To install the OS/2 StorHouse API software:

1. Copy all of the files from the disk onto your PC.

2. Using the SET command, configure the OS/2 operating system environment so
that it recognizes the locations of the FileTek libraries and files.

The sample program uses two environment variables for configuration:

e server_name — the host’s TCP/IP name
* server_link — the host’s socket port ID for TCP/IP.

D-2 Generic Callable Interface Programmer's Guide FileTek, Inc.

FileTek Confidential and Proprietary

Installing and Using the OS/2 StorHouse API
Compiling and Linking an Application With the OS/2 StorHouse API

Compiling and Linking an Application With the OS/2
StorHouse API

Note:

This section presents the instructions for compiling and linking the OS/2 StorHouse
API software with the Microsoft C 6.0 compiler program. The sample program,
SAMPLE.C, provides a model for StorHouse and PC/TCP function calls running
under OS/2.

To compile and link an application using the StorHouse functions and the PC/TCP
libraries, you must use the Microsoft C 6.0 compiler for OS/2. PC/TCP software does
not guarantee that its libraries will work if the code is compiled and linked with a
different compiler and/or linker.

Microsoft C 6.0 Compiler and Linker Switches

Sample compiler and linker switches for CFLAGS and LFLAGS that must be set are:

* CFLAGS = -c-Al -MT
* LFLAGS = /ST:8192/NOD/NOI

You must use the -MT compiler switch because the PC/TCP libraries use
multithreaded OS/2 libraries. The switch tells the compiler to generate code for the
multithreaded libraries.

The -D_DLL switch tells the compiler to use FTPCRT.LIB (the PC/TCP library that
hooks into the C run-time DLL RTPCRT.DLL).

Linking the OS/2 StorHouse API

The directories in which the linker finds the library files may vary depending on your
hard disk directory structure. However, the order in which the linker processes the
libraries is very important. If you use a sequence of libraries for the linker other than
what the sample makefile shown in the next section specifies, your application might
not link or run properly. The sample makefile specifies the following libraries:

SOCKET.LIB — a PC/TCP library

HOST.LIB — the StorHouse host software library
FTPCRT.LIB — a PC/TCP library

OS2.LIB — a Microsoft OS/2 library
LLIBCMT.LIB — a Microsoft OS/2 library

Be sure to specify LLIBCMT.LIB as the OS/2 multithreaded library.

FileTek, Inc.

Generic Callable Interface Programmer’s Guide D-3

FileTek Confidential and Proprietary

Installing and Using the OS/2 StorHouse API

Compiling and Linking an Application With the OS/2 StorHouse API

Compiling and Linking Method

The preferred method of compiling and linking SAMPLE.C (or any other application
using StorHouse and the PC/TCP libraries) is presented in the following sample
makefile. This method enables structure packing and a higher level of warnings to be
set. For more information on compiler and linker flags, see your Microsoft C 6.0
programmer’s manual.

Sample Makefile

The following makefile is a sample of the commands you should use to compile and
link a program:

CFLAGS
LFLAGS

-cWB -Alfu -ZIp -@ -J -Lp -MI -D DLL-D_Mr
/ ST: 8192 /SE: 2048 /A 16 /NOD /NO PMTYPE: VI O

sanpl e. exe: sanpl e. obj
i nk $(LFLAGS) sanple, sanple,, socket
host os2 ftpcrt Ilibcnt;

sanpl e.obj: sanple.c
cl $(CFLAGS) sanple.c

D-4

Generic Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Index

NOTE: This index lists all special characters, such as
!'and /, and numeric characters before alphabetic
characters.

Symbols

/ASCII parameter modifier
CREATE FILE command B-4

/ATF parameter modifier
CREATE FILE command B-4

/CACHE parameter modifier B-4
/DIRECT parameter modifier B-5

/EDC parameter modifier
CREATE FILE command B-5

/EXTERNAL parameter modifier B-5

/ESET parameter modifier
CREATE FILE command B-6

/GROUP parameter modifier
CREATE FILE command B-6

/INEWPASSWORDS parameter modifier
CREATE FILE command B-7

/PASSWORDS parameter modifier
CREATE FILE command B-7

/REPLACE parameter modifier
CREATE FILE command B-8

/REPORT command modifier
CREATE FILE command B-3

/RETENTION parameter modifier
CREATE FILE command B-9

[SIZE parameter modifier
CREATE FILE command B-9

estimating total value B-12

/TYPE parameter modifier
CREATE FILE command B-10

/VSET parameter modifier
CREATE FILE command B-11

/VTEF parameter modifier
CREATE FILE command B-11

A

access privileges for account 2-2
access_method argument 5-21

account (StorHouse)
access privileges 2-2
account identification code (AID) 2-1
command privileges 2-2
default access group 2-2
default access rights 2-2
definition 2-1
passwords 2-2
privileges 2-2

account argument 5-3
account identification code (AID) 2-1
account password (StorHouse) 2-2

any-token argument
LSMAB general usage function 5-61
LSMASY general usage function 5-57
LSMMSG general usage function 5-59

APIs (StorHouse)
0S/2 D-1

FileTek, Inc.

Generic Callable Interface Programmer’s Guide

Index-1

FileTek Confidential and Proprietary

Index
A
Windows C-1 LSMCO file operation function 5-15
LSMOS file operation function 5-9
arguments

access_method 5-21
account 5-3

any-token

LSMAB general usage function 5-61
LSMASY general usage function 5-57
LSMCK general usage function 5-55
LSMMSG general usage function 5-59

buffer

LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

buffer_size

LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33

cr_buf 5-50

c-token

LSMCO file operation function 5-15
LSMCON session control function 5-3
LSMDIS session control function 5-5

LSMOS file operation function 5-8

LSMOV file operation function 5-21

LSMSCI StorHouse command interface function

5-50

file_attrib

LSMCO file operation function 5-16
LSMOS file operation function 5-9
LSMOV file operation function 5-22

file_location

LSMCO file operation function 5-16
LSMOS file operation function 5-9

file_name

LSMCO file operation function 5-15
LSMOS file operation function 5-8
LSMOV file operation function 5-21

file_options 5-11
file_password 5-15

file_passwords

LSMOS file operation function 5-9
LSMOV file operation function 5-21

group_name

LSMOV file operation function 5-21

group_password 5-15

group_passwords
LSMOS file operation function 5-9
LSMOV file operation function 5-22

key 5-43

key_length
LSMRK data transfer control function 5-37
LSMWZK data transfer control function 5-43

key_name 5-37

key_value 5-37

message_buffer 5-59

message_buffer_size 5-59

message_flag
LSMCO file operation function 5-15
LSMCON session control function 5-3
LSMOS file operation function 5-8
LSMOV file operation function 5-21

mode
LSMOS file operation function 5-8
LSMOV file operation function 5-21

model_file_name 5-16

o_token
LSMCO file operation function 5-15
LSMOS file operation function 5-8
LSMOV file operation function 5-21

o-token
LSMCH data transfer control function 5-47
LSMCLO file operation function 5-28
LSMCP file operation function 5-26
LSMDEL data transfer control function 5-46
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMW data transfer control function 5-41
LSMWZK data transfer control function 5-43

pl_value 5-57

password 5-3

record_length
LSMW data transfer control function 5-41
LSMWZK data transfer control function 5-43

rel_rec_num 5-22

resp_buf 5-51

resp_bufsize 5-51

resp_info 5-51

Index-2

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

return_ckpt_num 5-26

return_rec_len
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33

return_rec_num
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

returned_message_len 5-59

revision 5-21

set_flag 5-57

sm_identifier 5-4

subsystem_identifier 5-4

version 5-9

ASCII characters, printable 2-3
asynchronous mode 5-1

ATF command privilege
CREATE FILE filename /ATF command B-2

B

binary data representation 2-6

buffer argument
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

buffer_size argument
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33

Index
B

C

C language 5-1
c_token session link identifier 1-2, 2-1

Callable Interface
description 1-1
function hierarchy 1-1

change table size B-14
character strings 4-1

checkpoint
issuing B-12
table size B-13

checkpoint/restart
examples A-1
guidelines A-1

checkpointed files B-13

command modifiers
/REPORT
CREATE FILE command B-3

command privileges
ATF
CREATE FILE filename /ATF command B-2
DELETE
CREATE FILE filename /LIMIT command B-2
CREATE FILE filename /REPLACE command
B-2
for account 2-2
PASSWORDS
CREATE FILE filename /NEWPASSWORDS
command B-2
RECORD
CREATE FILE command B-2
SETGROUP
CREATE FILE filename /GROUP command B-
2
VTF
CREATE FILE filename /VTF command B-2

commands, specific
CREATE FILE B-1
RELOCATE A-6
SHOW SYSTEM A-6

commenting key commands B-21

FileTek, Inc.

Generic Callable Interface Programmer’s Guide Index-3

FileTek Confidential and Proprietary

Index
D

concatenating keys B-21 LSMRK 5-37
4 LSMRNK 5-39
connect token 4-2 LSMRR 5-35
cr_buf argument 5-50 LSMRS 5-33
CREATE FILE command LSMSCI 5-50
/ASCII parameter modifier B-3 LSMW 5-41
LSMWK 5-43

/ATF parameter modifier B-4
/CACHE parameter modifier B-4 data transfer functions 1-3
/DIRECT parameter modifier B-5
/EDC parameter modifier B-5
/EXTERNAL parameter modifier B-5 DD-= characters in strings 4-2,5-8
/ESET parameter modifier B-6
/GROUP parameter modifier B-6
/LIMIT parameter modifier B-7 default access rights for account 2-2
INEWPASSWORDS parameter modifier B-7 definine kevs B-20

/PASSWORDS parameter modifier B-7 chning feys

data transfer link identifier (o_token) 1-3, 2-1

default access group for account 2-2

/REPLACE parameter modifier B-8 definitions

/REPORT command modifier B-3 access privilege 2-2

/RETENTION parameter modifier B-9 account (StorHouse) 2-1

/SIZE parameter modifier B-9 account identification code (AID) 2-1
/TYPE parameter modifier B-10 account password (StorHouse) 2-2
/VSET parameter modifier B-11 command privilege 2-2

/VTF parameter modifier B-11 external keys B-19

description B-1 file (StorHouse) 2-3

filename parameter B-3 file access group (StorHouse) 2-4

file name (StorHouse) 2-3
file revision (StorHouse) 2-6
file version (StorHouse) 2-5
internal keys B-19

c-token argument
LSMCK general usage function 5-55
LSMCO file operation function 5-15
LSMCON session control function 5-3

LSMDIS session control function 5-5 DELETE command privilege
LSMOS file operation function 5-8 CREATE FILE filename /LIMIT command B-2
LSMOV file operation function 5-21 CREATE FILE filename /REPLACE command B-2
LSMSCI StorHouse command submission function . L
550 DF extent size, estimating B-13
. directory information for files 2-6
current record positions
key 3-2
sequential 3-2 E
D entry sequence for records 3-1

estimating /SIZE value
data extent size, estimating B-12 data extent size B-12

data table size B-13 EE;Z::;ZEB-BIQ 3

data transfer control functions total B-12
LSMCH 5-47 |
LSMDEL 5-46 examples

LSMR 5-31 checkpoint/restart A-1

Index-4 Generic Callable Interface Programmer’s Guide FileTek, Inc.

FileTek Confidential and Proprietary

Index

programming A-5
record sequencing 3-2

external key B-19

externally specified parameters 4-2

F

file (StorHouse) 2-3

file access group (StorHouse) 2-4
file access passwords 2-4

file directory information 2-6
file name (StorHouse) 2-3

file operation functions
LSMCLO 1-3, 5-28
LSMCO 1-2, 5-14
LSMCP 1-3, 5-26
LSMOS 1-2, 5-7
LSMOV 1-2, 5-20

file positioning
entry sequence 3-1
key sequence 3-1

file revision (StorHouse) 2-6
file size, estimating B-12
file version (StorHouse) 2-5

file_attrib argument
LSMCO file operation function 5-16
LSMOS file operation function 5-9
LSMOV file operation function 5-22

file_location argument
LSMCO file operation function 5-16
LSMOS file operation function 5-9

file_name argument
LSMCO file operation function 5-15
LSMOS file operation function 5-8
LSMOV file operation function 5-21

file_options argument 5-11
file_password argument 5-15

file_passwords argument
LSMOS file operation function 5-9
LSMOV file operation function 5-21

filename parameter B-3
files with keys B-13
FILETEK.INI File C-3
FORTRAN language 5-10

functions
categories 5-2
data transfer control 5-30
file operation 5-6
session control 5-2
StorHouse command submission 5-49

G

general usage functions
LSMAB 5-61
LSMASY 5-57
LSMCK 5-55
LSMMSG 5-59

group access passwords 2-4

group_name argument
LSMCO file operation function 5-15
LSMOS file operation function 5-9
LSMOV file operation function 5-21

group_password argument 5-15

group_passwords argument
LSMOS file operation function 5-9
LSMOV file operation function 5-22

guidelines
checkpoint/restart A-1
programming A-4
user A-6

index area size B-14
indicative text messages 4-3

installing StorHouse APIs
0S/2 D-1
Windows C-1

internal key B-19

FileTek, Inc.

Generic Callable Interface Programmer’s Guide

Index-5

FileTek Confidential and Proprietary

Index

K

K extent size, estimating B-14

key argument 5-43

key commands, commenting B-21
key data area size B-14

key definition components B-20
key index table B-14

key index table size B-14

key name table B-13

key segment location table size B-13
key sequence for records 3-1

key_length argument
LSMRK data transfer control function 5-37
LSMWEK data transfer control function 5-43

key_name argument 5-37

key_value argument 5-37
key-definition mode B-19

keys
concatenating B-21

defining B-20
keysequential files B-14

L

link identifiers
data transfer 2-1
session 2-1

LSMAB general usage function
any-token argument 5-61
description 5-61
overview 5-61
return codes 5-61

LSMASY general usage function
any-token argument 5-57
description 5-2, 5-57
overview 5-57
pl_value argument 5-57
return codes 5-57

set_flag argument 5-57

LSMCH data transfer control function
description 5-47
o-token argument 5-47
overview 5-47
return codes 5-47

LSMCK general usage function
any-token argument 5-55
description 5-55
overview 5-55
return codes 5-55

LSMCLO file operation function
description 5-29
o-token argument 5-28
overview 1-3, 5-28

return codes 5-28

LSMCO file operation function
c-token argument 5-15
description 5-19
file_attrib argument 5-16
file_location argument 5-16
file_name argument 5-15
file_password argument 5-15
group_name argument 5-15
group_password argument 5-15
message_flag argument 5-15
model_file_name argument 5-16
o_token argument 5-15
overview 1-2, 5-14

return codes 5-18

LSMCON session control function
account argument 5-3
c-token argument 5-3
description 5-4
message_flag argument 5-3
overview 1-2, 5-3
password argument 5-3
return codes 5-4
sm_identifier argument 5-4
subsystem_identifier argument 5-4

LSMCP file operation function
description 5-26
o-token argument 5-26
overview 1-3, 5-26
return codes 5-26
return_ckpt_num argument 5-26

Index-6 Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Index
L
LSMDEEFS include file 4-1 rel_rec_num argument 5-22
LSMDEL data transfer control function retl.lr.n codes 5-23
description 5-46 revision argument 5-21
o-token argument 5-46 LSMR data transfer control function
overview 5-46 buffer argument 5-31
return codes 5-46 buffer_size argument 5-31
LSMDIS session control function description 5-31
c-token argument 5-5 o—tok.en argument 5-31
description 5-5 overview 3-31
overview 1-2, 5-5 return codes 5-31
return codes ’5_ 5 return_rec_len argument 5-31
LSMMSG general usage function LSMRK data transfer control function
any-token argument 5-59 buffer argument 5-37
description 5-59 buffe.r_s.lze argument 5-37
message_buffer argument 5-59 Eescrllptfl(zl}z Sr—gfn nt 5-37
message_buffer_size argument 5-59 €y_cngth arguime
overview 5-59 key_name argument 5-37
return codes 5-59 key_value argument 5-37
o-token argument 5-37
returned_message_len argument 5-59 overview 5.37
LSMOS file operation function return codes 5-38
c-token argument 5-8 return_rec_len argument 5-37
description 5-13 return_rec_num argument 5-37
file_attrib argument 5-9 using to read a VRAM file 3-2
gi?ﬁ’;ﬁiiﬁgﬁiﬁ:gﬁg -9 LSMRNK data transfer control function
ﬁle:options argument 5-11 Eugei arigurrlrentms—:t95—39
file_passwords argument 5-9 du fi_tsi Zi aSigZO ¢
group_name argument 5-9 etsck pn Or ment 5-39
group_passwords argument 5-9 © Orvie 35%396
message_flag argument 5-8 overview
return codes 5-39
mode argument 5-8
o token areument 5-8 return_rec_len argument 5-39
o;erview 1%2 5.7 return_rec_num argument 5-39
return codes ’5_1 2 using to read a VRAM file 3-2
version argument 5-9 LSMRR data transfer control function
LSMOV file operation function E”gef arig“mremnf’iss_3 5
access_method argument 5-21 du fi_tsi Zi 35%1 6 ¢
c-token argument 5-21 escrptio
description 5-23 o—tok.en argument 5-35
file_arttrib argument 5-22 overview 5-35
return codes 5-35
file_name argument 5-21
eroup_name argument 5-21 return_rec_len argument 5-35
group:passwords argument 5-22 retillllrnt_rerc_gurr;/;riuMmfe\l?t 35:; >
message_flag argument 5-21 using to read a ¢
mode argument 5-21 LSMRS data transfer control function
o_token argument 5-21 buffer argument 5-33
overview 1-2, 5-20 buffer_size argument 5-33
FileTek, Inc. Generic Callable Interface Programmer’s Guide Index-7

FileTek Confidential and Proprietary

Index

description 5-34

o-token argument 5-33
overview 5-33

return codes 5-33
return_rec_len argument 5-33
return_rec_num argument 5-33
using to read a VRAM file 3-2

LSMS_TOKEN structure 4-2

LSMSCI StorHouse command interface function
cr_buf argument 5-50
c-token argument 5-50
description 5-52
overview 5-50
resp_buf argument 5-51
resp_bufsize argument 5-51
resp_info argument 5-51
return codes 5-51

LSMW data transfer control function
buffer argument 5-41
description 5-41
o-token argument 5-41
overview 5-41
record_length argument 5-41
return codes 5-41
return_rec_num argument 5-41

LSMWK data transfer control function
buffer argument 5-43
description 5-44
key argument 5-43
key_length argument 5-43
o-token argument 5-43
overview 5-43
record_length argument 5-43
return codes 5-43
return_rec_num argument 5-43

LSMxxx
function categories 5-2
functions 1-1, 5-1
sample program 6-1

M

message_buffer argument 5-59
message_buffer_size argument 5-59

message_ﬂag argument

LSMCO file operation function 5-15
LSMCON session control function 5-3
LSMOS file operation function 5-8
LSMOV file operation function 5-21

Microsoft C 6.0 compiler and link switches D-3

mode argument
LSMOS file operation function 5-8
LSMOV file operation function 5-21

model_file_name argument 5-16

modes of operation
asynchronous 5-1
synchronous 5-1

next-key read operations 3-1

O

o_token argument
LSMCO file operation function 5-15
LSMOS file operation function 5-8
LSMOV file operation function 5-21

o_token data transfer link identifier 1-3, 2-1
open token 4-2

0OS/2 StorHouse API
compiling and linking with APT D-3
description D-1
installation disk contents D-2
installation requirements D-1
installation steps D-2
linking D-3
writing a program using API D-4

o-token argument
LSMCH data transfer control function 5-47
LSMCLO file operation function 5-28
LSMCTP file operation function 5-26
LSMDEL data transfer control function 5-46
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33

Index-8 Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

LSMW data transfer control function 5-41
LSMWEK data transfer control function 5-43

P

p1_value argument 5-57

parameter modifiers

/ASCII

CREATE FILE command B-3
|ATF

CREATE FILE command B-4
/CACHE B-4
/DIRECT B-5
/EDC

CREATE FILE command B-5
/EXTERNAL B-5
/ESET

CREATE FILE command B-6
/GROUP

CREATE FILE command B-6
/LIMIT

CREATE FILE command B-7
/INEWPASSWORDS

CREATE FILE command B-7
/PASSWORDS

CREATE FILE command B-7
/REPLACE

CREATE FILE command B-8
/RETENTION

CREATE FILE command B-9
/SIZE

CREATE FILE command B-9
/TYPE B-10
/IVSET

CREATE FILE command B-11
IVTF

CREATE FILE command B-11

parameter, filename B-3
password argument 5-3

PASSWORD command privilege
CREATE FILE filename

command B-2

INEWPASSWORDS

passwords
account 2-2

file access 2-4

group access 2-4

Index
P

printable ASCII characters 2-3

privileges (StorHouse)
access 2-2
command 2-2

program fixes, guidelines A-6
programming examples A-5

programming guidelines A-4

R

read functions for VRAM files
LSMRK 3-2
LSMRNK 3-2
LSMRR 3-2
LSMRS 3-2

RECORD command privilege
CREATE FILE command B-2

record modification table size B-14

record sequencing
entry 3-1
key 3-1

record_length argument
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

rel_rec_num argument 5-22
RELOCATE command A-6

requirements for applications to perform StorHouse
operations 1-2

resp_buf argument 5-51
resp_bufsize argument 5-51
resp_info argument 5-51

return codes 4-2
LSMAB general usage function 5-61
LSMASY general usage function 5-57
LSMCH data transfer control function 5-47
LSMCK general usage function 5-55
LSMCLO file operation function 5-28
LSMCO file operation function 5-18
LSMCON session control function 5-4
LSMCP file operation function 5-26
LSMDEL data transfer control function 5-46

FileTek, Inc.

Generic Callable Interface Programmer’s Guide

Index-9

FileTek Confidential and Proprietary

Index
S

LSMDIS session control function 5-5
LSMMSG general usage function 5-59
LSMOS file operation function 5-12
LSMOV file operation function 5-23
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-38
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMSCI StorHouse command interface function 5-
51
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

return_ckpt_num argument 5-26

return_rec_len argument
LSMR data transfer control function 5-31
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33

return_rec_num argument
LSMRK data transfer control function 5-37
LSMRNK data transfer control function 5-39
LSMRR data transfer control function 5-35
LSMRS data transfer control function 5-33
LSMW data transfer control function 5-41
LSMWK data transfer control function 5-43

returned_message_len argument 5-59

revision argument 5-21

roll back for file revisions A-3

S

sample program 6-1

session control functions
LSMCON 1-2, 5-3
LSMDIS 1-2, 5-5

session identifier (c_token) 1-2, 2-1
session identifiers 2-1
set_flag argument 5-57

SETGROUP command privilege
CREATE FILE filename /GROUP command B-2

SHOW SYSTEM command A-6

size

change table B-14

checkpoint table B-13

data extent B-12

data table B-13

DF extent B-13

index area B-14

key data area B-14

key index table B-14

key name table B-13

key segment location table B-13
record modification table B-14

sm_identifier argument 5-4

StorHouse

access privileges for account 2-2
account 2-1

account identification code (AID) 2-1
account password 2-2

API for OS/2 D-1

API for Windows C-1

command functions 1-3

command privileges for account 2-2
CREATE FILE command B-1
default access group 2-2

default access rights 2-2

file 2-3

file access group 2-4

file name 2-3

file revision 2-6

file version 2-5

subsystem_identifier argument 5-4

synchronous mode 5-1

T

tokens

connect 4-2

open 4-2

transportable files 2-6

U

updated files B-14

Index-10

Generic Callable Interface Programmer's Guide

FileTek, Inc.

FileTek Confidential and Proprietary

Index

user guidelines A-6

version argument 5-9

VTF command privilege
CREATE FILE filename /VTF command B-2

W

Windows StorHouse API
compiling and linking the sample code C-2
description C-1
installation disk contents C-2
installation requirements C-1

FileTek, Inc. Generic Callable Interface Programmer's Guide Index-11

FileTek Confidential and Proprietary

Index

Index-12 Generic Callable Interface Programmer's Guide FileTek, Inc.

	Online Guide
	Contents
	Figures
	Tables
	Welcome
	Purpose of This Document
	Intended Audience
	Contents
	Related Documentation
	Notational Conventions

	Introduction
	C Language Interface
	Callable Interface Function Hierarchy
	Session Control Functions
	File Operation Functions
	Data Transfer Functions
	StorHouse Command Functions

	StorHouse Parameters and Data Descriptions
	Session and Data Transfer Link Identifiers
	StorHouse Accounts and Passwords
	Account Passwords
	Default Access Groups and Rights
	StorHouse Privileges

	StorHouse Files and File Access Groups
	StorHouse File Names
	File Access Groups
	Group and File Access Passwords
	Group Passwords
	File Passwords

	File Versions
	File Revisions
	File Data Representation
	Directory Information

	File Positioning
	Record Sequencing
	Entry Sequence
	Key Sequence

	Current Record Position
	Read Functions and Current Record Position
	Record Sequencing Example

	Control Structures for the C Interface
	Parameter Values
	Character Strings
	Externally Specified Parameters
	Tokens

	Return Codes
	Indicative Text Messages

	Definition of the LSMxxx Functions
	Synchronous and Asynchronous Functions
	Synchronous Mode
	Asynchronous Mode
	Function Statement Format

	Session Control Functions
	LSMCON - Connect
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Cross-Reference to Sample C Program

	LSMDIS - Disconnect
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample C Program

	File Operation Functions
	LSMOS - Open Sequential
	Function Prototype Definition
	Data Structures
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMCO - Create Open
	Function Prototype Definition
	Data Structures
	Argument Description
	Return Codes
	Function Description
	Notes
	Cross-Reference to Sample Program

	LSMOV - Open VRAM
	Function Prototype Definition
	Data Structures
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMCP – Checkpoint
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMCLO – Close
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Data Transfer Control Functions
	LSMR – Read
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	LSMRS – Read Sequential
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMRR – Read Record
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMRK – Read Keyed
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMRNK – Read Next Key
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMW – Write
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMWK – Write Key
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMDEL – Delete Record
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	LSMCH – Change Record
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	StorHouse Command Submission
	LSMSCI – StorHouse Command Interface
	Function Prototype Definition
	Data Structures
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	General Usage Functions
	LSMCK – Check
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMASY – Set Asynchronous Mode
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Cross-Reference to Sample Program

	LSMMSG – Message Retrieve
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	LSMAB – Abort
	Function Prototype Definition
	Argument Description
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Sample Program
	LSMxxx Sample Program

	Checkpoint/Restart and Programming Guidelines
	Checkpoint/Restart
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Programming Guidelines
	Defining Resources
	Examples
	User Guidelines
	Permanent Fixes

	CREATE FILE Command
	Description
	Format
	Parameter
	Command Modifier
	Parameter Modifiers

	Estimating a Value for /SIZE
	Estimating Data Extent Size
	Estimating DF Extent Size
	All Files
	Checkpointed Files
	Files with Keys
	Keysequential Files
	Updated Files

	Estimating K Extent Size
	Example 1
	Example 2

	Key-Definition Mode
	KEY Command
	Defining Keys
	Concatenating Keys
	Commenting KEY Commands
	Sample Key Definition Series
	EXIT Command

	Examples

	Installing and Using the StorHouse API for Windows
	Installing the Windows StorHouse API
	Installation Requirements
	Installation Diskette Contents

	Compiling and Linking the Sample Code With the StorHouse API for Windows
	Sample Programs
	FILETEK.INI File
	Using DLL

	Installing and Using the OS/2 StorHouse API
	Installing the OS/2 StorHouse API
	Installation Requirements
	Installation Disk Contents

	Installation Steps

	Compiling and Linking an Application With the OS/2 StorHouse API
	Microsoft C 6.0 Compiler and Linker Switches
	Linking the OS/2 StorHouse API
	Compiling and Linking Method
	Sample Makefile

	Index

