Release Notes for
StorHouse/RM 3.2

StorHouse/RM Release 3.2

Publication Number
900126 Rev. M

April 17, 2002

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1996-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900126 Rev. M

NOTE: U.S. GOVERNMENT USERS
Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
or the Commercial Computer Software - Restricted Rights clause at 48
CFR 52.227-19, as applicable. Unpublished-rights reserved under the
copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

FileTek Proprietary and Confidential

FileTek

Contents

WEICOME e Vil
INTENAEd QUAIBNCEvieiiiieiee bbb vii
Contents Of dOCUMENToviiiiciie e vii
Related dOCUMENTALIONooiiieiiiie it e viii

Chapter 1: Changes and enhancementsccccccoovviiiiiiiiinnnnee, 1-1
SYSTEM FEQUITEMENTS ..oeiiieiieeeiieeie ettt e e eesre e nes 1-1
Metadata CONVEISIONeoeiiiiieiiiieie ettt sttt ettt e eseesneseeeneeseeneeas 1-1
Re-definition Of SEYMENToiiiiiiiiii e 1-2
Definition of in-line and out-0f-liNe LOBScccccciiviriiiiie s 1-3
(@] I U] oo - (-1 SRS 1-3

NeW SQL STATEMENTS ...oooiiiiei et s e e st e e srree e 1-3
Changed SQL STAtEMENTSccveiieiiieeeeiee e 1-4

Defining a subspace for LOB dataccccooeviniininieieneiecere e 1-4

Creating a table with a BLOB or CLOB columnc.ccoccevevvivninieienns 1-4

Creating an index on a loaded tableccccceveviii i 1-5
INEW FUNCLIONS ...ttt e 1-6
Functions that now allow LOB argumentscccccevveueeieesieesieesieesneseesenenenns 1-7
Functions that now allow binary argumentsc.ccoocoioiiiiiniienince e 1-8
Additional format for SUBSTRcoooiiiiiiee e 1-8
Result type changes for LENGTH, TO_CHAR, SUM, and AVG functions1-8
Results of DECIMAL EXPreSSIONSccvevveieeearieiesiesieeeesessessessseeessessessesssenes 1-9

Release Notes for StorHouse/RM 3.1 iii

FileTek Proprietary and Confidential

. Contents

Data tYPe UPAALESc.veiveiereeiiiecie sttt ettt re e naenne e 1-10
NEW LA TYPES ©ovvveveiiiee ettt et e re e sre e e e e e ee e e anes 1-10
Guaranteed-size data types for C types int and 1oNgcccocceveevivviciieevieenns 1-11
Changed default lengths of loader and unloader data typescccccoeveveerrnene 1-12
New default TIME [EXTERNAL] format maskcccocovviniiinenniinciens 1-13
Changed ESQL data types and C STFUCTUIESccevevvrieeeerienieneseeeeie e 1-13

ESQL ChANQES ...oveiieiiiecte ettt te st et et sresreene s 1-14
New host variable types for LOB GCCESSccevvereerieerriiirrieeie e seeseesiee e 1-15

LOCAtOr variables ..o 1-15
File reference variablesSccocoooiiiiiiiee e 1-15
SQLCA CNANGES ..eveiieeieeese e 1-16
SQLDA ChaNQESooviiveciiecie st sre e 1-17
SQLDA SEIUCTUIE ..eeiiiieee et e e s e e s e e eaaee s 1-17
SQLDA fUNCLIONS ...ttt ettt 1-18
New default compile and link commandscccoovioeiinienene e 1-20
SUN SOIAFIS .ttt ene 1-20
H P et 1-20

Data 10ader CANQESccveiiiie e 1-20
L0oadiNg LOB dataccoeeveiiiieiiiiieicsic sttt st sne s 1-21
Selecting or rotating among subspaces for LOB dataccccccvvvviviiineinenns 1-21
Generating field specifications for all data fieldsccocoieiiiiiiiiieiie 1-21
Describing NULL flags in iNput dataccoceveieieiieiee e 1-22
Loading a NULL or default value for empty or blank data fields 1-22
Checking for data file or load control file errorsccccoeveveveii i, 1-22
Loading a deferred iNAEXcocoveieiiii e 1-23
Merging segments of atablecccovviii i 1-24
Loading data from multiple VRAM fileSccooiiiiiiiiiee e 1-26
Loading in FTP passivVe MOTEcccueieiiiieeeiesese e 1-26

Data unloader CRANGESooiveiiiriiceee e 1-26
UNIoading LOB dataccvcveieiiiiiiecie ettt sttt ane s 1-27
Inserting NULL flags in result datacccocevviieiiiieiiiiecc e 1-27
Clarification about delimiters in result data ..o 1-27

JOIN BNNANCEIMENTSieiieiie ettt seeseeeneenes 1-28
0TI 1 SRS 1-28
JOIN GUIAETTNES ... 1-30

iv Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Contents .

Optimizer eNNANCEMENTScveiiieciecie e sre s 1-30
Extended file naming convention for segment filescccoovviivii i 1-31
New field in the SQL transaction reCordcocovvvvevieeciiiiie e 1-31
IP version 6 addressing SUPPOITceoveiiieeeeiee ettt 1-32
Thread safe frONt-8NAoov i 1-32
System [IMIt ChANGEc.oviee s 1-32
Metadata NNANCEMENTSoviiiiiiiieie e 1-32
Automatic INdex rebUIlcooiiiiiiie e 1-32
Improved system table indexing performancecccoceveieneniiie e 1-33
System table documentation ChaNGESccoviiiiiiiiiierereee e 1-33
SYSINDEXES system table ... 1-33
SYSCOLUMNS system tablecccocveveieiiie e 1-33
SQL COUBS ..vivviirieireeite ettt ettt ettt e ete et e et e e rb e e be e tesabesbbesbeeebeesbeesaeesbeeabeens 1-34
INEW TESEIVEA WOITSveieeiieiteitieie ettt sttt et sresre e e 1-35
Chapter 2: Special considerationsccccccevveeiiiiiiiiiieeeceiieneen, 2-1
K@]I Lo (=T {0 01 SRS 2-1
SQL COUE =30033oieiieieeieeieieree ettt sttt re et e 2-1
DESCRIBE BIND FeStFHCIIONS ...cvvivveiieieiesieeieeiesie e seeiesie e see e e snaesaeseesneanens 2-2
Design advisory for join OPErationsc.cccceevvereieiiiiercse e 2-2
RSO] I o] {0 o [N o1] - L SO 2-2
DDL processing iN generalccccveiiverieeiieeieeseeseeieesee e see e see e seesnaesnaesreens 2-3
Host variables as BINARY, VARBINARY, and VARCHAR data typesc..c...... 2-3
Immediate restart after a 10ad failure ..o 2-3
(@3 11 £ 1o LSS 2-4
ODBC ettt 2-4

E S et 2-4

Release Notes for StorHouse/RM 3.2 v

FileTek Proprietary and Confidential

. Contents

vi Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

FileTek

Welcome

Release Notes for StorHouse/RM 3.2 identifies changes, enhancements, and special
considerations for StorHouse/RM since release 2.3.

Intended audience

This document is intended for StorHouse/RM users who are familiar with the
StorHouse/RM software and for new users who want a summary of changes.

Contents of document

This publication contains the following chapters:

= Chapter 1, “Changes and enhancements,” summarizes updates and new
features in StorHouse/RM since release 2.3.

= Chapter 2, “Special considerations,” describes issues that may, in certain

environments or fields of use, require careful review during assessment of an
application’s use of StorHouse/RM at this time.

Release Notes for StorHouse/RM 3.2 vii

Welcome

FileTek Proprietary and Confidential

Related documentation

Related documentation

viii

Refer to the following documents for information about StorHouse/RM.

The StorHouse SQL Reference Manual, publication number 900111, describes
the SQL statements, predicates, and functions supported by StorHouse®.

The StorHouse SQL Quick Reference, publication number 900122, provides a
summary of the material in the StorHouse SQL Reference Manual.

The StorHouse Database Administration Guide, publication number 900108,
describes StorHouse database concepts and explains how to create user tables
and indexes, manage accounts and privileges, set up user tablespaces, and
perform other StorHouse database administration tasks.

The StorHouse ESQL Manual, publication number 900121, explains how to
use StorHouse SQL in application programs.

The FileTek MVS Data Loader Utility Manual, publication number 900109,
describes how to load data into StorHouse user tables from an MVS
environment.

The FileTek FTP Data Loader Manual, publication number 900115, explains
how to load data into StorHouse user tables from UNIX®, VAX, or other
hosts using your standard File Transfer Protocol (FTP) client software.

The FileTek FTP Data Unloader Manual, publication number 900137,
explains how to unload data from StorHouse databases using FTP. It describes
the UNLOAD control statement you prepare to format result data, the
SELECT statement you prepare to select the data to unload, and the subset of
FTP commands you use to transfer control information and to receive result
data.

The StorHouse/RM Metadata Conversion Manual, publication number
900142, explains how to convert metadata from one StorHouse/RM release
to another.

Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Welcome
Related documentation

= The StorHouse/RM Glossary, publication number 900112, defines the
terminology used in the StorHouse/RM User Document Set.

Release Notes for StorHouse/RM 3.1 ix

FileTek Proprietary and Confidential

Welcome
Related documentation

X Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Chapter

1

Changes and enhancements

This chapter describes the changes and enhancements to StorHouse/RM since
release 2.3.

System requirements

StorHouse/RM is now available on Hewlett-Packard HP-UX systems.
StorHouse/RM release 3.2 requires the following:

= StorHouse/SM release 5.2 or 5.3 (deliveries 124, 149, and 157 are required
and delivery 183 is highly recommended)

= Sun™ Solaris™ 2.6, Solaris 8, or HP-UX 11.0
StorHouse/RM also supports StorHouse release 5.4 on both Solaris and HP-UX

systems. A separate build of StorHouse/RM 3.2 is required for StorHouse/SM
5.4.

Metadata conversion

Metadata may be stored in UNIX large files. Each metadata file can now be larger
than 2 gigabytes (GB). If you require this feature, you must run the metadata
conversion utility, using the copyout and copyin module provided with release
3.2. If you don't require this feature, you can run StorHouse/RM release 3.2 with

Release Notes for StorHouse/RM 3.2 1-1

FileTek Proprietary and Confidential

Changes and enhancements

1

Re-definition of segment

earlier metadata. Note, however, that a database created with the StorHouse/RM
release 3.2 syscreate utility cannot be used with earlier releases of StorHouse/RM.

Re-definition of segment

The definition of segment has changed. Previously, a segment was defined as a
StorHouse file. User table data was stored in table segments, and hash indexes
and value indexes were stored in index segments. Now, the StorHouse/RM User
Document Set contains the following definition:

A segment is a set of StorHouse files containing table data, index entries, and LOB
data. Each time you load data into a user table, StorHouse creates a segment with one
file for the table data, one file for each hash index, one file for each value index, and
one or more subsegment files for each LOB column.

For example, the following user table consists of three segments. This user table
has one value index, one hash index, and one LOB column.

User table
Table Index 1 Index 2 LOB
data Value index Hash index column
s t1 Table Value Hash LOB N
egmen data file index file index file subsegment file
Table Value Hash LOB h
Segment 2 data file index file index file subsegment file
Table Value Hash LOB h
Segment 3 data file index file index file subsegment file
H:

1-2 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Definition of in-line and out-of-line LOBs

Definition of in-line and out-of-line LOBSs

StorHouse/RM supports the loading, storage, and unloading of large objects
(LOBs). A LOB is a binary large object (BLOB) or a character large object (CLOB).
These types allow storage of up to 2G - 9 bytes in a single instance of a single
column. An in-line LOB is a LOB value stored in the table data file with the rest of
the table data. The maximum size of a row in a table data file is 32,705 bytes. An
out-of-line LOB is a LOB value stored in a separate StorHouse file called a LOB
subsegment file. Depending on the actual size and by user request (on the
CREATE TABLE statement), LOB values may be stored in the table data file, or
LOB values in different columns may be stored in the same LOB subsegment file,
or LOB values in a single column may be stored in multiple LOB subsegment
files. See “Creating a table with a BLOB or CLOB column” on page 1-4 for LOB
storage options.

SQL updates

Some SQL statements and functions are new and others have changed.
Additionally, the result precision and scale for arithmetic operations on
DECIMAL values have changed.

New SQL statements

Two new SQL statements are exclusive to LOBSs:

= VALUES INTO — Manipulate LOB values and expressions previously selected
using locator variables. See “Locator variables” on page 1-15 for more
information about locator variables.

» FREE LOCATOR - Release one or more locator variables before the end of a
transaction, freeing the server storage used by the locator variable.

Release Notes for StorHouse/RM 3.2 1-3

FileTek Proprietary and Confidential

Changes and enhancements

SQL updates

Changed SQL statements

The formats of the CREATE TABLESPACE, ALTER TABLESPACE, and CREATE
TABLE statements have changed to support LOBs. The CREATE INDEX
statement has a new DEFERRED keyword.

Defining a subspace for LOB data

When creating or altering a user tablespace, you can now define a subspace (set of
storage parameters) for LOB data. With LOB subspaces, you can manage the
storage of LOB data differently from the rest of the table data and the index data.
The OBJECT_TYPE subspace parameter allows the value L for LOBs. For
example:

CREATE TABLE SPACE STATEMENTS
(SUBSPACE 1 VSET JAN2001L FSET JAN2001L OBJECT_TYPE L
ATF 2 VTF NOW MAX_EXT_SIZE 800 HOLD 30 HOLD_SPECIAL 60)

Creating a table with a BLOB or CLOB column

When creating a user table, you can now define BLOB and CLOB columns to
hold about 2 gigabytes (2**31-9) of data. The following new CREATE TABLE
clauses define LOB storage options:

= INLINE [(length [K])] — Set the maximum length for LOB values stored (in-line)
with the table data.

= NOT INLINE — Store LOB values in a different file (out-of-line) from the table
data, even if the values fit in a row.

= STORE WITH column_name — Share storage (a LOB subsegment file) with
another LOB column in the table.

= TABLE SPACE tablespace_name — Assign the LOB column to a user tablespace
different from the tablespace of table.

1-4 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
SQL updates

For example:

CREATE TABLE LOB_EXAMPLE
(CHAR_COL CHAR(6),

FIRST_CLOB CLOB(1M) STORE WITH SECOND_CLOB,
SECOND_CLOB CLOB TABLESPACE XYZ,
FIRST_BLOB BLOB(1G) NOT INLINE,

SECOND_BLOB INLINE(2K))

TABLE SPACE ABC

Refer to the StorHouse Database Administration Guide for more information
about defining LOB subspaces and creating user tables with LOB column
definitions.

Creating an index on a loaded table

You can now create indexes after a table has been loaded and then load the
indexes for the existing segments. This index is called a deferred index. You can
create deferred indexes for all index types—value, hash, and range.

To create a deferred index, use the new DEFERRED keyword on the CREATE
INDEX statement. Place this keyword after the column list and before any
TABLE SPACE clause. An error occurs if you omit the DEFERRED keyword and
the table contains data.

The new CREATE INDEX format is:

CREATE [VALUE | HASH | RANGE] INDEX index_name
ON [owner.Jtable_name (column_name [,column_name]...)
[DEFERRED]

[TABLE SPACE tablespace_name]

Release Notes for StorHouse/RM 3.2 1-5

FileTek Proprietary and Confidential

Changes and enhancements
SQL updates

Here’s an example statement with the DEFERRED keyword:

CREATE VALUE INDEX ORDERS2000

ON ORDERS (ORDER_NO, CUSTOMER_NAME)
DEFERRED

TABLE SPACE ORDERS2000

New functions

The following functions are new in StorHouse/RM.

New StorHouse functions

Function Description

BIT_LENGTH Returns the length (in bits) of a BINARY, BLOB, CHAR, CLOB,
VARBINARY, or VARCHAR expression.

BLOB Returns a BLOB representation of a BINARY, CHAR,
VARBINARY, or VARCHAR expression.

CHAR_LENGTH Returns the length (in characters) of a BINARY, BLOB, CHAR,
CLOB, VARBINARY, or VARCHAR expression.

CLOB Returns a CLOB representation of a CHAR or VARCHAR
expression.

OCTET_LENGTH Returns the length (in bytes) of a BINARY, BLOB, CHAR,
CLOB, VARBINARY, or VARCHAR expression.

OVERLAY Replaces a substring from the first expression (BINARY, BLOB,
CHAR, CLOB, VARBINARY, or VARCHAR data type) with the
second expression.

POSITION Determines the starting position at which the first expression
(BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR
data type) is found in the second expression.

TRIM Removes leading values, trailing values, or both from a
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR
expression

1-6 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements

SQL updates

Functions that now allow LOB arguments

You can now use BLOB and/or CLOB arguments with these existing functions:

Functions that take LOB arguments

Function BLOB argument CLOB argument
ASCII

CONCAT

COUNT

INITCAP

INSTR

xX X X X X

LENGTH
LOWER
LPAD
LTRIM X
NVL X
RPAD

RTRIM X
SUBSTR X

TO_CHAR X

X X X X X X X X X X X X X X X

TO_DATE
TO_HEX X
TO_NUMBER

TO_TIME

TRANSLATE

xX X X X

UPPER

Release Notes for StorHouse/RM 3.2 1-7

FileTek Proprietary and Confidential

Changes and enhancements

SQL updates

Functions that now allow binary arguments

Several functions that previously accepted only character arguments now also
allow binary arguments.

Functions that now take binary arguments

Function Previous type(s) Current types

CONCAT CHAR or VARCHAR BINARY, BLOB, CHAR, CLOB, VARBINARY,
or VARCHAR

INSTR CHAR BINARY, BLOB, CHAR, CLOB, VARBINARY,
or VARCHAR

LENGTH CHAR BINARY, BLOB, CHAR, CLOB, VARBINARY,
or VARCHAR

LTRIM CHAR or VARCHAR BINARY, BLOB, CHAR, CLOB, VARBINARY,
or VARCHAR

RTRIM CHAR or VARCHAR BINARY, BLOB, CHAR, CLOB, VARBINARY,
or VARCHAR

Additional format for SUBSTR

The SUBSTR function now accepts the SQL-99 format in addition to the current
StorHouse format.

= Current format: SUBSTR (expression, start_position [, length])
= SQL-99 format: SUBSTR (expression FROM start_position [FOR length])

Result type changes for LENGTH, TO_CHAR,
SUM, and AVG functions

The result data type of the LENGTH function is now INTEGER (previously
SMALLINT).

1-8 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
SQL updates

The result data type of the TO_CHAR function is VARCHAR if the expression is
CLOB or CHAR if the expression is any other data type (except BLOB).
TO_CHAR does not support a BLOB expression. StorHouse/RM silently
truncates any CLOB larger than 32705.

The result data type of the SUM and AVG functions for integer or decimal input
types is as follows:

Result types for SUM and AVG functions

Input type SUM result AVG result

REAL DOUBLE DOUBLE

DOUBLE DOUBLE DOUBLE

SMALLINT DECIMAL(15) DECIMAL(13,8)

INTEGER DECIMAL(20) DECIMAL(18,8)

DECIMAL(p1,s1) p=MIN (31, pl+10) S=MIN(31-p1,8)+sl
s=sl p=plsl+s

Results of DECIMAL expressions

The result precision and scale for arithmetic operations involving DECIMAL
values are as now follows.

Result precision and scale for operations on DECIMAL values

Operation Result

+or- m=MAX (M1, m2)+1 s=MAX(sl,s2)
* m=ml+m2 s=sl+s2
/ m=ml+s2 s =MAX (MIN (m2,6) +s1 +1,8)

Note that m = p - s and that m and s are limited to 31. The p (or s if division) is
further reduced if needed to limit p to 31.

Release Notes for StorHouse/RM 3.2 1-9

FileTek Proprietary and Confidential

Changes and enhancements

Data type updates

Data type updates

There are new data types and changes to existing data types.

New data types

StorHouse/RM now supports the following new data types.

New StorHouse data types

Function Data type

Defining columns BLOB [(length [K|M|G])]
BINARY LARGE OBJECT [(length [K|M|G])]

CLOB [(length [K|M|G])]
CHARACTER LARGE OBJECT [(length [K|M|G])]

Loading data BLOB [(max_length [K|M|G])]

BLOB_FILE [(length)] [delimiter_spec] [HOST hostname]
[PATH path_spec] [USER username/password]

CLOB_FILE [(length)] [CHARSET ccsid] [delimiter_spec]
[HOST hostname] [PATH path_spec] [USER username/password]

CLOB [(max_length [K|M|G])] [CHARSET ccsid]

Unloading data BLOB [(max_length [K|M|G])]

BLOB_FILE [(length)] [delimiter_spec] [HOST hostname]
[PATH path_spec] FILENAME filename_spec [OVERWRITE]
[USER username/password]

CLOB [(max_length [K|M|G])] [CHARSET ccsid]

CLOB_FILE [(length)] [CHARSET ccsid] [delimiter_spec]
[HOST hostname] [PATH path_spec] FILENAME filename_spec
[OVERWRITE] [USER username/password]

Declaring variables BLOB

BLOB_FILE

1-10 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Data type updates

New StorHouse data types (continued)

Function Data type
BLOB_LOCATOR

CLOB

CLOB_FILE

CLOB_LOCATOR

Guaranteed-size data types for C types int
and long

Depending on the platform, the C type int may be 16 or 32 bits and the C type
long may be 32 or 64 bits. You can now declare host variables with the following
guaranteed-size types in ESQL applications:

Other types for int and long

Data type Description

int64_t 64-bit signed integer
uint64_t 64-bit unsigned integer
int32_t 32-bit signed integer
uint32_t 32-bit unsigned integer
intl6_t 16-bit signed integer
uintl6_t 16-bit unsigned integer
int8_t 8-bit signed integer
uint8_t 8-bit unsigned integer

Release Notes for StorHouse/RM 3.2 1-11

1-12

FileTek Proprietary and Confidential

Changes and enhancements

Data type updates

Changed default lengths of loader and
unloader data types

The default lengths of some loader and unloader data types have changed.

= CHARACTER - In release 2.3, the default length for CHAR was as follows:
— 256 (with delimiter_spec)
— or CREATE TABLE length if the source data was BINARY or CHAR
— otherwise 1

Now, the default length for CHAR is as follows:

— MIN(CREATE TABLE length, 32705) if the source data is BINARY, BLOB,
CHAR, CLOB, VARBINARY, or VARCHAR

— orelse 256 (with delimiter_spec)
— elsel

» DATE EXTERNAL - The default length for the unloader DATE EXTERNAL
data type has changed.

— Inrelease 2.3, the default length was 256 (with delimiter_spec) or 75
(without a delimiter_spec).

— Now, the default length is 256 (with delimiter_spec) or else 75 (with
mask) or else 10.

» TIME EXTERNAL - In release 2.3, the default length for a TIME EXTERNAL
data field was:

— Unloader: 75 (without delimiter_spec) or 256 (with delimiter_spec)

Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Data type updates

— Loader: 8 (without delimiter_spec) or 256 (with delimiter_spec)
Now, the default length is as follows:

— Unloader: 256 (with delimiter_spec) or else 75 (with mask) or else 12
— Loader: 12 (without delimiter_spec) or 256 (with delimiter_spec)

= TIMESTAMP EXTERNAL — The default length for the unloader
TIMESTAMP EXTERNAL data type has changed.

— In release 2.3, the default length was 75 (without delimiter_spec) or 256
(with delimiter_spec).

— Now, the default length is 256 (with delimiter_spec) or else 75 (with
mask) or else 26.

New default TIME [EXTERNAL] format mask
The current unloader default mask for a TIME EXTERNAL data field does not
include a milliseconds (MLS) field. A milliseconds value, however, is necessary in
order to unload and reload a column of type TIME in all cases. Now, the default
unloader TIME mask is H24:M1:SS.MLS. A FileTek data loader accepts a TIME
data field with no MLS field. The FileTek unloader produces the MLS field only

if the milliseconds part of the TIME value being unloaded is nonzero. If the
length is specified and is less than 12, the default mask does not contain MLS.

Changed ESQL data types and C structures
Changes to ESQL data types and C structures are as follows:
= The TPE_DT_SMALLFLOAT data type has been eliminated.

= The TPE_DT_FLOAT data type has been changed to TPE_DT_DOUBLE.

Release Notes for StorHouse/RM 3.2 1-13

FileTek Proprietary and Confidential

1 Changes and enhancements
ESQL changes

The pointer fetch return area for VARCHAR and VARBINARY data types no
longer contains the four-byte “total length” field. This length information is
available in the new SQLDA.

The tpe_time_t C structure definition for the TIME data type is extended with
internal padding to a total length of 6 bytes (to maintain alignment). The
new structure definition for tpe_time_t is:

t ypedef struct {

uint8 t hours;
uint8 t m ns;
uint8 t Secs;
uint8 t reserved;

uint16_t nsecs;
} tpe_time_t;

The tpe_timestamp_t C structure for the TIMESTAMP data type is renamed
(previously tpe_tstime_t) and redesigned, eliminating the separate date and
time sections. The new structure definition for tpe_timestamp_t is:

t ypedef struct {

ui nt 16_t year;
uint8_t nont h;
uint8_t day;
uint8_t hours;
uint8_t nm ns;
uint8_t Secs;
uint8_t reserved;
ui nt32_t usecs;

} tpe_timestanp_t ;

ESQL changes

StorHouse/RM now provides two types of host variables for accessing LOB
values. Additionally, the SQLCA, the SQLDA, and the default compile and link
commands have changed.

1-14 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
ESQL changes

New host variable types for LOB access

StorHouse/RM supports locator variables and file reference variables for accessing
and retrieving LOB values from ESQL applications.

Locator variables

With a locator variable, an application can:

= Refer to a LOB value at the StorHouse server without retrieving it into a client
buffer

= Manipulate a LOB value with functions such as SUBSTRING, CONCAT, and
INSTR

= Fetch a part of a LOB value to the client

You define locator variables with the BLOB_LOCATOR and CLOB_LOCATOR
data types. For example, the following Declare Section contains two locator
variables for CLOB values.

EXEC SQ. BEG N DECLARE SECTI ON;
int32_t hv_start_descr;
int32_t hv_end_descr;
int32_t hv_bonus_start;
CLOB_LOCATOR hv_prod_Il ocat or;
CLOB_LOCATOR hv_prod_desc_| ocat or;
CLOB(2M hv_pr oduct ;

EXEC SQ. END DECLARE SECTI ON;

File reference variables

A file reference variable identifies a client file to which a LOB value may be
transferred. You define file reference variables with the BLOB_FILE and
CLOB_FILE. For instance, the following example defines a file reference variable

Release Notes for StorHouse/RM 3.2 1-15

FileTek Proprietary and Confidential

1 Changes and enhancements
ESQL changes

named ProdFile:
EXEC SQL BEG N DECLARE SECTI ON:;

CLOB_FI LE ProdFil e;
EXEC SQL END DECLARE SECTI ON,

The file reference variable expands into a type definition with four parts. For
instance, the structure definition for CLOB_FILE (tpe_clob_file_t) Is:

typedef struct {

ui nt 32_t name_| engt h;
ui nt 32_t dat a_I engt h;
ui nt 32_t file_options;
char name[255] ;

} tpe_clob_file_t;

SQLCA changes

The SQLCA (SQL communications area) provides diagnostic information about
the execution of an SQL request. Changes to the SQLCA are as follows:

= Various components are defined with the guaranteed-size types for int and
long.

= A new component, sglstate, will contain (in a future release) completion state
information.

= The number of warning flags in sglwarn increased from 8 to 9 to maintain
alignment.

1-16 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
ESQL changes

The new structure definition for the SQLCA is as follows:

struct tpe_sqglca {

char sql cai d[8]; /* Eye-catcher, “TPESQLCA" */
i nt32_t sql code; /* Result of execution */
int1l6_t sql cabc; /* Length of tpe_sqglca */

uintl6_t sqglerrm; /* Length of nessage */
uint8_t sqlerrnf{74];/* Null-term nated nessage */

char sqlerrp[8]; /* (reserved) */

int32_t sqglerrd[8]; /* Diagnostic information */
char sqglwarn[9]; /* Warning flags */

char sql state[5]; /* Conpletion state */

1

SQLDA changes

The structure and functions of the SQLDA (SQL descriptor area) have been
updated.

SQLDA structure

In release 2.3, the SQLDA contained pointers to arrays of values. Each entry in an
array represented a value for one of the variables (columns, expressions,
parameters, and so on) described by the SQLDA. There was an array for the types
of variables, an array for the pointers to the buffers for the variables, and several
other arrays.

Now, one array replaces these separate arrays. The structures of this array contain

values for items like the data type of the variable and the buffer pointer. The
SQLDA is renamed tpe_sglda to distinguish this new version from older versions.

Release Notes for StorHouse/RM 3.2 1-17

FileTek Proprietary and Confidential

1 Changes and enhancements

ESQL changes

The new structure definition for the SQLDA is as follows:

struct tpe_sqglda {

char sql dai d[8]; /*
uint8_t sqldvrsn; /*
uint8_t sql df nod; /*
int1l6_t sql dsize; /*
int1l6_t sql dnvar; /*
intl6_t sqldrsvl, /*
int16_t sql dnrow; /*
int1l6_t sql dvnln; /*

t pe_sql var* sqldvar; /*

b

Eye-catcher ' TPE_SQLD */
SQ.DA version... nmust be 0 */
Fl ag: fetch node */

Nunber of entries allocated */
Nunber of entries in use */
(reserved) */

Nunber of rows to be fetched */
Maxi mum var name | ength */
tpe_sqgl var el enents */

The structure tpe_sglvar contains an entry for each variable in the SQLDA.

struct tpe_sqlvar {

int32_t

sql vl n32;

int32_t* sqlvlenp

int32_t

sql vbl 32;

voi d* sql vdat a;
int1l6_t* sql vind;

intl6 t
uint8 t
uint8 t
uint8_t
uint8_t

sql vt ype;
sql vpr ec;
sql vscal
sql vi snl ;
sql vrsvl[3];

char* sql vnane;

int32_t
}s

sql vrsv2[2];

SQLDA functions

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Variabl e (maxi mun) |ength */
Pointer to actual |ength*/

Buf fer | ength (pointer node)*/
Pointer to data */

Pointer to indicator variable */
Variabl e type (TPE_DT_xxx) */
Preci sion */

Scal e */

Nul I able flag */

(reserved) */

Vari abl e name */

(reserved) */

SQLDA functions manipulate an SQLDA structure. General changes are as

follows:

= All functions now return a status value.
= The sgld_ prefix in function names has been replaced with tpe_da_.

1-18 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements

ESQL changes

The following new or renamed functions manipulate an SQLDA structure.

New or renamed SQLDA functions

SQLDA function Description

tpe_da_alloc Allocates, initializes, and returns a pointer to an SQLDA.

tpe_da_alloc_varnames Allocates space for variable (column) names, and sets the
appropriate fields in the SQLDA.

tpe_da_free Deletes an SQLDA that was allocated by tpe_da_alloc.

tpe_da_getbsize Calculates and returns the length of the buffer required to
hold the data described in the provided SQLDA. This
includes space for indicator variables.

tpe_da_getnbytes Calculates the size, in bytes, of an SQLDA.

tpe_da_getvnbytes Calculates the size, in bytes, of the space required to store
variable name (sqglvname) data.

tpe_da_setentry Sets values in an SQLDA variable entry. Specifically, this
function sets the data type, length, indicator variable pointer
and data pointer to the values provided.

tpe_da_setptrs Initializes the buffer pointers (sqlvdata, sqlvind) in the
provided SQLDA. This function was formerly named
tpe_setup_sqglda.

tpe_da_setup Initializes storage as an SQLDA.

The following functions are used in obsolete programs and have been eliminated
in StorHouse/RM:

= tpe char_sglda
= tpe_host_sqglda
= tpe_print_sglda
= tpe_set_ptrs

= tpe_set sglda

Release Notes for StorHouse/RM 3.2 1-19

FileTek Proprietary and Confidential

Changes and enhancements

Data loader changes

New default compile and link commands

The new default compile and link commands differ based on operating system.
You can still override the defaults with the ESQL_CC and ESQL_LINK
environment variables.

Sun Solaris

On Sun Solaris, the default compile and link commands are:

Compiling:

cc -c -l<sth_dir>/include/ <app_program c>

Linking:

CC -0 <app_prograns <app_program o> /<sth_dir>/lib/libsthfe.a -Im-Insl -Isocket
HP

On HP, the default compile and link commands are:

Compiling:

cc -Ae -c -I<sth_dir>/include/ <app_progranp.c

Linking:

aCC - AA -0 <app_prograns <app_progranp.o /<sth_dir>/lib/libsthfe.a -Im-Insl

Data loader changes

1-20

You can now perform the following data loading functions:

= Load LOB data

= Select subspaces or rotate among subspaces for LOB data
» Generate field specifications

» Describe NULL flags in input data

Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Data loader changes

= Load NULL or default values for empty or blank data fields
= Check for data file and load control file errors before loading
» Load a deferred index

= Merge segments in a table

= Load data from multiple VRAM files

= Load in FTP passive mode

Loading LOB data

You can now load LOB data into StorHouse user tables. With the FileTek FTP
Data Loader, you can load LOB input data in one data file with the rest of the
table data or in separate files—one LOB value per file—on your client or a
remote host. You use the following loader data types to describe LOB data fields:
BLOB, BLOB_FILE, CLOB, and CLOB_FILE.

With the FileTek MVS Data Loader utility, you can load LOB input data in one
data file with the rest of the table data. You cannot load LOB values from separate
files. You use the BLOB and CLOB data types to describe LOB data fields.

Selecting or rotating among subspaces for
LOB data

You can select LOB subspaces during a load and rotate among applicable
subspaces for LOB values. LOB subspaces (OBJECT_TYPE is L in a tablespace)
are valid for out-of-line LOBS only.

Generating field specifications for all data
fields

The FileTek data loaders can generate all field specifications as the CHARACTER
loader data type when you include the CHAR keyword with the FIELDS clause.

Release Notes for StorHouse/RM 3.2 1-21

FileTek Proprietary and Confidential
1 Changes and enhancements
Data loader changes

The data loaders determine the lengths of each field with the default-length rules
for CHARACTER loader data type.

Describing NULL flags in input data

If your input data contains NULL flags (T for NULL or F for NOT NULL), you
can describe them with the new NULLFLAGS keyword. The FileTek data loader
appends a NULLIF clause to each generated field specification so that when a
NULL flag is T, it loads a NULL into the corresponding table column.

Loading a NULL or default value for empty or
blank data fields

You can use NULLIF and DEFAULTIF clauses in a field specification to describe a
condition for loading NULL and default values. Now you can also specify
NULLIF and/or DEFAULTIF clauses with the FIELDS clause to load a NULL
value or a column’s default value for any data field that is empty (two adjacent
delimiters) or contains blanks. You use the keywords EMPTY or BLANK with the
NULLIF and DEFAULTIF clauses in a FIELDS clause. The NULLIF and
DEFAULTIF clauses in a FIELDS clause apply to any data fields that do not have
NULLIF and/or DEFAULTIF clauses in their field specifications.

Checking for data file or load control file
errors

Before starting an FTP load, you can now verify whether your data file and load
control file are okay by using validate for the load_type keyword. If there’s a
syntax error, you can correct the error and then start the load. The current
alternative is to start the load and abort it if you need to change a data file or load
control file. This feature requires StorHouse/SM 5.2 delivery 157.

1-22 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Data loader changes

Loading a deferred index

After creating a deferred index, you can load index entries for some or all of the
segments of the table. You use the new LOAD INDEX statement in a load control
file and a FileTek data loader to perform an index load operation. The default is to
load all segments, after which each loaded index is marked as complete or no
longer deferred.

A LOAD INDEX statement in a load control file identifies the names of the
indexes to load and optionally specific segments. Only one LOAD INDEX
statement is allowed in a control file.

LOAD INDEXI|ES] index_name [,index_name]... [subspace_clause]
[SEGMENTS segment_list]

Argument Format

subspace_clause SUBSPACE ROTATE |
[VALUE | HASH] SUBSPACE number

segment_list segment_list_item [, segment_list_item]...
segment_list_item segment_range | segment

segment_range first_segment - last_segment

Here are some example LOAD INDEX statements:
= To load index files for the ORDERS2000 index for all segments of the table:
LOAD INDEX ORDERS2000

The data loader uses the lowest-numbered subspace for the index type
because the SUBSPACE num and SUBSPACE ROTATE clauses are omitted.

= To load an index file for the ORDERS2000 index for the first segment of the
table, using subspace 2:

Release Notes for StorHouse/RM 3.2 1-23

FileTek Proprietary and Confidential
1 Changes and enhancements
Data loader changes

LOAD INDEX ORDERS2000 SEGMENTS 0 SUBSPACE 2

» To load index files for the ORDERS2000 index for a range of segments,
rotating among subspaces that are valid for the index type:

LOAD INDEX ORDERS2000 SEGMENTS 0-5 SUBSPACE ROTATE

= To load index files for the ORDERS2000 and ORDERSDETAIL indexes for all
segments of the table:

LOAD INDEX ORDERS2000, ORDERSDETAIL

Merging segments of a table

You can now consolidate segments in a table. A merge, or coalesce operation
merges a group of segments into one segment (possibly more) and invalidates the
input segments. You have full control over which segments are grouped, for
instance, by specific segment IDs or segment tags or by size criteria. LOB
subsegment files, however, are not merged. Merging segments enhances
performance because it reduces the number of file and extent opens and closes
for a query.

You use the new MERGE (or COALESCE) statement with a FileTek data loader to

merge segments. The MERGE statement in a load control file identifies the
segment or merge criteria.

1-24 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements

Data loader changes

{MERGE | COALESCE} INTO TABLE table_name [subspace_clause]
[SEGMENT segment_tag] [SEGMENTS segment_list]
[EXCLUDE segment_list] [MAXINSIZE n] [MINOUTSIZE n]

Argument Format

subclause_clause SUBSPACE ROTATE |
[VALUE | HASH | TABLE] SUBSPACE number

segment_list IDS segment_list_item [, segment_list_item]... |
TAGS segment_tag [, segment_tag]...

segment_list_item segment_range | segment

segment_range first_segment - last_segment

Here are some example MERGE statements.

= To merge all segments of the CALLSDETAIL table into one segment:
MERGE INTO TABLE CALLSDETAIL

= To merge the first five segments of the CALLSDETAIL table into one segment:
MERGE INTO TABLE CALLSDETAIL SEGMENTS IDS 0-4

= To merge all segments of the CALLSDETAIL table except segment ID O:
COALESCE INTO TABLE CALLSDETAIL EXCLUDE IDS 0

= To merge all small segments that are less than 100MB of the CALLSDETAIL
table into segments of at least 1GB but ignore segments with the segment tag

late_entries:

MERGE INTO TABLE CALLSDETAIL MAXINSIZE 100M
MINOUTSIZE 1G EXCLUDE TAGS “late_entries”

Release Notes for StorHouse/RM 3.2 1-25

FileTek Proprietary and Confidential

1 Changes and enhancements
Data unloader changes

Loading data from multiple VRAM files

On the INFILE clause, you can now specify a list of VRAM files to load data from
multiple files into a table. You can place the NOENVIRON keyword before the
file list if it applies to all files. For example:

LOAD INFILE NOENVIRON (FILE1/ATM, FILE2/ATM, FILE3/ATM)

Otherwise, you can place the NOENVIRON keyword after any specific file in the
list if it applies to that file only.

LOAD INFILE (FILEL/ATM NOENVIRON, FILE2/ATM, FILE3/ATM)

Loading in FTP passive mode
The FileTek FTP Data Loader now supports FTP passive mode. This change

accommodates firewalls and FTP applications (like Web browsers) that are
designed to use passive mode.

Data unloader changes

You can now perform the following data unloading functions:

= Unload LOB data
= Insert NULL flags in result data

This section also contains information about delimiters in result data.

1-26 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Data unloader changes

Unloading LOB data

You can unload LOB data from StorHouse user tables with the FileTek FTP Data
Unloader. You can place the LOB data in the same result file with any other result
data, or you can place each LOB value in a different result file on your client or a
remote host. You use the following unloader data types to describe LOB data
fields: BLOB, BLOB_FILE, CLOB, and CLOB_FILE.

Inserting NULL flags in result data

You can insert NULL flags (T for NULL or F for NOT NULL) at the beginning of
each result record for each data field. For example, in the following result rows,
the third data field in row 1 is NULL and the second data field in row 2 is NULL.

FFTplug,12, ;
FTFcable, ,out;

You do this by including the new NULLFLAGS keyword with the FIELDS clause.

Clarification about delimiters in result data

The following information about delimiters affects the FileTek FTP Data
Unloader Manual.

= Adelimiter_spec in a FIELDS clause or in a field_spec in a USING clause does
not apply to CONSTANT field_specs and IFNULL strings. This means you
must include any delimiters in the CONSTANT string or IFNULL string if
you want them.

= Ifyou use a FIELDS clause to specify a terminator delimiter and there’s no
RECORDS clause, the FileTek FTP Data Unloader uses the FIELDS delimiter
as the record terminator. For example, assume a FIELDS clause specifies ! as
the terminator delimiter and there's no RECORDS clause.

Release Notes for StorHouse/RM 3.2 1-27

FileTek Proprietary and Confidential
Changes and enhancements
J !
oin enhancements

FIELDS TERMINATED BY '

The unloader adds the ! delimiter after the last result data field like this:

2839!McGuire!Jack!
2388!Cornflake!Sue!

= For data with terminator-type delimiters, the unloader no longer inserts a
space when the value is NULL.

Join enhancements

StorHouse/RM now supports the ANSI SQL join syntax. This change enables you
to write queries with explicit join operations in the FROM clause of a SELECT
statement, using an ON clause to specify the join condition. Previously, you
specified a join operation by naming the tables on the FROM clause and by
specifying the columns with their respective join conditions in the WHERE
clause.

This release supports inner-join and left outer-join operations. Full outer-join
and right outer-join operations are not yet implemented.

Join syntax

The new format of the FROM clause is as follows:
FROM table_spec [, table_spec]...

where table_spec is:

table_reference [correlation] | joined_table

1-28 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements

Join enhancements

Argument Description

table_reference The name of a table participating in a join.
correlation A correlation name for a table participating in a join. The
format is:

[AS] correlation_name

joined_table The join specification. The format is:

(joined_table) | table_spec {[INNER] | LEFT [OUTER]}
JOIN table_spec ON join_condition

(joined_table) Anything that qualifies as a joined_table can be enclosed in
parentheses and considered as a joined_table itself. For
example:

FROM pilot JOIN (service JOIN plane
ON plane.serial_num = service.serial_num)
ON plane.serial_num = pilot.serial_num

INNER JOIN A join operator that specifies an inner-join operation. When
the join condition is true, the matched rows of the tables are
combined. The unmatched rows are omitted from the result
table. The following operators are valid for inner-join:

=« JOIN
= INNER JOIN

LEFT OUTER JOIN A join operator that specifies a left outer-join operation.
When the join condition is true, the matched rows of the
tables are combined (like an inner-join) and the unmatched
rows of the table to the left of the join operator are preserved,
combined with NULL values for the columns in the table to
the right of the join operator. The following operators are
valid for outer-join:

=« LEFT JOIN
« LEFT OUTER JOIN

join_condition A search condition, or predicate, that evaluates to true, false,
or unknown for a given row. You can specify multiple
predicates with logical operators AND and OR. The join
condition cannot contain a subquery.

Release Notes for StorHouse/RM 3.2 1-29

FileTek Proprietary and Confidential

Changes and enhancements

Optimizer enhancements

Join guidelines

Basic guidelines for writing queries with the new join syntax are as follows:

= You can perform multiple join operations in the same query, for instance,
multiple inner-join operations, multiple outer-join operations, or a

combination of the two.

= Any column referenced in a join condition must be a column in one of the
tables of the associated join operation.

= Table order is significant for outer-join operations, insignificant for inner-join
operations.

= For left outer-joins, the table referenced to the left of the join operator is the
preserved table.

= You can use parentheses to specify the sequence to perform join operations.

= The WHERE clause has a different effect on query results from the ON clause.

Optimizer enhancements

1-30

The optimizer has been enhanced as follows:

= Previously, the optimizer used nested loop processing for outer-joins. Now,
outer-joins may qualify for hybrid IN processing.

= The optimizer now assigns default selectivity values when host variables are
used in query predicates to avoid bypassing the use of indexes to resolve those
predicates.

= The range index selection is deferred until the values for all host variables are
available to minimize the number of segments that the query must search.

Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
Extended file naming convention for segment files

Extended file naming convention for segment files

The file naming convention for segment files has been extended to incorporate a
LOB subsegment 1D. Segment files loaded prior to release 3.2 retain the existing
file name. The file name format is as follows:

database_name.system_id.typecomponent_id.segment_id.lob_subsegment_id
For example, the following StorHouse file name identifies the first LOB
subsegment file in the second segment (segment 1D1) of a user table (table 1D

100) in the CALLS database.

CALLS.1.L.0000000100.0000000001.000000000

Database (CALLS)
System ID (1)
Type (L for LOB)
Component ID (Table ID 100)
Segment ID (1)
Subsegment ID (0)

New field in the SQL transaction record

StorHouse/RM now tracks the number of bytes retrieved in the SQL transaction
record in the user log. Refer to the StorHouse User Log Format manual,
publication number 900028, for more information about the user log and the
types of events recorded.

Release Notes for StorHouse/RM 3.2 1-31

FileTek Proprietary and Confidential

1 Changes and enhancements
IP version 6 addressing support

IP version 6 addressing support

All functions in StorHouse/RM that are dependent on the Internet Address

Family version have been updated to operate correctly with either IP version 4 or
6.

Thread safe front-end

The StorHouse/RM client interface (the API) has been made thread-safe.
Connections can now be used from multiple threads.

System limit change

There is now no limit to the number of StorHouse databases that you can create;
however, at most 100 databases can be active at a time. An active database has one
or more sessions currently connected.

Metadata enhancements

Improvements have been made to the metadata recovery process and to the use of
system table indexes.

Automatic index rebuild

If a database recovery fails because changes to the index cannot be correctly rolled
back, StorHouse/RM automatically rebuilds an index on a metadata table.

1-32 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Changes and enhancements 1
System table documentation changes

Improved system table indexing
performance

The 1/0 routines supporting the UNIX (flat-file) storage system have been
changed to improve indexing performance. UNIX read and write system calls are
used instead of fread and fwrite, index fan-out has been increased to reduce tree
depth, and the row size of index entries has been reduced to increase the number
of index nodes per block.

System table documentation changes

Documentation changes to two system tables are as follows.

SYSINDEXES system table

The IDXCOMPRESS column in the SYSINDEXES system table indicates whether
an index is deferred or complete. The values are:

= N for normal (complete)
» C for deferred (incomplete)

SYSCOLUMNS system table

The description of the values for the LOB_TSID column in Appendix A of the
StorHouse Database Administrator's Guide has changed. The LOB_TSID is the ID
of the user tablespace to which the LOB column is assigned. If the column is a
non-LOB column, then LOB_TSID has a value of -1. If the LOB column is
assigned to the same tablespace as the table, then LOB_TSID has the 1D of the
user tablespace for the table.

Release Notes for StorHouse/RM 3.2 1-33

FileTek Proprietary and Confidential

1 Changes and enhancements
SQL codes

SQL codes

The text of SQL code -20223 has changed:

= Old text: Multiple local connections
= New text: Multiple default (DB_NAME used) connections

The new SQL codes are as follows:
-20145 Invalid expression for No-table SELECT (or VALUES INTO)
-20146 LOB_FILE not allowed with array fetch

-20147 LOB datatypes are not allowed on the DISTINCT, ORDER BY or GROUP
BY clauses

-20248 Unique qualifier not allowed on user table indexes

-30012 Communication packet overflow failure

-30013 Output SQLDA changed between FETCH requests

-60026 Loader: FIELDS CHAR not allowed with fields_spec list
-60027 Loader: FIELDS NULLFLAGS not allowed with field_spec list
-60028 Loader: LOB type fields must be last in fields_spec list
--60029 Loader: LOB type fields must be at POSITION(*)

-60030 Loader: LOB type field can only be used with a LOB column
-60031 Loader: Last LOB type field did not end at end of a record

-60032 Loader: LOB field data cannot be used in a comparison

1-34 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential
Changes and enhancements 1
New reserved words

-60206 Unloader: No FILENAME specified for LOB_FILE

-60207 Unloader: FIELDS NULLFLAGS not allowed with USING clause

-60208 Unloader: RECORDS terminator not allowed with LOB fields

New reserved words

The following words are now reserved:

BLOB
CLOB
LARGE
OBJECT

Release Notes for StorHouse/RM 3.2 1-35

FileTek Proprietary and Confidential

1 Changes and enhancements
New reserved words

1-36 Release Notes for StorHouse/RM 3.2

FileTek Proprietary and Confidential

Chapter

2

Special considerations

This chapter highlights known issues that may, in certain environments or fields
of use, require careful review during assessment of an application’s use of
StorHouse/RM at this time. If applicable to your environment, please discuss
these issues with your FileTek systems engineer to explore possible design
alternatives.

SQL code -301031

For some StorHouse/RM processing errors, SQL code -301031 (transaction
aborted) may be mistakenly returned instead of the correct error code. Usually,
this is caused by an out-of-space condition in a volume set or a miscellaneous
hardware failure. If you receive this code, you may need to call FileTek Customer
Support for help determining necessary corrective action.

SQL code -30033

SLQ code -30033 is a generic return code that applies to any unrecoverable error
caused by a relational engine’s exit. The code may appear in conjunction with
several error situations. Whether these errors are program-induced or user-
induced, the code always indicates that a serious error has occurred and requires
assistance from FileTek Customer Support.

StorHouse/RM Release Notes for 3.2 2-1

FileTek Proprietary and Confidential

2 Special considerations
DESCRIBE BIND restrictions

DESCRIBE BIND restrictions

DESCRIBE BIND VARIABLES does not correctly process an SQL statement that
contains both scalar functions and host variable markers. For example, the
following SQL statement, which contains the scalar function TO_HEX and host
variable markers, does not work properly with DESCRIBE BIND VARIABLES:

SELECT * FROM table WHERE (TO_HEX (bin_column) LIKE :var)

The following SQL statement works correctly with DESCRIBE BIND
VARIABLES because it contains no scalar function:

SELECT * FROM table WHERE bin_column > :var

Refer to the StorHouse SQL Reference Manual for complete documentation about
DESCRIBE BIND VARIABLES.

Design advisory for join operations

Queries that use extensive join operations may not be good candidates for
StorHouse/RM execution, especially at the high data volumes that you generally
expect in large database environments. When you require such queries, consult
your FileTek systems engineer for performance analysis and modeling assistance.

ISQL product status

The 1SQL tool allows interactive processing of SQL statements. Use this tool only
as a general-purpose development tool. You should not incorporate it into
production software or operations procedures. If you do use it, you must use the
new version included in the release 3.2 client (host.sol2) tar file. Older versions
of ISQL cannot be used.

2-2 StorHouse/RM Release Notes for 3.2

FileTek Proprietary and Confidential

Special considerations 2
DDL processing in general

DDL processing in general

In StorHouse/RM, DDL statement execution is atomic and permanent. The
software performs an implicit COMMIT before and after every DDL statement.
Transaction logic (user-specific bundling of statements) may lead to undesirable
table-level locks that restrict the entire database from use. To protect against this,
StorHouse/RM adds to user-specified transaction (BEGIN-END groups) logic an
implicit COMMIT before and after every DDL statement.

Host variables as BINARY, VARBINARY, and
VARCHAR data types

In an ESQL program, you cannot declare host variables as BINARY, VARBINARY,
and VARCHAR data types in a Declare Section. To define these types of variables,
set up an SQLDA and use the DESCRIBE statement as documented in the

StorHouse ESQL Manual.

Immediate restart after a load failure

If a data load fails and you restart it immediately, the restart may fail if the load
cleanup hasn't completed. You receive the following errors when this happens:

500- %L-I-XLDINFO, \sqlcode=<-60021> Loader: Unrecoverable segment file\
500- %L-I-XLDINFO, \Unrecoverable segment, table=RESL_TBL1\

You can avoid this situation by waiting a few seconds before restarting a load. If
you receive these errors, try the restart again after the brief delay.

StorHouse/RM Release Notes for 3.1 2-3

FileTek Proprietary and Confidential

2 Special considerations
LOB restrictions

LOB restrictions

Restrictions on accessing LOBs via ODBC and ESQL and using LOBs in SQL are
as follows.

ODBC. ODBC does not support the use of LOB data types.

ESQL. You must use a single-row fetch with the BLOB_FILE and CLOB_FILE
data types. You cannot use array or pointer-fetch with these data types.
Additionally, StorHouse/RM does not support file reference variables as input,
that is, to transfer a LOB value from a client file to StorHouse. StorHouse/RM
supports output file reference variables to transfer a LOB value from StorHouse
to a client file.

SQL. LOB data types are not allowed with the following SELECT statement
clauses: DISTINCT, ORDER BY or GROUP BY. Additionally, LOB data types are
not allowed with the following functions: MIN, MAX, and COUNT(DISTINCT
lob_expr).

Use of SYS in table names

Table names may not start with SYS, for instance, SYS_STARTUP or
SYSSERVICE. The SYS prefix is reserved for system tables.

Use of control characters as delimiters

For data loading, use of control characters as delimiters, especially whitespace
characters, is discouraged in input data. A terminator declared explicitly that is
also a whitespace character may result in a "terminator not found" error,
particularly when the prior field is enclosed. If you are using one of these
characters as a delimiter, specify WHITESPACE rather than the character.

2-4 StorHouse/RM Release Notes for 3.2

FileTek Proprietary and Confidential

Special considerations 2
Use of control characters as delimiters

The whitespace characters are SP (space), CR, FF, LF, VT, and HT (tab). In any
ASCII code page these have hex values 20, 0D, 0C, 0A, 0B, and 09. In any
EBCDIC code page the hex values are 40, 0D, 0C, 25, 0B, and 05.

StorHouse/RM Release Notes for 3.1 2-5

	Online Guide
	Contents
	Welcome
	Intended audience
	Contents of document
	Related documentation

	Changes and enhancements
	System requirements
	Metadata conversion
	Re-definition of segment
	Definition of in-line and out-of-line LOBs
	SQL updates
	New SQL statements
	Changed SQL statements
	Defining a subspace for LOB data
	Creating a table with a BLOB or CLOB column
	Creating an index on a loaded table

	New functions
	Functions that now allow LOB arguments
	Functions that now allow binary arguments
	Additional format for SUBSTR
	Result type changes for LENGTH, TO_CHAR, SUM, and AVG functions
	Results of DECIMAL expressions

	Data type updates
	New data types
	Guaranteed-size data types for C types int and long
	Changed default lengths of loader and unloader data types
	New default TIME [EXTERNAL] format mask
	Changed ESQL data types and C structures

	ESQL changes
	New host variable types for LOB access
	Locator variables
	File reference variables

	SQLCA changes
	SQLDA changes
	SQLDA structure
	SQLDA functions

	New default compile and link commands
	Sun Solaris
	HP

	Data loader changes
	Loading LOB data
	Selecting or rotating among subspaces for LOB data
	Generating field specifications for all data fields
	Describing NULL flags in input data
	Loading a NULL or default value for empty or blank data fields
	Checking for data file or load control file errors
	Loading a deferred index
	Merging segments of a table
	Loading data from multiple VRAM files
	Loading in FTP passive mode

	Data unloader changes
	Unloading LOB data
	Inserting NULL flags in result data
	Clarification about delimiters in result data

	Join enhancements
	Join syntax
	Join guidelines

	Optimizer enhancements
	Extended file naming convention for segment files
	New field in the SQL transaction record
	IP version 6 addressing support
	Thread safe front-end
	System limit change
	Metadata enhancements
	Automatic index rebuild
	Improved system table indexing performance

	System table documentation changes
	SYSINDEXES system table
	SYSCOLUMNS system table

	SQL codes
	New reserved words

	Special considerations
	SQL code -301031
	SQL code -30033
	DESCRIBE BIND restrictions
	Design advisory for join operations
	ISQL product status
	DDL processing in general
	Host variables as BINARY, VARBINARY, and VARCHAR data types
	Immediate restart after a load failure
	LOB restrictions
	ODBC
	ESQL
	SQL

	Use of SYS in table names
	Use of control characters as delimiters

