StorHouse SQL
Reference Manual

StorHouse/RM Release 3.2

Publication Number
900111 Reuw. |

March 21, 2002

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

This publication Copyright © 1996-2002 by FileTek, Inc., Rockville, MD
Publication Number: 900111 Reuv. |

NOTE: U.S. GOVERNMENT USERS
Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
or the Commercial Computer Software - Restricted Rights clause at 48
CFR 52.227-19, as applicable. Unpublished-rights reserved under the
copyright laws of the United States. The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. All other brand or product names are trademarks or registered
trademarks of their respective owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

FileTek Proprietary and Confidential

FileTek

Contents

WEICOME .o XiX
StorHouse family Of PrOAUCTSccvoirieie e e Xix
STOFHOUSE/SIM ..t e e s sraesree s Xix

SEOTHOUSE/RIM ...ttt st aneenes XX

(@0 gl 0] IO | -] OSSPSR XX

Purpose of this dOCUMENTcceoiieice e XX

YT a0 (CTo B 0T 11T o o - S XXi

(0] 01 (=] | (S XXi

Related doCUMENTALIONc.eiiviiiiecicce et XXii

(@0 0177) 110 -SSP XXiii

Chapter 1: INtroducCtionccooeeviiiiiiiie e 1-1
ADOUL STOFHOUSE SQL ...ttt ettt e be b b 1-1

Ways to submit StOrHOUSE SQLocveiiiiieiecse s 1-2

Types Of STOrHOUSE SQL ..ottt 1-3

SEALIC SQL oreiieiee sttt sttt e et 1-3

DYNamiC SQL ... 1-4

SQL standard diffErENCESc.eecveiiiiiiicie e reas 1-4

Through a FileTek INterfaceccoveveiiiiiiieccc s, 1-5

IN an application Programcccoceeiieeiieeiieeie e e 1-5

THrough @ QALEWAYc.eooueieieiieie ettt enee e 1-5

StorHouse SQL Reference Manual iii

FileTek Proprietary and Confidential

. Contents

Through a federatorccoeiiiiiieccce e 1-6
LY L 0 [0 L] 1SS 1-6
SBIBCTION ...t 1-6
1 o] ST 1-7

0 o R 1-7
JOIN BYPBS ettt 1-7

L0 o] USROS 1-7

] Q0T (=T o] | OSSR 1-7

o [o] | SRR 1-8

SEIF-JOIN e 1-8

Cartesian PrOUCToovereieiirieieee e 1-8

JOIN METNOS .. 1-8

L (=0 N [0 To] o USRS 1-8

HYBIIA IN o 1-9

SUDQUETY .ttt stesteeneeneesaenneas 1-9
StorHouse SQL CONVENLIONSccveiieeiecie et se e ste e ee e ee e snae e e sree s 1-10
SQL format CONVENTIONSoivveiieiiiesiiie et see e 1-10
SQL example CONVENTIONScccvveieiiiiiiie e 1-11
Spaces iN STOrHOUSE SQLccvviveeieece e 1-12
Comments in STOrHOUSE SQLvviiiiiiii et 1-12
SQL-StYIE COMMENT ...t 1-13

C-Style COMMENT ... et 1-13
CH+-Style COMMENTS ..ot 1-13
Chapter 2. Elements of StorHouse SQLcccooeevvvviiiiiieveeennnnnn. 2-1
[T (o SRS 2-1
CHAUSES ...ttt bbbt bt 2-2
o 0 [0SR 2-2
1! T USSR 2-2
EXPDIESSIONS .. eeeiiieieeeieee sttt sttt ettt st e st et en e tesaeere e e e benbeene et e neenneereenes 2-3
USEr-SUPPHEA NAMES ... 2-4

iv StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

ACCOUNT IDIS ...ttt nb et sb b e neae e 2-4
ALIBS NAIMIES ..veeieie et e te et e e see e sbe e peenreeneeeneesnaeaneeas 2-5
CUISOE NAIMIES .ttt ettt stte e st eesteesreeesreeesste e e e e et e e taeateeesbeeessneesnaeesneeesneeennees 2-5
DAtabase NAIMEScoveiieieeiee e see e se e se e sre e s e re e te e te e steesreesbe e beeteeneeaneeeneens 2-6
Database USer COMPONENT NAMEScererreieiririeieesie st 2-6
HOSE Variable NAMESc.eciiiiicie et 2-7
LOB 10Cator Variablesccccceveiiiieieie s 2-7

LOB file reference variablesScccvveviiiieiiee s 2-8
SUDSEITUTION MAFKEFSveeevecc e s nees 2-8
Delimited SQL ideNtIfIErS ...vveiveeiecie e 2-8
Delimited aCCOUNT IDScveiiuiiiiiiiiecce et 2-9
Qualified and delimited user table NAMEScocvvviiieiieiiecece et 2-10
Delimited volume set and file St NAMEScccoveveieiiiiiiciere e, 2-10
Delimited user tablespace NAMEScccevivereeieerie e 2-10
=] SRR 2-11
Character [IEralSccoveiiveiiieiiee e sre e reenre e 2-11
DaAte [ITEIAlSoecvveieee e e 2-12
TIME TIEEIAIS ..ovveiviiiee et 2-12
Timestamp TIEEralscc.oovviviiiee e 2-13
INtEYEr HTEAIS ...ooveeeecece e e 2-13
FI10ating-point ILEralSccccooi e 2-13
(LYol [g T LS 2-14
Hexadecimal TITEralScovviiiiiiiiecce et 2-14
FOIMAL SEINGS .ottt re e b st e ere e e nne e 2-14
Date fFOrmMat SEHNGS ..ocveieeeeece et sre s 2-15
TImMe FOrMAL SEFINQS o..vveeveeie e e 2-16

L0 01T 1 (0] £ O TP UT R UPTOPROPPTUPPRN 2-17
Set operators (UNTON and UNTON ALL) ...cccoooviiiiiiiieeeee e 2-18
Logical operators (AND, OR, NOT)ccooeiiiiiiiiieisee e 2-20
Arithmetic operators (+, -, *, /, UNAIY) ..ccccoceiiviieieece e 2-21
Comparison operators (=, <>, <, >, <=, 33) i 2-23
Concatenation 0Perator (||) ..voovvvevrerirrieerie s 2-23
NULL VAIUES ..ttt sttt te e ba et a e enaesneesnnas 2-24
SPECIAI TRYISTETS ...veeieeeee ettt ettt sttt e eseesteereenbeseesreeneas 2-25

StorHouse SQL Reference Manual v

FileTek Proprietary and Confidential

. Contents

USER SPECial FEJISTEL ...c.veiviivieieiecie sttt sttt st ene s 2-25
SYSDATE SPECIAl FEQISLEN ..vveeveeiee ettt sre e e nreas 2-25
SYSTIME SPeCial FEQISIEN ...c.vveiveeieeii e s s se e e e sre e re e snae e nnee s 2-26
Chapter 3: StorHouse datatypescccooevvveviiiiiiieiiiiiiinee e 3-1
ADOUL STOrHOUSE AALA TYPES ...veveieeeieeieeieeieeee ettt see e 3-1
Database data TYPESeoveererierieiiirte e 3-2
Descriptions of database data tyPesScccoerereiiniieieesee e 3-3
Database data types and funCtionscccceeeveiie i 3-14
StorHouse and local database data typescccccveeveieeiiievie v 3-16
Loader and unloader data tYPESc.overererierereeeeie ettt 3-17
List of loader and unloader data tyPesccoceeveerererieneeiene e e 3-18
Date and time formats of input and result datacc.ccecvvvevevivncveiiineseine 3-19
HOSt 1anguage data tYPESeoveiveieiiie s 3-21
Data tYPe CONVEISION ...cvveiiviiieeieesiesiesteetee e steste et e e s te et et e reasaessesresbeanaesaeneens 3-23
Conversion oOf loader data tYPEScccveveeieiiiie e 3-23
Conversion of unloader data tYPESceeeererereee e 3-26
Conversion Of TITEIaAlScoiiiieee e 3-28
Conversion of function data tYPeScoerereirineiesereee s 3-29
Chapter 4. StorHouse SQL statementscccooeeevvvviiiieeeeeeennnnnn. 4-1
About StorHOouse SQL StAtEMENTSccviiriiieeieecie ettt 4-1
List of StorHOuUSse SQL StAtEMENTSccvviivieiieeiieeireecre ettt ere b 4-2
Categories Of SQL ..o 4-5
ALTER TABLE SPACE ..ottt 4-7
FOMMAL et sb et see b enne s 4-7
EXAMIPIES <. 4-10
BEGIN and END DECLARE SECTIONoocoiiiiiiiiieee e 4-11
FOIMMAL . 4-11

vi StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

Declaring host and indicator variablesccccovvevieiiiiiiiiiecie e 4-12
ESQL FOIMAL ...c.vveiiiiec ettt 4-13

C language fOrMALcceoviieie e 4-13
EXAMPIES oottt e 4-14
DECIAITNG AITAYS ...vvvieeeieeietirt ettt bbb 4-14
ESQL format to declare an arrayccocecevererninenieneise e 4-15

C language format to declare a non-char arrayccccceevevevivsivereesennenn, 4-15

C language format to declare a char arraycccoceveeeveeincieeiesieseesinens 4-15
e 0 0] o] TSRS 4-16
Declaring type definitions for variables and arrayscccccoeevvviencvsiinienennens 4-16
ESQL format to declare a new data type for a variableccocooennnnn 4-16

ESQL format to declare a new data type for an arrayccccceevevveviernenne. 4-17
EXAMPIES oot ns 4-18
CLOSE ..ottt ettt r e re et e 4-19
FOMMAL .t 4-19
EXAMPIE et 4-19
COMMIT WORK .ottt s st re s ae e srbe e e e e snee e 4-20
FOIMMAL .. e 4-20

e L0010 L1 RUSSSU 4-21
CONNECT ettt sttt bt eneane e 4-22
FOMMAL . bbb 4-22
EXAMPIE e et 4-23
CREATE INDEX ..ottt sttt be et e e be e nee s 4-24
FOMMAL .. e 4-24
e 100 0] L1 SRS 4-26
CREATE SYNONYM .ottt 4-27
FOMMAL . bbbt 4-27
EXAMPIE oottt eneas 4-28
CREATE TABLE ..ottt sttt e sare e 4-29
FOIMAL ...t 4-29
e L0 0] L1 RUSSSRN 4-33
CREATE TABLE SPACE ..ottt 4-35
FOMMAL .ot 4-35

StorHouse SQL Reference Manual vii

FileTek Proprietary and Confidential

. Contents

e 100 0] [PPSO S 4-39
CREATE VIEW .ottt ettt e 4-40
FOIMMAL ettt seee s 4-41
EXAMPIE ettt e 4-41
DECLARE ..ottt sttt sttt ne e naenne e 4-42
0] 1 0T | RO RR 4-42
e 100 0] [PPSO S 4-43
DELETE .ottt sttt e sttt be b b ne e 4-44
FOIMMAL et sree 4-44
EXAMPIE ettt 4-45
DESCRIBE ..ottt sttt ettt st sttt ne e 4-46
DESCRIBE BIND VARIABLES ..ot 4-46
FOMMAL ... 4-46
EXAMPIE oo e 4-47
DESCRIBE SELECT LIST .ottt 4-47
FOMMAL <. 4-48
EXAMIPIE ..o e 4-48
DISCONNECT ..ot see e 4-49
FOIMEL <. bbbt 4-49
s 0 0] o] 1RSSR 4-49
DROP INDEX ...ttt sttt sttt sresneeneenee e e 4-50
FOMMAL .ttt sree s 4-50
EXAMIPIE .o 4-51
DROP SYNONYM .ottt 4-52
FOIMAL <. bbbt see s 4-52
EXAMPIE oo e 4-52
DROP TABLE ...ttt 4-53
FOMMAL ettt siee s 4-53
EXAMIPIE .o 4-53
DROP TABLE SPACE ...ttt 4-54
FOIMMAL e 4-54
EXAMPIE e 4-55

viii StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

DROP VIEW ...ttt st 4-56
0] 0 T | SRR 4-56
e 0 0] o] S 4-56

=T I I TSR 4-57
0] 11 0T | RSP PR 4-58
EXAMIPIES ... 4-59

EXECUTE IMMEDIATE ..ot 4-60
0] 0 | SRR 4-60
EXAMPIE oo e 4-61

e I TS 4-62
FOPMAL ..o 4-63
EXQMPIES .ottt ane s 4-64

FREE LOCATOR ..ottt b 4-66
0] 0 | SRR 4-66
EXAMPIE et nne s 4-66

LT N | S PTPSSSSR 4-67
0] 1 4T | S PRPPR 4-67
EXQMPIES <ottt ane s 4-69

INSERT e bbbt ns 4-70
0] 0 | OSSR 4-70
EXAMPIE oottt nne s 4-71

OPEN e ettt ettt et re et et e nteereeneenaenreene s 4-72
0] 11 0T | SRR 4-73
e 1001 0] [OSSPSR 4-74

PREPARE ..o 4-75
0] 0 | SRRSO 4-75
EXQMPIES ..ottt st sae et nreene s 4-76

REVOKE ..ottt ettt ettt ettt reene e sbesaeeneeneenaenee e 4-77
FOPMAL ..o 4-77
e 100 0] L1 SR SSSRRS 4-79

ROLLBACK WORK ...ttt 4-80
0] 0 | SRR 4-81

StorHouse SQL Reference Manual ix

FileTek Proprietary and Confidential

. Contents

EXAMPIE oo ns 4-81
SELECT ottt ettt e 4-82
FOIMMEAL ettt bbb e sreene s 4-82
INTO CIAUSE ..ttt st e seenreeneas 4-85
FOPMAL Lo e et e e srree e 4-85
EXAMPIES .o 4-85
FROM CIAUSE ...oveiieiiiesteee et 4-86
FOIMMAL <. r e e sre e 4-86
EXAMPIE oo e 4-87
WHERE CIAUSE ..ottt 4-88
FOPMAL oo e et be e s sraae e 4-88
EXAMPIE oot e 4-88
GROUP BY CIAUSE ..ottt 4-89
FOIMMAL ... et 4-89
EXAMPIE <o 4-89
HAWVING ClAUSEceeeeieieese ettt sttt eneas 4-90
FOPMAL oo e e e e s srrae e 4-90
EXAMPIE oot e 4-90
ORDER BY ClAUSEouviieiiitiiieieieiesesie e 4-91
FOMMAL <. bbb e ne s 4-91
EXAMPIES .ottt e 4-92
FOR CIAUSE ...ttt ettt ettt eneeneenes 4-93
FOPMAL oo st e et e e sraee e 4-93
JOINS et bbbt 4-94
SAMPIE TADIES ... 4-95
Performing multiple inner-join OpPerationsccccoeeevievieeneeieereeseeeens 4-96
Performing a left OULEr-joincocooeie i 4-97
Changing the table Order ... 4-98
Using parentheses to Specify joiN OFdercccoeovviveierninencescseee 4-99
Combining inner-join and outer-join Operationsccccvevevvevvervennnn, 4-100
Using a WHERE clause With @ Joincccccoooviiiiii i 4-101
Explanation of QUErY 1cccoeiveiice e 4-101
EXplanation Of QUENY 2c.ooiiieee e 4-103

SET CONNECTION ..ottt 4-105
FOPMAL .. e e ee e e e s nraeaean 4-105

x StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

EXAMPIE oo e 4-105
UPDATE ettt ettt eee e 4-106
FOIMMAL ..ttt 4-106
EXAMPIE oo ettt ee e 4-107
VALUES INTO ottt tee st snreesnne e 4-108
FOMMAL ...t 4-108
EXAMPIE oo e 4-108
WHENEVER ..ottt e 4-109
FOIMMAL .. 4-109
EXAMPIE <o ettt ee e 4-110
Chapter 5: StorHouse SQL predicatescccoeeevvviieevivineerinnnnnne, 5-1
About StorHouse SQL PrediCatesooeveirereiniriesieieeeseree e 5-1
PrediCate OFOENcviiiteieiee ettt 5-2
Comparisons of CHAR and VARCHAR fields with blanksc.ccccceevinnee. 5-2
BaSIC PrEdICALEoiveeeeieiiiiiee et e eneas 5-3
FOMMAL .ttt 5-3
EXAMPIE <ottt nee e 5-4
COMPIEX PrEAICATEooveiieeieieiesiete et 5-5
EXQMPIES <ottt benre e 5-6
QUANLIfied PrediCatecvcveieie e 5-7
FOIMMAL .ttt sree s 5-7
EXAMPIE oot e ee e 5-8
BETWEEN ...ttt nn s 5-9
FOIMAL <.ttt b sar e e nane e 5-9
EXAMPIE oot e re s 5-9

E XIS TS bbb 5-10
FOIMMAL . see e 5-10
EXAMPIE oottt nne s 5-10

N et r et et Re e Re et et eneenenre it enens 5-11
FOPMAL ..o 5-11

StorHouse SQL Reference Manual xi

FileTek Proprietary and Confidential

. Contents

EXAMPIE oo ns 5-11
LEKE ettt ettt nrenne s 5-12
FOIMMEAL ettt bbb e sreene s 5-12
EXQMPIES <.t ettt reenes 5-13
INULL oottt sa s e be b et enaenanrees 5-14
0] 1 0T | PRSP 5-14

e L0001 ST 5-14
Chapter 6: StorHouse SQL functionscccccceeeieiiiiiiiiie e, 6-1
About StorHouse SQL fUNCLIONSc.oeiiviiiiiiiiicce e 6-1
AQQregate TUNCLIONSooiiiieeiee et ens 6-1
SCalAr TUNCLIONS ..ot 6-2
ABS ettt st s et et b et reerenrenes 6-5
FOIMMAL ..t 6-5
EXAMPIE e are e 6-6
ADD_MONTHS .ottt sttt enes 6-7
FOMMAL .ttt b e e e b 6-7
EXAMPIE ettt nne e 6-7
ASCH ottt e ettt ne et e 6-8
FOIMMAL ..t 6-8
EXAMPIE oot nre e 6-8
AV G ettt ARttt R ettt ne et e 6-9
FOMMAL .t b bbb b 6-9
EXAMPIE ettt 6-10
BIT_LENGTH oot et 6-11
FOIMMAL e 6-11
EXAMPIE et 6-11
BLOB ..ttt e ettt ettt ens 6-12
FOMMAL bbbt 6-12
EXAMPIE ettt 6-12
CHAR _LENGTH oottt 6-13

xii StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

FOIMMAL ..o 6-13
e 0 0] o] 6-13
CH R e et ettt be e 6-14
FOMMAL .. bbb e e 6-14
EXAMPIE <. 6-14
CLOB et be et et nneene e 6-15
FOMMAL . 6-15
e 0 0] o] 6-15
CON C AT et ettt ettt e st s bttt e s e et sbe et et e besaesne e 6-16
FOMMAL .. bbb 6-16
EXAMIPIES ..o 6-17
COUNT bbbt b ettt bt et e e b e sae e 6-18
FOIMMAL .. 6-18
e 0 0] o] 6-18
DAYOFMONTH ..ottt ne e nne e 6-19
FOMMAL .t ee e 6-19
EXAMPIE .o 6-19
DAYORWEEK ...ttt s 6-20
FOMMAL . e 6-20
e 0 0] o] 6-20
DAYORFYEAR ..ottt sttt sttt ettt e sreere e ne e 6-21
FOMMAL . bbb 6-21
EXAMIPIE .o 6-21
DAY S bbbt b bttt ae e 6-22
FOIMMAL .. 6-22
e 0 0] o] 6-22
DECODE ...ttt ettt e neenneenes 6-23
FOMMAL . bbb e e 6-23
EXAMIPIE .o 6-24
GREATEST ittt bbbttt es e nae s 6-25
FOIMEL ..ot 6-25
e 0 0] o] 6-25

StorHouse SQL Reference Manual xiii

FileTek Proprietary and Confidential

. Contents

HOUR e bbbt nne e 6-26
0] 0 T | SR 6-26
EXAMPIE e 6-26

INTT C AP ettt et te s e e sbeereeneentesaeane e 6-27
0] 1 0T | PRSPPI 6-27
EXAMIPIE .o 6-27

IN ST R et bbb ae e 6-28
0] 0 | USRS 6-28
EXAMPIE e s 6-29

N I 5 L TS 6-30
FOPMAL . e e 6-30
EXAMPIE et 6-30

LB A S T e bbb bbb e 6-31
0] 0 T | SRR 6-31
EXAMPIE ettt e 6-31

LENGTH oot ee e sre e 6-32
0] 1 1T | RSP RS 6-32
EXAMPIE oo et 6-32

LOWER . et bbb bbbt ne e 6-33
0] 0 | SRR 6-33
EXAMPIE ettt 6-33

LPAD ettt ettt nre ettt naeeneens 6-34
0] 1 T | RO RS 6-34
e 1001 0] [PPSR 6-35

LTRIM e bbbt ne e 6-36
0] 0 | SRR 6-36
EXAMPIE e ettt 6-36

VLA X ettt ettt ettt e Re et nteereeneenteeeeaeanens 6-37
FOPMAL e 6-37
EXAMPIE et 6-37

IMIIN et bbb bbb bbbt ne e 6-38
0] 0 T | RS 6-38

xiv StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

EXAMPIE oot e e 6-38
MINUTE oottt sttt st neene s 6-39
0] 0 | OSSR 6-39
EXAMPIE et nne s 6-39
MONTH ettt a e e etestentees 6-40
FOPMAL ..o 6-40
EXAMPIE oo e e 6-40
MONTHS_BETWEEN ...ttt 6-41
0] 0 | SRR 6-41
EXAMPIE oottt nne s 6-41
NEXT DAY oottt ettt ettt reabe st e 6-42
0] 1 0 SO O 6-42
EXAMPIE oo e 6-42
[N SRS RSPSPRTRN 6-43
0] 0 | SRS 6-43
EXAMPIE ettt nne s 6-43
OCTET_LENGTH oottt 6-44
0] 0 O RPTT 6-44
EXAMPIE oo et 6-44
OVERLAY ettt ettt e enes 6-45
0] 0 | SRS 6-45
EXAMPIE oottt nne s 6-46
POSITION ittt sttt seebe st et enaeneere e 6-47
FOMMAL e e et sre e 6-47
EXAMPIE oo e 6-47
QUARTER .ottt ettt nes 6-48
0] 0 | RS 6-48
EXAMPIE ettt nne s 6-48
RPAD .o ettt n ettt aetenae it e e s 6-49
FOMMAL ..o ae e nre e 6-49
EXAMPIE oo 6-50

StorHouse SQL Reference Manual xv

FileTek Proprietary and Confidential

. Contents

RTRIM ettt bbb bbbt e bbb 6-51
0] 0 T | SR 6-51
EXAMPIE e 6-51

R =101 @] V1 5 PSS 6-52
0] 1 0T | PRSPPI 6-52
EXAMIPIE .o 6-52

SUBSTR ettt bbb bbbt b bbb b s 6-53
0] 0 | PR 6-53
EXAMPIE e 6-54

SUM ettt ettt ne et et teeneeneenneenen 6-55
0] 1 0T | PP PS 6-55
EXAMPIE e et ans 6-56

TO _CHAR bbbt 6-57
0] 0 | PR 6-57
e 00][SR 6-57

L T 5 7 1 =SSP 6-58
FOPMAL i 6-58
e 1001 o] LSS 6-58

TO _HEX bbbt 6-59
0] 0 | PR 6-59
e 100 0] 1SS 6-60

TO_NUMBER ..ottt eneenes 6-61
FOPMAL . 6-61
e 1001 o] LSS 6-61

TO_TIME bbbttt see b e 6-62
0] 0 | SR 6-62
EXAMPIE et enes 6-62

TRANSLATE ettt ettt ettt ettt ne e neesteereenes 6-63
FOPMAL e 6-63
EXAMPIE e ens 6-64

TRIM ettt bttt bt e b ees 6-65
0] 0 T | PR 6-65

xvi StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Contents .

EXAMPIE oot e e 6-66

UPPER ...ttt 6-67

FOIMMAL .. bbb 6-67

EXAMPIE et 6-67

WWEEK e 6-68

FOIMAL ...ttt saee s 6-68

EXAMPIE oo e et 6-68

YEAR ettt 6-69

FOIMMAL .t ee e 6-69

EXAMPIE ettt 6-69

Appendix A: SQL status COAESccevvciiiiiiiiiiiii e A-1
Appendix B: StorHouse SQL reserved wordsccccceeeeeeeeenn. B-1
Appendix C: Deprecated SyNtaxccccceeeveevveeiiiiieeeeeeiiineeeeeeeennn C-1
ALTER TABLE SPACEooooi ettt sttt C-2

FOIMMEAL . C-2

EXAMPIE oo et C-5

CREATE TABLE SPACEoiiiiiiiieete e C-6

FOMMAL .t e e seeas C-6

e 10 0] 0] LSRR C-9

JOINIS bbb e b b e nae e nes Cc-11

FOIMMAL ..o C-12

e 1001 0] L1 SRS C-13

Index

StorHouse SQL Reference Manual xvii

FileTek Proprietary and Confidential

. Contents

xviii StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

FileTek

Welcome

StorHouse® Structured Query Language (SQL) is a subset of the American National
Standards Institute (ANSI) SQL. StorHouse SQL includes extensions that are
specific to defining and accessing database data on the FileTek® StorHouse
system.

StorHouse family of products

StorHouse is the FileTek enterprise-wide solution for managing the capture,
storage, movement, and access of gigabytes to petabytes of relational and non-
relational detail data. StorHouse technology combines industry-leading, scalable
storage devices and Open System processors with specialized storage
management and relational database management system (RDBMS) software
components.

StorHouse/SM

StorHouse/SM, the storage management component, controls a hierarchy of
storage devices comprised of cache, redundant array of independent disk (RAID),
erasable and write-once-read-many (WORM) optical disk jukeboxes, and
automated tape libraries. StorHouse/SM is also responsible for automating
critical system management tasks, like data migration, backup, and recovery.
StorHouse/SM comes standard with all StorHouse systems.

StorHouse SQL Reference Manual xix

FileTek Proprietary and Confidential

Welcome
Purpose of this document

StorHouse/RM

StorHouse/RM, the RDBMS component, works in conjunction with
StorHouse/SM to specifically administer the storage, access, and movement of
relational data. StorHouse/RM provides row-level SQL access to high volumes of
detail data on any layer—including tape—in the StorHouse storage hierarchy.
SQL access is available from different platforms through a variety of industry-
standard protocols. StorHouse/RM runs on Sun™ Solaris™ and
Hewlett-Packard HP-UX platforms.

Control Center

StorHouse Control Center (CC) is the FileTek Windows®-based network
computing system for providing administrative control of the StorHouse family
of products. Control Center works with StorHouse/SM release 4.2 and higher
and consists of one or more Control Center servers that communicate with
Control Center clients over a TCP/IP network. The Control Center server, which
runs on Windows NT, XP Pro, and 2000 platforms, provides network
connectivity to StorHouse. The Control Center clients, which run on Windows
95, 98, 2000, XP Pro, and NT platforms, consist of one or more graphical user
interface (GUI) modules for performing StorHouse system and database
administration tasks, configuring and managing Control Center servers, and
analyzing and monitoring StorHouse activity and performance.

Purpose of this document

The StorHouse SQL Reference Manual serves as a reference for StorHouse SQL.
This manual contains SQL formats and examples and provides guidelines for
using StorHouse SQL.

xx StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Welcome
Intended audience

Intended audience

Contents

The StorHouse SQL Reference Manual is intended for users, application
programmers, and system and database administrators. This manual assumes
that you understand SQL and StorHouse/RM concepts.

This publication contains the following chapters and appendixes:

= Chapter 1, “Introduction,” provides basic information about StorHouse SQL
such as ways to invoke SQL, types of SQL, and conventions used to illustrate
StorHouse SQL.

= Chapter 2, “Elements of StorHouse SQL,” describes the components that are
common to many SQL statements.

= Chapter 3, “StorHouse data types,” describes different categories of data types
and provides data type conversion information.

= Chapter 4, “StorHouse SQL statements,” contains descriptions, formats, and
examples of StorHouse SQL statements.

= Chapter 5, “StorHouse SQL predicates,” contains descriptions, formats, and
examples of StorHouse SQL predicates.

= Chapter 6, “StorHouse SQL functions,” contains descriptions, formats, and
examples of StorHouse SQL aggregate and scalar functions.

= Appendix A, “SQL status codes,” lists the StorHouse SQL status codes and
associated text you receive after submitting StorHouse SQL statements.

= Appendix B, “StorHouse SQL reserved words,” lists the StorHouse SQL
reserved words that you cannot use to name various SQL elements.

StorHouse SQL Reference Manual xxi

FileTek Proprietary and Confidential

Welcome
Related documentation

= Appendix C, “Deprecated syntax,” contains the deprecated format of ALTER
TABLE SPACE, CREATE TABLE SPACE, and joins.

Related documentation

It may be helpful to be familiar with the material in these documents:

= The StorHouse SQL Quick Reference, publication number 900122, provides a
summary of the material in the StorHouse SQL Reference Manual.

= The StorHouse Database Administration Guide, publication number 900108,
describes StorHouse database concepts and explains how to create user tables
and indexes, manage accounts and privileges, set up user tablespaces, and
perform other StorHouse system and database administration tasks.

= The StorHouse ESQL Manual, publication number 900121, explains how to
use StorHouse SQL in application programs.

= The FileTek MVS Data Loader Utility Manual, publication number 900109,
describes how to load data into StorHouse user tables from an MVS
environment.

= The FileTek FTP Data Loader Manual, publication number 900115, explains
how to load data into StorHouse user tables from UNIX®, VAX, or other
hosts using your standard File Transfer Protocol (FTP) client software.

= The FileTek FTP Data Unloader Manual, publication number 900137,
explains how to unload data from StorHouse databases using FTP. It describes
the UNLOAD control statement you prepare to format result data, the
SELECT statement you prepare to select the data to unload, and the subset of
FTP commands you use to transfer control information and to receive result
data.

xxii StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Welcome
Conventions

= The StorHouse/RM Glossary, publication number 900112, defines the
terminology used in the StorHouse/RM User Document Set.

= The StorHouse Messages and Codes Manual, publication number 900032, lists
all StorHouse system and host software messages.

= The StorHouse/UDB Link Installation and Configuration Manual, publication
number 900163, explains how to install the StorHouse/UDB Link and how
to configure IBM® DB2® Universal Database (DB2 UDB) to work with
StorHouse. It also discusses security management, data modeling, and DB2
components that support federation.

= The Microsoft SQL Server 7.0-to-StorHouse Connectivity Guide, publication
number 900158, describes how to access StorHouse/RM from a Microsoft
SQL Server application using the MERANTO SequeLink® Server software.
This document provides instructions on configuring linked servers with
StorHouse/RM so that Microsoft SQL customers can develop applications
that use StorHouse/RM as a transparent data source.

Conventions

This book uses the following notational conventions:

Convention Meaning

Helvetica font StorHouse SQL formats and examples

Italics New terms, emphasized text, and publication titles

See “StorHouse SQL conventions” on page 1-10 for specific StorHouse SQL
conventions.

StorHouse SQL Reference Manual xxiii

FileTek Proprietary and Confidential

Welcome
Conventions

xxiv StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

1

Introduction

This chapter presents an overview of StorHouse SQL. It describes:

= Basic uses of StorHouse SQL

= Ways to invoke StorHouse SQL

= Static and dynamic SQL

= SQL standard differences

= Types of queries

= Syntax rules for StorHouse SQL formats and examples

About StorHouse SQL

Structured Query Language (SQL) is a standardized language for defining and
manipulating data in relational database management systems. StorHouse SQL is
the version of SQL that is native to StorHouse. It consists of a subset of American
National Standards Institute (ANSI) SQL plus extensions defined by FileTek to
support additional capabilities.

You use StorHouse SQL to access database data on StorHouse. This information
makes up the active archive portion of your local database or data warehouse.
Typically, you do not modify this data. Instead, you retain this data over time to
satisfy legal commitments or to grow your corporate data warehouse.

You also use StorHouse SQL to perform StorHouse database administration
tasks. For example, you can:

StorHouse SQL Reference Manual 1-1

FileTek Proprietary and Confidential
1 Introduction
Ways to submit StorHouse SQL

= Create StorHouse database user components like user tables, user tablespaces,
indexes, views, and synonyms.

= Control access to database information by granting and revoking privileges
for StorHouse accounts.

= Query system tables to obtain information about database components.

Ways to submit StorHouse SQL

You can submit StorHouse SQL statements several ways:

= Embed them in C or C++ application programs. This SQL is called static SQL,
described on page 1-3. Follow the guidelines in the StorHouse ESQL Manual.

= Prepare and execute them dynamically with C and C++ application programs.
This SQL is called dynamic SQL, described on page 1-4. Refer to the
StorHouse ESQL Manual for more information.

= Issue them interactively with an Interactive SQL (I1SQL) tool provided by your
local database. For instance, if your local database is DB2®, then you can use
SQL Processor Using File Input (SPUFI) to submit StorHouse SQL.

= Issue them interactively with the 1SQL tool provided by the Control Center
StorHouse/Admin module. Refer to the StorHouse/Admin Database
Administrator’s Quick Reference for more information about using this FileTek
ISQL tool.

= Issue them with local database applications through a database gateway such
as the 1IBM Distributed Relational Database Architecture (DRDA) gateway for
DB2 and the Open Database Connectivity (ODBC) gateway interface for
Oracle®, Microsoft SQL Server 7.0, and other ODBC-enabled systems.

1-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
Types of StorHouse SQL

= Submit them through the StorHouse/UDB Link software, which allows users
of IBM DB2 Universal Database (UDB) software (version 7.1 or later) to
access StorHouse databases managed by StorHouse/RM release 3.0 and
higher. Refer to the StorHouse/UDB Link Installation and Configuration
Manual for more information about submitting SQL through a federator.

= Use the FileTek MVS Data Loader utility (for MVS hosts) or the FileTek FTP
Data Loader (for any FTP-capable host). Refer to the FileTek MVS Data
Loader Utility Manual and the FileTek FTP Data Loader Manual for more
information about submitting StorHouse SQL with a FileTek data loader.

= Prepare a SELECT statement, as part of the UNLOAD statement, to select the
StorHouse data that you want to copy from a StorHouse user table to a file on
a client system. Refer to the FileTek FTP Data Unloader Manual for more
information about the UNLOAD and SELECT statements.

Types of StorHouse SQL

There are two types of SQL statements: static and dynamic.

Static SQL

Static SQL (or embedded SQL) statements are embedded in an application
program. You use static SQL when you know the contents of your SQL
statements at program compile time. That is, you know which statements you're
going to issue and the names of the tables and columns you plan to select. The
only items that may change from one execution to the next are values in your
search conditions.

StorHouse provides an Embedded SQL Interface (ESQL) that supports coding SQL

statements in C and C++ programs. You can embed all StorHouse SQL
statements in a program, placing them wherever a host language statement is

StorHouse SQL Reference Manual 1-3

Introduction

FileTek Proprietary and Confidential

SQL standard differences

allowed. The SQL statement must begin with the prefix EXEC SQL and end with
a semicolon.

Before you compile a program containing static SQL statements, those
statements must be processed by the StorHouse ESQL precompiler. The ESQL
precompiler translates your SQL statements into host language statements that
include standard ESQL library calls, which are then used to build the program
executable. Refer to the StorHouse ESQL Manual for more information about
embedding SQL statements in your programs and running the StorHouse ESQL
precompiler.

Dynamic SQL

Dynamic SQL statements are prepared and executed by a program at runtime. You
can use dynamic SQL statements when you don't know which SQL statements
you intend to execute or which columns and tables you plan to select until a
program executes.

Dynamic SQL statements are not embedded in a program. Your program could,
for example, build an SQL statement from terminal input placed into a character
variable. A dynamic SQL statement can change several times during a program’s
execution.

All StorHouse SQL statements can be static (you can embed all of them in a
program), but only some are dynamic. See the table on page 4-2 for a list of
StorHouse SQL statements that you can prepare and execute dynamically.

SQL standard differences

SQL formats differ somewhat from one database system to another. When
multiple database products are involved in the execution of a single SQL
statement, the standard to which that statement must conform depends upon
how the statement is presented and the type of interfaces the statement passes

1-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
SQL standard differences

through. This section describes standards for SQL submitted through a FileTek-
supplied interface, an application program, a gateway, and a federator.

Through a FileTek interface

SQL presented to StorHouse through a FileTek-supplied interface must conform
to the StorHouse SQL documented in this manual. These interfaces are:

= StorHouse ESQL precompiler

» FileTek MVS Data Loader utility
» FileTek FTP Data Loader

» FileTek FTP Data Unloader

= StorHouse/Admin ISQL

In an application program

SQL embedded in an application program (that is, static SQL) must always
conform to the SQL standards of the database system that supplies the embedded
SQL precompiler. If StorHouse also executes the statement, (for example, a
SELECT statement), then that statement must also conform to StorHouse
standards. Dynamic SQL appears to the precompiler as a character string and is
not processed by the precompiler. Such SQL must conform only to the standards
of the server that executes it.

Through a gateway

SQL submitted through a gateway, such as the StorHouse DRDA gateway, or
through an industry standard API such as ODBC must conform with the
standards of the server that executes it, in this case, StorHouse. Note that these
interfaces also parse SQL statements but are usually tolerant of SQL variations.

StorHouse SQL Reference Manual 1-5

FileTek Proprietary and Confidential

1 Introduction
Types of queries

Through a federator

SQL submitted through a federator, such as the IBM Datajoiner, DB2 UDB
release 7.1 or later, or OracleHS must conform to the standards of the federator.
Federators, then, may restructure the SQL to conform to the standards of the
target database system. The best approach is to use SQL common to all database
systems and to avoid inconsistently defined objects such as date-time values
expressed as string literals.

Many federators have a "pass-through" feature that submits SQL to a target
database system without any processing by the federator. In this case, the SQL
needs to conform only to the standards of the target database. Note, however,
that pass-through may inhibit optimization and limit capabilities like cross-
database joins.

Types of queries

You retrieve data by submitting a query with a SELECT statement. The result of a
query is data in the form of a table, called result table, result set, active set, or
answer set. There are many ways to write a query. This section describes these
specific types of queries: selection, extraction, join, and subquery.

Selection
A selection returns specified columns from one or more rows in a table. For

instance, when you access all the information in a user table for a specific account
number, then you are performing a selection.

1-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
Types of queries

Extraction

An extraction is a query that returns all rows for one or more columns of a user
table. This type of query results in a full table scan (a search in all rows without
the use of an index) or a full segment select (a result set consisting of one or more
entire segments with the use of a range index). Depending on the size of the user
table, an extraction may take too long to be practical. But because an extraction
may be necessary, StorHouse provides an efficient method—called the
StorHouse extractor—for processing full table scans and full segment selects.
Queries and user tables must conform to a set of rules to qualify for extractor
processing. Refer to the StorHouse ESQL Manual for more information about
extracting data with the extractor.

Join

A join combines data in multiple tables or views or even within a table or view.
When you join tables, you specify a column in each table and a join condition.
The SELECT statement FROM clause identifies the tables to be joined and the
join condition.

Join types

StorHouse supports inner-joins, left outer-joins, equi-joins, self-joins, and
Cartesian products. Full outer-join and right outer-join operations are currently
not supported.

Inner-join. An inner-join combines the matched rows of the tables. The
unmatched rows are omitted from the result table.

Left outer-join. An outer-join also combines the matched rows of the tables, and
for unmatched rows, preserves the values of the table to the left of the join
operator, combining them with NULL values for the table to the right of the join
operator.

StorHouse SQL Reference Manual 1-7

FileTek Proprietary and Confidential

1 Introduction
Types of queries

Equi-join. An equi-join uses predicates that specify equalities to join a column
from one table with a column from another table. For example, you can select
the customer number, name, order number, and order date from the
CUSTOMERS and ORDERS tables for all customer numbers contained in both
tables.

Self-join. A self- or auto-join joins a table with itself. For example, you can select
all customer names and numbers that are from the same city as a specified
customer in the table.

Cartesian product. A Cartesian product joins tables in their entirety. The
number of rows in a Cartesian product equals the number of rows in one table
multiplied by the number of rows in the second table. For example, if you're
joining two tables and each table contains 100 rows, then the result set is a
Cartesian product with 10,000 rows (100 x 100). To avoid a Cartesian product,
qualify a join with a WHERE clause.

Join methods

A join method is the series of steps that the optimizer performs to join tables.
StorHouse/RM supports two join methods:

= Nested loop
» Hybrid IN

The optimizer chooses the most efficient join method for the query but may
consider one type over the other when certain conditions are met. For instance,
the optimizer may choose a hybrid IN method when the query is an equi-join
and the inner table has a value index on the join column.

Nested loop. A nested loop method:
= Scans the outer table once for qualifying rows

= Scans the inner table as many times as the number of qualifying rows in the
outer table

1-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
Types of queries

The optimizer may perform a nested loop when the number of qualifying rows in
the outer table is small, when the predicate is not an equals-type, or when the
join column of the inner table does not have an index.

Hybrid IN. A hybrid IN method for an inner-join works as follows:

= Scans the outer table for qualifying rows and builds a temporary result set
sorted by join key

= Scans the index of the inner table to obtain the tuple 1Ds (T1Ds) of the
qualifying rows in the inner table

= Reads the inner table in TID order and joins the matching rows to those from
the temporary result set of the outer table

A hybrid IN for an outer-join adds these steps to a hybrid IN inner-join:

= Flags the qualifying rows from the outer table when they match any rows
from the inner table

= Scans the flags to find outer rows that were unmatched

» Projects those unmatched rows with NULL values in the inner row columns

Subquery

A subquery (also called nested query or subselect) is a form of the SELECT
statement that appears in another SQL statement. The rows returned by the
subquery are used by the higher-level SQL statement. Some of the main uses of
subqueries are to define the set of rows to be included in a view, to provide values
for conditions in WHERE and HAVING clauses of the SELECT statement, and to
optimize higher-level queries by reducing the size of the result set, for instance, in
predicates.

StorHouse SQL Reference Manual 1-9

FileTek Proprietary and Confidential

Introduction

StorHouse SQL conventions

Note the following restrictions:

= Set operators (UNION and UNION ALL) are not allowed in subqueries.
= Ajoin condition cannot contain a subquery.

StorHouse SQL conventions

This section describes the conventions of StorHouse SQL formats and examples
and describes rules for including spaces and comments in SQL statements.

SQL format conventions

The following table can help you interpret the symbols and other conventions
used in SQL formats.

Format conventions

Convention Description

UPPERCASE Uppercase terms indicate keywords or specific values that are part
of the syntax.

lowercase Lowercase terms refer to user-supplied values, component
names, or a user-specified identifier that has specific values
associated with it.

(), *-;:.+" These characters are part of the syntax.

{} Braces indicate that the item shown is required. If the format
shows several options within this set of symbols, you must specify
one of the options.

[] Square brackets indicate that the item shown is optional.

| A vertical bar separates alternatives. You can specify only one of
the alternatives shown.

Ellipsis points indicate that you can repeat the part of the
statement preceding them any number of times.

1-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
StorHouse SQL conventions

For example, the following SQL format (a simplified SELECT statement) uses the
conventions defined in the preceding table:

SELECT column_name
[FROM [owner.}{table_name | view_name}]
[WHERE condition]

In this example:

= SELECT, FROM, and WHERE are shown in uppercase because they are
StorHouse SQL keywords.

= column_name, owner, table_name, view_name, and condition are shown in
lowercase because they are user-specified components.

= table_name and view_name are enclosed in braces ({ }) and separated by a
vertical bar (|) because one of them is required to complete the statement.
The braces indicate a requirement, while the vertical bar indicates a choice of
items within the braces.

= owner, the FROM clause, and the WHERE clause are enclosed in square
brackets ([]) because they are not required to complete this statement. They
are optional.

SQL example conventions

In this manual, one or more examples follow each SQL format. For SQL
statements that are both static and dynamic, the corresponding examples are
shown in uppercase (even user-supplied values). For example:

DROP TABLE CUSTOMER

For SQL statements that you can embed only in a program (static only), the
keywords are shown in uppercase and the user-supplied values are shown in
lowercase to conform to C and C++ host language conventions. The embedded

StorHouse SQL Reference Manual 1-11

FileTek Proprietary and Confidential

1 Introduction
StorHouse SQL conventions

SQL examples also contain a terminating semicolon to conform to host language
conventions. For example:

EXEC SQL
OPEN customer_cursor ;

Spaces in StorHouse SQL

A space is a sequence of one or more blank characters that is used as a delimiter.
The syntax rules for spaces are as follows:

= User-supplied names (such as database names and table names) must not
contain a space.

= Any statement or statement component can be followed by a space.

= Every numeric literal, host identifier (a name defined in a host program), or
keyword must be followed by a delimiter or a space.

= |f the syntax does not allow an identifier to be followed by a delimiter, that
identifier must be followed by a space.

Comments in StorHouse SQL

You can include comments in StorHouse SQL. There are three kinds of
comments: SQL-style, C-style, and C++-style. This section describes guidelines
for including these types of comments. Any other use of comments is as
indicated by the documentation for the product or application you use to submit
the SQL.

1-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Introduction 1
StorHouse SQL conventions

You can include SQL-style comments in embedded SQL wherever blanks are
allowed (except between EXEC SQL). These comments start with two hyphens
(--) and terminate by the end of the line. SQL-style comments are not allowed
within statements that are dynamically prepared (processed by PREPARE or
EXECUTE IMMEDIATE).

SQL-style comment

The following example contains two SQL-style comments.

EXEC SQL
SELECT names, dates --select list
INTO :employee_name, :hire_date --output host variables
FROM employee_data ;

C-style comment

You can include C-style comments in embedded SQL and SQL that’s dynamically
prepared (processed by PREPARE or EXECUTE IMMEDIATE). You can place
C-style comments wherever blanks are allowed (except between EXEC SQL).
These comments begin with the characters /* and end with the characters */. For
example:

EXEC SQL
PREPARE sel_stmt FROM ‘SELECT col1, col2 /*select list*/
FROM tablel’ ;

C++-style comments

You can include C++-style comments in embedded SQL wherever blanks are
allowed (except between EXEC SQL). These comments begin with the characters
// and terminate by the end of line. For example:

EXEC SQL
SELECT names, dates //select list
INTO :employee_name, :hire_date //output host variables
FROM employee_data ;

StorHouse SQL Reference Manual 1-13

FileTek Proprietary and Confidential

1 Introduction
StorHouse SQL conventions

1-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

2

Elements of StorHouse SQL

StorHouse SQL statements contain specific elements and must conform to
certain rules. This chapter defines the following elements:

= Keywords

= Clauses

= Predicates

= Functions

= Expressions

= User-supplied names
» Literals

= Format strings
= Operators

= NULL values

= Special registers

Keywords

A keyword is a predefined word that initiates and is reserved for specific tasks.
The word SELECT, for instance, is a keyword that initiates a query. With
StorHouse SQL:

= You can type keywords in uppercase, lowercase, or mixed case letters, for
example, Select, SELECT, and select.

= You cannot use keywords to name database components. For example, an
error occurs if you try to create a table with the name ORDER.

StorHouse SQL Reference Manual 2-1

FileTek Proprietary and Confidential

2 Elements of StorHouse SQL
Clauses

Clauses

See Appendix B, "StorHouse SQL reserved words," for a list of keywords and
other words that you cannot use for user-supplied names.

An SQL statement is composed of one or more clauses. A clause begins with a
keyword followed by parameters or qualifiers known as arguments. For instance,
when creating a user tablespace with the CREATE TABLE SPACE statement, you
provide one or more SUBSPACE clauses that define the storage specifications for
that user tablespace. Or when you write a SELECT statement, you qualify the
query by specifying an INTO, FROM, WHERE, GROUP BY, HAVING, or
ORDER BY clause. The WHERE clause of the SELECT statement is also called a
restrictive clause because it limits the number of rows returned. StorHouse SQL
clauses are described in Chapter 4, "StorHouse SQL statements,” with their
associated SQL statements.

Predicates

Functions

A predicate reduces the number of rows returned by a query. You can use
predicates to narrow the scope of queries so that your result sets are more precise.
For example, if you are reviewing salary data and want to review a specific salary
range, you can use the BETWEEN predicate to return only that salary range. The
predicates supported by StorHouse SQL are defined in Chapter 5, "StorHouse
SQL predicates."

A function is a named operation in an SQL statement, followed by one or more
expressions. You use functions to derive results either from a collection of values
across one or more rows of a table (using aggregate functions such as COUNT or

2-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
Expressions

SUM) or to produce a single value from another value (using scalar functions such
as SUBSTR). The functions supported by StorHouse SQL are defined in Chapter
6, "StorHouse SQL functions.”

Expressions

An expression specifies a value. Expressions can consist of one or a combination of
the following:

= Column names
= Operators

= Functions

= Host variables
= Special registers
= Literals

For example, the expression in the following WHERE clause includes the column
name MGR_SAL, the operator >, and the integer literal 50000:

SELECT MGR_SAL
FROM EMPTAB
WHERE MGR_SAL > 50000

You can use expressions in functions and in the following:

= Condition of the WHERE and HAVING clauses of the SELECT statement
= ORDER BY clause of the SELECT statement

» VALUES clause of the INSERT statement (for SYSSMUSERS system table)
= SET clause of the UPDATE statement (for SYSSMUSERS system table)

= VALUES INTO statement

= Join condition of the SELECT statement FROM clause

StorHouse SQL Reference Manual 2-3

FileTek Proprietary and Confidential

2 Elements of StorHouse SQL
User-supplied names

A query expression is a SELECT statement. You can specify a query expression in
the following:

= UNLOAD statement in an unload control file
= CREATE VIEW, DECLARE, and INSERT SQL statements
= Basic, quantified, EXISTS, and IN predicates

User-supplied names

For various SQL statements you assign or provide a name. For instance, when
creating a user table you assign a table name in a CREATE TABLE statement.
When querying that user table you provide the table name in a SELECT
statement. Some of the user-supplied names include:

= Account IDs

= Alias names

= Cursor names

= Database user component names
= Database names

= Host variables

The term SQL identifier refers to alias names, cursor names, and database user
component names.

Account IDs

An account 1D is a name for a StorHouse account. In StorHouse SQL you provide
a StorHouse account 1D when:

= Specifying an owner name

= Granting or revoking a privilege
= Connecting to a StorHouse database

2-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
User-supplied names
= Loading data

= Assigning, changing, or removing a default user tablespace for an account

An account 1D consists of 1 to 12 characters that may include letters A-Z,
numbers 0-9, dollar sign ($), and underscore (). If necessary, you can enclose
account 1Ds in double quotes (see page 2-8).

Alias names

An alias name is another name for a table or view. You specify an alias name when
you join a table with itself (self-join). An alias name must conform to the same
rules as database user component names (see page 2-6); however, it is valid only
for the life of the query. You can enclose alias names in double quotes (see page
2-8).

In StorHouse SQL, an alias name typically follows the table name. The names are
separated by a space. For example, in the following FROM clause, the table name
IS CUSTOMER and the alias names are FIRST and SECOND:

FROM CUSTOMER FIRST, CUSTOMER SECOND

Cursor names

You use cursors in static SQL for queries that return multiple rows. A cursor is a
named item that points to a specific row within a set of rows and retrieves rows
from that set. A cursor name must be unique and conform to the same rules as
database user component names (see page 2-6). You can also enclose cursor
names in double quotes (see page 2-8).

StorHouse SQL Reference Manual 2-5

FileTek Proprietary and Confidential
2 Elements of StorHouse SQL
User-supplied names

Database names

A StorHouse database name identifies a StorHouse database. A StorHouse
database name is case sensitive. It must;

= Be unique

= Start with a letter

= Contain from 1 to 32 characters

= Consist of any combination of letters a—z or A-Z, numbers 0-9, and
underscore ()

If you are accessing StorHouse through your local database, then a StorHouse
database name must also conform to the database naming conventions of your
local database. For example, if your local database is DB2, then your StorHouse
database names must be uppercase and cannot exceed 16 characters.

You cannot use case to differentiate StorHouse database names. For instance, you
can't name one database CUSTOMER and a second database customer or
Customer. Database names must be unique.

Database user component names

Database user components consist of user tables, columns, views, indexes,
synonyms, and user tablespaces. You assign a name when you create a component
and then use that name when referencing that component in an SQL statement.
A database user component name:

» Cannot contain spaces

= Cannot exceed 32 characters

= Cannot be a reserved word

= IS not case sensitive unless delimited

= Starts with a letter followed by any combination of letters a-z or A-Z,
numbers 0-9, and underscore ()

2-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
User-supplied names

You must delimit (use double quotes) database component hames that do not
conform to these SQL identifier conventions. See "Delimited SQL identifiers” on
page 2-8 for more information about delimiting database user component
names.

StorHouse/RM stores non-quoted database user component names in uppercase
letters, but you can type them in any case (uppercase, lowercase, or mixed case).
For instance, you can type a column called Address as ADDRESS, Address, or
address.

Note: The SYS prefix is reserved for system tables. Do not use this prefix for
database user component names.

Host variable names

A host variable is a data item declared in a host language for use within an SQL
statement. A host variable name must follow the naming conventions of your host
language. A colon (:) must precede the host variable name in StorHouse SQL, for
example, :accountdba.

The following sections summarize different types of host variables. Refer to the
StorHouse ESQL Manual for more information about declaring and using host
variables.

LOB locator variables

A LOB locator or locator variable is a host variable representing a single LOB value
or the result of a LOB expression. You use locator variables to identify and
manipulate a LOB value at the StorHouse server or to access parts of a LOB value.
A locator variable has a data type of BLOB_LOCATOR or CLOB_LOCATOR. See
page 3-21 for more information about these data types.

StorHouse SQL Reference Manual 2-7

FileTek Proprietary and Confidential
2 Elements of StorHouse SQL
Delimited SQL identifiers

LOB file reference variables

A LOB file reference variable is a host variable used to transfer a LOB value (or part
of it) to a client file. A file reference variable contains the name of the client file
and has a data type of BLOB_FILE or CLOB_FILE. See page 3-21 for more
information about these data types.

Substitution markers

Dynamic SQL may contain place holders, or substitution markers, for host
variables that are substituted in an SQL statement. A marker name doesn't have
to have the same name as the host variable it represents; but it must start with a
semicolon, for example, :marker_name. If you prefer, you can use the question
mark symbol (?) as a place holder for a host variable instead of supplying a
marker name.

Delimited SQL identifiers

A delimited SQL identifier is an alias name, cursor name, or database user
component name enclosed in double quotes (). You can also delimit account
IDs and volume set and file set names used as a value for an SQL identifier when
they don't follow SQL identifier naming conventions. FileTek recommends you
follow SQL identifier naming conventions when possible. You must delimit an
SQL identifier when it;

= Contains a space (non-contiguous characters)

= Consists of lowercase letters and you want to retain the case

= Begins with a character other than a letter (such as a number)
= Contains characters other than alphanumeric characters and _
= Isan SQL reserved word

StorHouse/RM converts SQL identifiers to uppercase, but it does not convert

delimited SQL identifiers to uppercase. In other words, delimited SQL identifiers
retain their exact case. StorHouse/RM converts account 1Ds as well as delimited

2-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
Delimited SQL identifiers

account 1Ds to uppercase. The following sections contain more information
about delimited names.

Delimited account IDs

When you create StorHouse accounts, you must delimit account IDs that do not
follow SQL identifier conventions. When specifying account 1Ds as owner
names, you can type delimited account IDs in any case. For example:

SELECT COL1 FROM "icharlie".BILLING
or
SELECT COL1 FROM "1CHARLIE".BILLING

When connecting to a StorHouse database with the CONNECT statement or
logging into the StorHouse FTP server, you can type delimited account IDs in
any case. For example:

CONNECT TO *filetek:T:remotehost.salesdb' AS 'con_2"
USER '1charlie' USING :uncle ;

and

fltksun.1> ftp alphal 1985

Connected to alphal.

220 alphal LD/FTP server ... ready. Enter StorHouse account.
Name: 1ChaRIiE

But when specifying account IDs as character literals in INSERT, UPDATE, and
DELETE statements against metadata, you must type delimited account 1Ds in
uppercase (because StorHouse/RM always converts accounts IDs—even
delimited account IDs—to uppercase). For example:

INSERT INTO SYSADM.SYSSMUSERS (ACCOUNTID, DEFAULT_TS)
VALUES (1CHARLIE'’MAR1996’)

StorHouse SQL Reference Manual 2-9

FileTek Proprietary and Confidential
2 Elements of StorHouse SQL
Delimited SQL identifiers

Qualified and delimited user table names

Delimit the table name but not the owner (unless the owner name is a delimited
account ID). For instance, for a user table named ORDER (which is a reserved
word) owned by JAK, specify:

JAK."ORDER"

Delimited volume set and file set names

When submitting a CREATE TABLE SPACE or ALTER TABLE SPACE statement,
you must delimit volume set and file set names that start with a number or _
(underscore), contain a $, or are an SQL reserved word. For example:

CREATE TABLE SPACE BILLINGTABLE
(SUBSPACE 1 VSET "ORDER" FSET "ORDER")

Delimited user tablespace names

If you delimited a tablespace name when you created a user tablespace and the
name contains lowercase letters, be sure to match the case when inserting,
updating, or deleting rows in the SYSSMUSERS system table. For example:

INSERT INTO SYSADM.SYSSMUSERS (ACCOUNTID, DEFAULT_TS)
VALUES (‘USERY’,'Mar1996’)

If you didn’t delimit the tablespace name when you created the user tablespace,
type the name in uppercase letters when inserting, updating, or deleting a row in
SYSSMUSERS. For example:

INSERT INTO SYSADM.SYSSMUSERS (ACCOUNTID, DEFAULT_TS)
VALUES (‘PUBLIC’,'MAR1996")

2-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Literals

Elements of StorHouse SQL 2
Literals

A literal (also called a constant) specifies a data value. You can provide literals
wherever SQL syntax allows expressions. All literals have the attribute NOT
NULL. Literals can be classified as string, numeric (exact and approximate), and
binary.

String Numeric Binary
Character —Exact |—Hexadecimal
Date — Decimal
Time — Integer
Timestamp

—Approximate
— Floating point

Character literals

A character literal specifies any character (such as letters a—z and A-Z, numbers
0-9, spaces, and special characters). Enclose character literals in single quotes. If
a character literal contains a single quote, then precede that quote with another
single quote. Examples:

‘Smith’ ‘2,000’ 1/2/1997 ‘VALENTINE"S’

StorHouse/RM stores data values in the exact case in which they were loaded.
You must use the same case when specifying character literals for character data
values. For instance, if you loaded customer names with mixed case letters, then
you must use mixed case in your SQL (for example, ‘Smith’ instead of ‘SMITH’ or
‘smith’).

StorHouse SQL Reference Manual 2-11

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Literals

Note that functions such as INITCAP and LOWER convert data formats for
display and comparison purposes. The case of data, however, remains exactly as it
was loaded (uppercase, lowercase, or mixed case). For example, the function
INITCAP capitalizes the initial letter of a selected string for display or comparison
purposes, but it does not capitalize the initial letter of your stored data.

Date literals

A date literal specifies a month (MM), day (DD), and year (YYYY) string in one of
the formats listed in the following table. The year must be four characters. The
month and day can be one or two characters. Enclose date literals in single
quotes.

Date literal format Example

M[MI/D[D)YYYY 2/14/1997’
M[M]-D[D]-YYYY '2-14-1997’
YYYY-M[M]-D[D] '1997-02-14'
D[D].M[ML.YYYY 14.2.1997’

Time literals

A time literal specifies an hour (HH), minutes (MM), seconds (SS), and
milliseconds (CCC) string in one of the formats listed in the following table. The
hour, minutes, and seconds can be one digit. Milliseconds are optional.
StorHouse/RM interprets milliseconds as fractional seconds up to three decimal
digits of precision. Enclose time literals in single quotes.

Time literal format Example

H[H]:M[M]:S[S].[CCC] *12:06:00°

H[H].M[M].S[S].[CCC] *12.6.0.001’

2-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
Literals

Timestamp literals

A timestamp literal specifies a date and time combination in one of the formats
listed in the following table. You can use any date format with any time format.
Separate the date from the time with a space or a dash (-). The month, day, hour,
minutes, and seconds can be one or two digits. The CCCs are optional. Enclose
timestamp literals in single quotes.

Date format Time format Example
M[M/DIDY/YYYY H[H]:M[M]:S[S] ‘02/07/1995 23:26:45'
YYYY-M[M]-D[D] H[H].M[M].S[S].[CCC] *1995-02-07 23.26.45'
DID].MIML.YYYY H[H].M[M].S[S].[CCCC] 7.2.1995-23.26.45’

M[M]-D[D]-YYYY H[H].M[M].S[S].[CCCCC] ‘1995-02-07-23.26.45.000010’
H[H].M[M].S[S].[CCCCCC] ‘02/07/1995-23.26.45.00001’
2-7-1995 23:26:45'

Integer literals

An integer literal specifies a binary integer as a signed or unsigned number with a
maximum of 10 significant digits and no decimal point. Do not enclose integer
literals in quotes. The range for integer literals is +2147483647 to -2147483648.
Examples:

-28375 55 +999 32767

Floating-point literals

A floating-point literal specifies a floating-point number as two numbers
separated by an E or e. This is called E-notation. Both numbers can include a
sign, but only the first number can include a decimal point. The maximum
number of digits allowed in the first number is 17. The maximum number of

StorHouse SQL Reference Manual 2-13

FileTek Proprietary and Confidential
2 Elements of StorHouse SQL
Format strings

digits allowed in the second number is 3. StorHouse/RM treats floating-point
literals as 8-byte DOUBLE PRECISION. Examples:

15E134 2.3e5 -2.1E-2 +4.E+1

Decimal literals

A decimal literal specifies a decimal number as a signed or unsigned number that
has a maximum of 31 digits and may include a decimal point. Examples:

+847.75 -015.20 4000. 37589477382093833.33

Hexadecimal literals

A hexadecimal literal represents binary data. It specifies a string of one or more
hexits enclosed in single quotes and prefaced by an uppercase or lowercase X.
A hexit is a member of the character set a—f, A—F, and 0-9. These are the valid
characters for writing base-16 hexadecimal values. Examples:

x‘abc’ X'0120ABC’

Format strings

You can specify a format string when using the TO_CHAR function to convert a
given expression to character form. A format string consists of a mask that
StorHouse/RM interprets and replaces with formatted date and time values. The
mask is case sensitive, so if you type it in uppercase, then any character data is
returned in uppercase. Enclose format strings in single quotes.

2-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Format strings

Date format strings

A date format string can contain any of the following masks along with other
characters such as slashes (/) and hyphens (-). StorHouse/RM replaces the mask
with values and retains any other characters.

Caution: When you specify a year mask with fewer than four digits (for instance
YYY, YY, or Y), the missing digits are assumed to be zeroes. Also, TO_CHAR (a
StorHouse function) assumes a uniform application of the Gregorian calendar
throughout the supported date range.

Masks for date format strings

Mask Description Example values
CcC Century as a 2-digit number 19

YYYY Year as a 4-digit number 1997

YYY Last 3 digits of the year 997

YY Last 2 digits of the year 97

Y Last digit of the year 7

Y,YYY Year as a 4-digit number with a comma 1,997

Q Quarter of the year as a 1-digit number 1 (for first quarter)

MM Month as a 2-digit number 01 (for January)
MONTH Name of the month as a 9-character string JANUARY, FEBRUARY
MON First 3 characters of the month JAN, FEB, MAR, APR
ww Week of the year as a 2-digit number 01,52

W Week of the month as a 1-digit number 1,5

DDD Day of the year as a 3-digit number 001, 365

DD Day of the month as 2-digit number 01, 31

D Day of the week as 1-digit number 1 (for SUN), 7 (for SAT)
DAY Day of the week as a 9-character string SUNDAY, MONDAY

StorHouse SQL Reference Manual 2-15

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Format strings

Masks for date format strings (continued)

Mask Description Example values
DY Day of the week as a 3-character string SUN, MON, TUE, WED
J Julian date (number of days from 1/1/4712 BC) 2443711

TH String ST, ND, RD, or TH after a number 1ST, 2ND, 3RD, 4TH

Examples of date format strings:

Date format string Sample results

‘DD-MON-YYYY’ 02-JAN-1997
‘month/dd/yyyy’ january/02/1997
‘DAY,MONTH,DD’ THURSDAY,JANUARY,02

Time format strings

A time format string can contain any of the following masks along with other
characters, such as colons (:) and periods. StorHouse/RM replaces the mask with
values and retains any other characters.

Masks for time format strings

Mask Description

AM String of AM for time values before noon

PM String of PM for time values after noon

AM. String of A.M. for time values before noon
P.M. String of P.M. for time values after noon

HH Hour as a 2-digit number in the range 00 to 24
HH12 Hour as a 2-digit number in the range 01 to 12
HH24 Hour as a 2-digit number in the range 00 to 24

2-16 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Operators

Masks for time format strings (continued)

Mask Description

Mi Minutes as a 2-digit number in the range 00 to 59

SS Seconds as a 2-digit number in the range 00 to 62

SSSSS Seconds from midnight in the range 00000 to 86399

MLS Milliseconds as a 3-digit number in the range 000 to 999

MSC Microseconds as a 6-digit number in the range 000000 to 999999

Examples of time format strings:

Time format string Sample results

'HH PM’ 14 PM

'HH12’ 2

'HH24 pm’ 14 pm
‘HH:MI:SS PM’ 10:21:00 PM
‘HH24:MI:MSC pm’ 22:21:000025 pm
‘HH12:MI:SSSSS’ 10:21:80460
‘HH.MM’ 10.21

Operators

StorHouse SQL supports the following operators:

Set

Logical
Arithmetic
Comparison
Concatenation

StorHouse SQL Reference Manual 2-17

FileTek Proprietary and Confidential

2 Elements of StorHouse SQL
Operators

Set operators (UNION and UNION ALL)

Set operators combine separate queries. StorHouse SQL supports the following set

operators:
Set o
Description
operator
UNION Merges the output of two or more queries into a single set of rows
and columns, excluding duplicate rows from the output.
UNION ALL Merges the output of two or more queries into a single set of rows

and columns, including duplicate rows in the output.

Note the following:

= Ifaquery contains a set operator, the ORDER BY clause can specify only the
column position, not the column name. See page 4-92 for an example.

= To derive a result set using set operators, the tables being combined must have
the same number of columns and the data types must be compatible for
corresponding columns.

= Set operators are not valid for subqueries.

The following table describes the valid combinations of operand columns and
the result data types for the UNION set operator.

UNION data type combinations

If one operand is And the otheris The result data type is

BINARY (x) BINARY (y) BINARY (z) where z=MAX(X,y)
BINARY (X) VARBINARY () VARBINARY (z) where z=MAX(X,y)
BINARY (x) BLOB(y) BLOB(z) where z=MAX(x.y)
BLOB(x) BLOB(y) BLOB(z) where z=MAX(X,y)

2-18 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Operators

UNION data type combinations (continued)

If one operand is
BLOB(x)

And the other is

VARBINARY (y)

The result data type is
BLOB(z) where z=MAX(X,y)

CHAR(X) CHAR(y) CHAR(z) where z=MAX(X,y)
CHAR(x) VARCHAR(y) VARCHAR(z) where z=MAX(X,y)
CHAR(x) CLOB(y) CLOB(z) where z=MAX(Xx,y)
CLOB(x) CLOB(y) CLOB(z) where z=MAX(x.y)
CLOB(x) VARCHAR(y) CLOB(z) where z=MAX(Xx,y)
DATE DATE DATE

DOUBLE PRECISION

Any numeric type

DOUBLE PRECISION

INTEGER INTEGER INTEGER
INTEGER SMALLINT INTEGER
NUMERIC NUMERIC NUMERIC
NUMERIC INTEGER NUMERIC
NUMERIC SMALLINT NUMERIC
REAL REAL REAL
SMALLINT SMALLINT SMALLINT
TIME TIME TIME
TIMESTAMP TIMESTAMP TIMESTAMP

VARBINARY (X)

VARBINARY (y)

VARBINARY (z) where z=MAX(X,y)

VARBINARY (x) BLOB(y) BLOB(z) where z=MAX(Xx,y)
VARCHAR(x) VARCHAR(y) VARCHAR(z) where z=MAX(Xx,y)
VARCHAR(x) CLOB(y) CLOB(z) where z=MAX(x,y)

StorHouse SQL Reference Manual 2-19

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Operators

Logical operators (AND, OR, NOT)

Logical (or boolean) operators relate one or more predicates and produce a true,
false, or unknown value. StorHouse SQL supports the following logical

operators:
Logical N
g Description

operator

AND Takes two predicates as arguments and evaluates them as true
only if both predicates are true.

OR Takes two predicates as arguments and evaluates them as true if
either one of the predicates is true.

NOT Takes a predicate as its argument and changes its value from false

to true or true to false.

Note the following:

= You can restrict a search to preclude a result from a query by using the NOT
operator. For example, NOT(STATE='NY’) excludes New York state from the
query result.

= When you include multiple logical operators, StorHouse/RM evaluates
conditions within parentheses first. If you don't include parentheses, then
StorHouse/RM evaluates NOT conditions before AND and AND conditions
before OR. StorHouse/RM optimizes conditions with the same logical
operator, for instance, AND and AND.

2-20 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
Operators

The results for the OR and AND operators are shown in the following table.

OR and AND operator results table

Predicate 1 Predicate 2 Predicate 1 and 2 Predicate 1 or 2
True True True True

True False False True

True Unknown Unknown True

False False False False

False Unknown False Unknown

Unknown Unknown Unknown Unknown

Arithmetic operators (+, -, *, /, unary)

You can use arithmetic operators in expressions to add, subtract, multiply, and
divide numeric values. You can also perform addition and subtraction with
columns defined with DATE or TIME data types. For instance, you could select
all employees from an employee table where the system date minus the hire date
is greater than 365 days.

StorHouse SQL Reference Manual 2-21

FileTek Proprietary and Confidential

Elements of StorHouse SQL

Operators

StorHouse SQL supports the following arithmetic operators:

Arithmetic o
operator Description
+ Add
Subtract
* Multiply
/ Divide
+ (unary plus) Do not change the sign
- (unary minus) Negate a positive numeric value

The result precision and scale for arithmetic operations involving DECIMAL
values are as follows.

result = val_1 <operation> val_2
where:

= result has precision p and scale s, and

= val_1 has precision p1 and scale s1, and

= val_2 has precision p2 and scale s2, and

= misdefined as (p -), the integer part of the value

Result precision and scale for operations on DECIMAL values

Operation Result

+or - m=MAX (m1, m2)+1 s=MAX(sl, s2)
* m=ml+m2 s=sl+s2
/ m=ml+s2 s = MAX (MIN (m2, 6) +s1 + 1, 8)

Note that m and s are limited to 31. The p (or s if division) is further reduced if
needed to limit p to 31.

2-22 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Elements of StorHouse SQL 2
Operators

Comparison operators (=, <>, <, >, <=, >2)

Comparison operators compare two expressions. If the value of either expression is
NULL or no value is returned, the result is unknown. StorHouse SQL supports
the following comparison operators. In the table, a represents one expression and
b represents the second.

Ssgrlggr:son Example Means

= a=b ais equal to b.

<> a<>b a is not equal to b.

< a<b ais less than b.

> a>b a is greater than b.

<= a<=b a is less than or equal to b.
>= a>=b a is greater than or equal to b.

Note: The allowable comparison operators for expressions of BLOB and CLOB
data types are = and <>.

Concatenation operator (||)

The concatenation operator || is a synonym for the CONCAT scalar function. This
operator links two string arguments to form a string expression. The following
table identifies the result data type and length of the concatenated operands. See
"CONCAT" on page 6-16 for more information about concatenation.

StorHouse SQL Reference Manual 2-23

FileTek Proprietary and Confidential

Elements of StorHouse SQL

NULL values

Concatenation result data types

If one operand is And the otheris The result data type is
CHAR,VARCHAR(A) CHAR,VARCHAR(B) VARCHAR(MIN(A+B,32705)

CLOB(A) CLOB(B) CLOB(MIN(A+B,2G))

BLOB(A) BLOB(B) BLOB(MIN(A+B,2G))

NULL values

A NULL value is a special value distinct from all non-NULL values. It indicates
that a value is unknown, missing, or not applicable. A column allows NULL
values unless you specify the NOT NULL constraint. All data types accommodate
NULL values. Note the following:

= You can test for NULL values by using the NULL predicate.

— If the value of an expression is NULL, the result is true.
— If the value of an expression is NOT NULL, the result is false.
— If you specify the NOT keyword, the result of an expression is reversed.

= For determining duplicate rows, two NULL values are considered equal.

= All NULL values within a grouping column (the result from a GROUP BY
clause) are considered equal.

Result columns allow NULL values if they are derived from:

= The COUNT function

= A column that allows NULL values

= A view column in an outer select list derived from an arithmetic expression
= An arithmetic expression in an outer select list

= An arithmetic expression that allows NULL values

2-24 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential
Elements of StorHouse SQL 2
Special registers

= A scalar function or string expression that allows NULL values

= Aresult of a UNION if at least one of the corresponding items in the select list
is nullable

Special registers

Special registers are storage areas for information that can be referenced in SQL
statements. StorHouse supports three special registers:

= USER
= SYSDATE
= SYSTIME

USER special register

The USER special register contains the account ID of the user of the current
transaction. The data type is VARCHAR(33). You can place USER wherever a
string literal is allowed. You can also specify USER as a default value for a
column.

For example, if the INFO table has an INFO_OWNER column identifying the
account 1D that entered the data, the following SELECT statement returns from
INFO all ADDR data where INFO_OWNER is the account ID of the current user:

SELECT ADDR

FROM INFO
WHERE INFO_OWNER = USER

SYSDATE special register

The SYSDATE special register contains the current (system) date. The data type is
DATE. You can place SYSDATE wherever a string literal is allowed. For example,

StorHouse SQL Reference Manual 2-25

FileTek Proprietary and Confidential
2 Elements of StorHouse SQL
Special registers

if the INFO table has a CREATE_DATE column identifying the date the data was
entered, the following SELECT statement would return from table INFO all ADDR
data archived on the current (system) date:

SELECT ADDR
FROM INFO
WHERE CREATE_DATE= SYSDATE

SYSTIME special register

The SYSTIME special register contains the current (system) time. You can place
SYSTIME in a CREATE TABLE statement as a default column definition for a
column with a data type of TIME.

2-26 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

3

StorHouse data types

This chapter describes the data types you can use to define columns, describe
input data for loading and result data for unloading, and declare variables in
programs. It also describes data type conversions that occur in StorHouse.

About StorHouse data types

A data type defines the properties of a data value. There are several categories of

data types.
Character Binary Approximate
numeric
Fixed length Fixed length Single precision
Variable length Variable length Double precision
Large object Large object
Exact_ Date-Time
numeric
Integer Date
Small Time
Large Timestamp
Decimal

StorHouse SQL Reference Manual 3-1

FileTek Proprietary and Confidential

3 StorHouse data types
Database data types

In StorHouse, you use data types to:

= Define columns in user tables. These data types are called database data types.
See the following section for more information about database data types.

= Describe input data that you are loading. These data types are called loader
data types. See page 3-17 for more information about loader data types.

» Describe output data that you are unloading. These data types are called
unloader data types. See page 3-17 for more information about unloader data

types.

= Declare host variables and indicator variables in programs. These data types
are called host language data types. See page 3-21 for more information about
host language data types.

Database data types

When you create a user table with a CREATE TABLE statement, you define
columns. When you define a column, you assign a data type to it. This data type,
called database data type, specifies the type of value that you can store in that
column and indicates the maximum value length.

One consideration when defining a column is the type of data the column will
contain. Types include character, numeric (exact or approximate), binary, and
date—time. Sometimes you don't have a choice. For instance, when data values
contain letters and special characters, a character data type is the only option. But
if data values contain only digits, you can specify a character data type or a
numeric data type. A determining factor might be whether you need to perform
arithmetic operations with those data values (see page 3-14).

Another consideration when choosing a data type is whether to assign a variable-

length or fixed-length data type. For variable-length data types, StorHouse/RM
stores the data values in the actual number of bytes needed, plus two more bytes

3-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

BINARY

Database data types

per data value to hold the length of the value. So a data value consisting of 10
bytes is stored in 12 bytes. For fixed-length data types, StorHouse/RM reserves
the same amount of space for all values, even those with fewer bytes than
allocated. So if you specify a fixed length of 10, data values consisting of 2 bytes
are stored in 10 bytes, those consisting of 6 bytes are stored in 10 bytes, and so
on. When there’s a large variation in lengths of data values in a column, consider
a variable-length data type.

Descriptions of database data types

This section describes the StorHouse database data types.

The BINARY data type defines bit data as a fixed-length array of bytes.

BINARY specifications

Category:

Binary, fixed

Format:

BINARY/[(length)]

Stored length:

Value of (length)

Length range:

1 through 256, inclusive

Default length:

1

Example:

BINARY (5) means that data values in a column must be bit data
with a maximum length of 5 bytes. StorHouse/RM reserves 5
bytes for all values in all rows of this column, and it pads any
remaining bytes with binary zeros for those values with fewer than
5 bytes.

Considerations:

= StorHouse/RM does not translate BINARY data from host to
host.

= Do not declare host variables as the BINARY data type. Instead
use an SQLDA and the DESCRIBE statement. Refer to the
StorHouse ESQL Manual for more information.

StorHouse SQL Reference Manual 3-3

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

BLOB The BLOB data type defines data as a variable-length array of bytes. A BLOB is
primarily used to hold large, unformatted data such as images, audio, and video.

BLOB specifications

Category:

Binary, large object

Format:

BLOB[(length [K|M|G])]
BINARY LARGE OBJECT][(length [K|M|G])]

Stored length:

In-line LOB: actual size of the BLOB data plus 4 bytes
Out-of-line: actual size of the BLOB data in the LOB subsegment
file plus 22 bytes for the object identifier (OID) in the table data file

Length range:

1 byte to 2147483638 hytes
K (kilobyte) — 1 to 2097152
M (megabyte) — 1 to 2048
G (gigabyte) — 1 or 2

Default length:

2G

Examples:

» BLOB(1 G) means that values in the column must be binary data
with a maximum length of 1G.

» BLOB (without a length) uses the default maximum length,
which is 2 G.

Consideration:

BLOB is a valid data type for most of the functions that support
BINARY and VARBINARY data types.

3-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Database data types

CHARACTER The CHARACTER data type defines data as a fixed-length array of characters
including letters, numbers, spaces, and special characters.

CHARACTER specifications

Category:

Character, fixed

Format:

CHARACTER](length)] or CHAR][(length)]

Stored length:

Value of (length)

Length range:

1 through 256, inclusive

Default length:

1

Examples:

» CHAR(5) means that data values in a column must be character
data with a maximum length of 5 bytes. StorHouse/RM reserves
5 bytes for all values in all rows of this column, and it pads (to
the right) any remaining bytes with blanks for those values with
fewer than 5 bytes. For instance, StorHouse/RM stores the
value ‘ABC’ as ‘ABC .

CHAR (without a length) uses the default length, which is 1.

Considerations:

StorHouse/RM can translate CHAR data between different
hosts. For example, an IBM mainframe host and a UNIX host
can both retrieve the same CHAR values translated by
StorHouse/RM.

=« CHAR data values typically contain non-numeric data. Consider
a numeric data type (such as NUMERIC, INTEGER, or
SMALLINT) for data values on which you want to perform
arithmetic functions.

» You can use the USER special register with CHAR columns.

StorHouse SQL Reference Manual 3-5

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

CLOB The CLOB data type defines character data as a variable-length array of bytes.

CLOB specifications

Category:

Character, large object

Format:

CLOBJ[(length [K|M|G])]
CHARACTER LARGE OBJECT[(length [K|M|G])]

Stored length:

In-line LOB: actual size of the CLOB data plus 4 bytes
Out-of-line LOB: actual size of the CLOB data in the LOB
subsegment file plus 22 bytes for the object identifier (OID) in the
table data file

Length range:

1 byte to 2147483638 bytes
K (kilobytes) — 1 to 2097152
M (megabytes) — 1 to 2048
G (gigabytes) — 1 or 2

Default length:

2G

Examples:

CLOB(10 M) means that values in the column must be character
data with a maximum length of 10 megabytes.

CLOB (without a length) uses the default maximum length,
which is 2 G.

Considerations:

StorHouse/RM can translate CLOB data between different
hosts. For example, an IBM mainframe host and a UNIX host
can both retrieve the same CLOB values translated by
StorHouse/RM.

» CLOB is a valid data type for most of the functions that support
CHAR and VARCHAR data types.

3-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Database data types

DATE The DATE data type defines a date value with three parts: month, day, and year.

DATE specifications

Category: Date—time

Format: DATE

Range for parts: » Month — 1 through 12
» Day — 1 through 28, 30, or 31 (depending on the month)
» Year — 0001 through 9999

Stored length: 4 bytes

Considerations: » You can perform scalar functions with DATE values. For
example, in a SELECT statement you can select rows with a
specific day in a month (1 through 31) by using the
DAYOFMONTH function or on a specific day of the week
(Monday through Sunday) by using the DAYOFWEEK function,
and so on.

= You can use the SYSDATE special register with DATE columns.

= Gregorian calendar rules are applied over the entire DATE
range.

DOUBLE The DOUBLE PRECISION (synonym FLOAT) data type defines data as a double
PRECISION precision floating-point number.

DOUBLE PRECISION or FLOAT specifications

Category: Approximate numeric, double precision
Format: DOUBLE PRECISION or FLOAT
Floating-point: + fraction * base* exponent

where sign is 1 bit, fraction is 52 bits, and exponent is 11 bits

Stored length: 8 bytes (64 bits)

Considerations: DOUBLE PRECISION is suitable for scientific numbers that can
be calculated approximately. This data type defines much more
precise data (for example, more significant digits in the fraction)
than REAL.

StorHouse SQL Reference Manual 3-7

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

INTEGER The INTEGER data type defines data as a signed large integer.

INTEGER specifications

Category: Exact numeric, large integer

Format: INTEGER or INT

Range of values: -2147483648 through +2147483647, inclusive

Stored length: 4 bytes

Considerations: Arithmetic operations and sort comparisons are more efficient
using INTEGER instead of NUMERIC or DOUBLE PRECISION
data types.

NUMERIC or The NUMERIC (synonym DECIMAL) data type defines data as a decimal
DECIMAL number with a precision (P) and a scale (S).

NUMERIC or DECIMAL specifications

Category: Exact numeric, decimal

Format: NUMERIC(P[,S]) or DECIMAL(P[,S])
= P is the total number of digits, from 1 to 31.

» S is the number of digits to the right of the decimal point, from 0

toP.
Range of values: 11031101031 -1
Default values: Precision is 31 and scale is 0
Stored length: (P/2)+1
Example: NUMERIC(12,2) defines data values with 12 total digits, 10 digits

before the decimal point and 2 digits after the decimal point.

Considerations: You can perform functions such as ABS (absolute value) and AVG
(average) with NUMERIC data.

3-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Database data types

REAL The REAL data type defines data as a single precision floating-point number.

REAL specifications

Category:

Approximate numeric, single precision

Format:

REAL

Floating point:

+ fraction * base® exponent
where sign is 1 bit, fraction is 23 bits, and exponent is 8 bits

Stored length:

4 bytes (32 bits)

Considerations:

REAL is suitable for scientific numbers that can be calculated
approximately.

SMALLINT The SMALLINT data type defines data as a signed small integer.

SMALLINT specifications

Category:

Exact numeric, small integer

Format:

SMALLINT

Range of values:

-32768 through +32767, inclusive

Stored length:

2 bytes

Considerations:

You may want to use the SMALLINT data type when column
values are less than 1,000. In this case, you can save space by
using SMALLINT instead of INTEGER.

StorHouse SQL Reference Manual 3-9

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

TIME The TIME data type defines a time value with four parts: hour, minutes, seconds,
and milliseconds.

TIME specifications

Category: Date-time

Format: TIME

Range for parts: = Hour — 00 through 24
» Minutes — 00 through 59
» Seconds — 00 through 62
= Milliseconds — 000 through 999

If the hour is 24, the minutes, seconds, and milliseconds are 00.

Stored length: 4 bytes

Considerations: » You can perform scalar functions with TIME values. For
example, you can select rows for a specific hour (00 through 24)
with the HOUR function, or for a specific minute (00 through 59)
with the MINUTE function, and so on.

» You can use the SYSTIME special register with TIME columns.

» You can use seconds values greater than 60 to indicate leap
seconds; however, time calculations don’t consider leap
seconds.

3-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Database data types

TIMESTAMP The TIMESTAMP data type defines a date and time value as a month, day, year,
hour, minutes, seconds, and microseconds.

TIMESTAMP specifications

Category:

Date—time

Format:

TIMESTAMP

Range for parts:

Month — 1 through 12

Day — 1 through 28, 30, or 31 (depending on the month)
Year — 0001 through 9999

Hour — 00 through 24

Minutes — 00 through 59

Seconds - 00 through 62

Microseconds — 000000 through 999999

Stored length:

8 bytes

StorHouse SQL Reference Manual 3-11

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

VARBINARY The VARBINARY data type defines bit data as a variable-length array of bytes.

VARBINARY specifications

Category:

Binary, variable

Format:

VARBINARY/[(length)]

Maximum length:

Value of (length)

Stored length:

Actual length of data plus 2 bytes

Length range:

1 through 32705, inclusive

Default length:

1

Example:

VARBINARY (25) means that data values in a column must be bit
data and cannot be longer than 25 bytes. StorHouse/RM reserves
two additional bytes for each data value in this column. For
instance, a data value composed of 25 bytes is stored in 27 bytes.

Considerations:

= StorHouse/RM does not translate VARBINARY data from host to
host.

= You can create an index on a VARBINARY column, but the
maximum length is 256.

Do not declare host variables as the VARBINARY data type.
Instead, use an SQLDA and the DESCRIBE statement. Refer to
the StorHouse ESQL Manual for more information.

StorHouse/RM automatically compresses any VARBINARY
column defined with a maximum length greater than 4096. The
compression algorithm uses consecutive blank and duplicate
character elimination. Sometimes the length of a compressed
block of data can actually exceed the length of the original
uncompressed data block. The StorHouse/RM compression
algorithm automatically recognizes when this occurs and
bypasses compression for such blocks. The effect is overall
improvement in compression effectiveness.

3-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

VARCHAR

Database data types

The VARCHAR data type defines data as a variable-length array of characters
including letters, numbers, spaces, and special characters.

VARCHAR specifications

Category:

Character, variable

Format:

VARCHAR][(length)]

Maximum length:

Value of (length)

Stored length:

Actual length of data plus 2 bytes

Length range:

1 through 32705, inclusive

Default length:

1

Example:

VARCHAR(16) means that a data value must consist of character
data and cannot be longer than 16 bytes. StorHouse/RM reserves
two additional bytes for each data value in this column. For
instance, a data value composed of 16 bytes is actually stored in
18 bytes.

Considerations:

The maximum length of a VARCHAR data value that you can
index is 256 bytes.

StorHouse/RM can translate VARCHAR data between different
hosts. For example, an IBM mainframe host and a UNIX host
can both retrieve the same VARCHAR values translated by
StorHouse/RM.

Do not declare host variables as the VARCHAR data type.
Instead, use an SQLDA and the DESCRIBE statement. Refer to
the StorHouse ESQL Manual for more information.

StorHouse/RM automatically compresses any VARCHAR
column defined with a maximum length greater than 4096. The
compression algorithm uses consecutive blank and duplicate
character elimination. Sometimes the length of a compressed
block of data can actually exceed the length of the original
uncompressed data block. The StorHouse/RM compression
algorithm automatically recognizes when this occurs and
bypasses compression for such blocks. The effect is overall
improvement in compression effectiveness.

StorHouse SQL Reference Manual 3-13

FileTek Proprietary and Confidential

3 StorHouse data types

Database data types

Database data types and functions

Another consideration when choosing a data type for a column is whether you
can use scalar or aggregate functions on those columns. For instance, although a
column defined as CHARACTER can contain digits, you cannot perform
arithmetic operations on character types; but you can perform arithmetic
operations on a numeric types, such as SMALLINT or INTEGER.

The following table lists the database data types and identifies the functions you
can perform on columns defined as that type. See Chapter 6 for more
information about StorHouse functions.

Allowable functions by database data type

Data type StorHouse functions

BINARY BIT_LENGTH BLOB CHAR_LENGTH
CONCAT COUNT LENGTH
NVL OCTET_LENGTH OVERLAY
POSITION TO_CHAR TO_HEX
TRIM
BLOB BIT_LENGTH CHAR_LENGTH CONCAT
COUNT INSTR LENGTH
LTRIM NVL OCTET_LENGTH
OVERLAY POSITION RTRIM
SUBSTR TO_HEX TRIM
CHARACTER ASCII BLOB CLOB
CONCAT COUNT INITCAP
INSTR LEAST LENGTH
LOWER LPAD LTRIM
MAX MIN NVL
OVERLAY POSITION RPAD
RTRIM SUBSTR TO_CHAR
TO_DATE TO_NUMBER TO_TIME
TRANSLATE TRIM UPPER

3-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Database data types

Allowable functions by database data type (continued)

Data type StorHouse functions

CLOB ASCII BIT_LENGTH CHAR_LENGTH
CONCAT COUNT INITCAP
INSTR LENGTH LOWER
LPAD LTRIM NVL
OCTET_LENGTH OVERLAY POSITION
RPAD RTRIM SUBSTR
TO_CHAR TO_DATE TO_NUMBER
TO_TIME TRANSLATE TRIM
UPPER

DATE ADD_MONTHS COUNT DAYOFMONTH
DAYOFWEEK DAYOFYEAR DECODE
GREATEST LEAST MAX
MIN NEXT_DAY MONTHS_BETWEEN
NVL QUARTER TO_CHAR
WEEK YEAR

DOUBLE PRECISION ABS AVG COUNT

or FLOAT DECODE GREATEST LEAST
MAX MIN NVL
SUM TO_CHAR

INTEGER ABS AVG CHR
COUNT DECODE GREATEST
LEAST MAX MIN
NVL SUM TO_CHAR

NUMERIC or ABS AVG COUNT

DECIMAL DECODE GREATEST LEAST
MAX MIN NVL
SUM TO_CHAR

REAL ABS AVG COUNT
DECODE GREATEST LEAST
MAX MIN NVL
SUM TO_CHAR

SMALLINT ABS AVG CHR
COUNT DECODE GREATEST
LEAST MAX MIN
NVL SUM TO_CHAR

StorHouse SQL Reference Manual 3-15

FileTek Proprietary and Confidential

3 StorHouse data types
Database data types

Allowable functions by database data type (continued)

Data type StorHouse functions

TIME HOUR MINUTE SECOND
TO_CHAR

TIMESTAMP HOUR MINUTE SECOND
TO_CHAR

VARBINARY BIT LENGTH CHAR_LENGTH CONCAT
COUNT NVL OCTET_LENGTH
OVERLAY POSITION TO_CHAR
TO_HEX TRIM

VARCHAR ASCI BIT_LENGTH CHAR_LENGTH
cLOB CONCAT COUNT
INITCAP INSTR LEAST
LENGTH LOWER LPAD
LTRIM MAX MIN
NVL OCTET_LENGTH OVERLAY
POSITION RPAD RTRIM
SUBSTR TO_CHAR TO_DATE
TO_NUMBER TO_TIME TRANSLATE
TRIM UPPER

StorHouse and local database data types

The StorHouse database data types may differ slightly from the data types used
in a local database. For example, the following table compares DB2 data types to
StorHouse database data types. Remember that when you write StorHouse SQL
statements, you use StorHouse data types instead of those supported by a local
database.

3-16 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types 3
Loader and unloader data types

DB2 equivalent to StorHouse database data types

StorHouse data type

DB2 equivalent

BINARY CHAR FOR BIT DATA
BLOB BLOB

CHAR CHAR

CLOB CLOB

DATE DATE IN USA FORMAT

DOUBLE PRECISION

DOUBLE PRECISION or FLOAT(53)

FLOAT FLOAT(53)

INTEGER INTEGER

NUMERIC NUMERIC

REAL REAL

SMALLINT SMALLINT

TIME TIME IN USA FORMAT
TIMESTAMP TIMESTAMP
VARBINARY VARCHAR FOR BIT DATA
VARCHAR VARCHAR

Loader and unloader data types

When you load data, you describe the data fields in your input data records.
Typically, a data field corresponds to a column in a user table, and an input data
record corresponds to a row. When you describe a data field, you provide the data
type and optionally the length in a LOAD DATA statement. This data type is

called a loader data type.

When you unload data, you select data from a StorHouse database and receive
the result data in a sequential file. The FileTek FTP Data Unloader uses the data

StorHouse SQL Reference Manual 3-17

FileTek Proprietary and Confidential

3 StorHouse data types
Loader and unloader data types

type to convert the result data. You must use one of the data types that are
supported by the FileTek FTP Data Unloader. The names of the unloader data
types are the same as the loader data types. Refer to the FileTek FTP Unloader
Manual for definitions of the data type specifications.

List of loader and unloader data types

The data types that you use in a LOAD DATA and UNLOAD statement differ
slightly from the database data types that you use in a CREATE TABLE statement.
There are some additional abbreviations and data types that are valid only for
defining input and result data. For example, you can define input data fields with
data type INTEGER EXTERNAL; you cannot define a column in a user table
with data type INTEGER EXTERNAL. You can use some synonyms such as RAW
to define input data fields; you cannot define columns in a user table with data
type RAW. The following table lists the loader and unloader data types and
corresponding synonyms or abbreviations.

Note: The BLOB, BLOB_FILE, CLOB, and CLOB_FILE data types do not apply
to the FileTek MVS Data Loader utility.

Loader and unloader data types

Data type Synonym or abbreviation

BINARY BYTE, RAW, CHAR CHARSET 65535
BINARY EXTERNAL BYTE EXTERNAL, RAW EXTERNAL
BLOB -

BLOB_FILE -

CHARACTER CHAR

CLOB -

CLOB_FILE -

DATE EXTERNAL DATE

DECIMAL NUMERIC, DEC

3-18 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Loader and unloader data types

Loader and unloader data types (continued)

Data type Synonym or abbreviation
DECIMAL EXTERNAL NUMERIC EXTERNAL, DEC EXTERNAL
DOUBLE PRECISION FLOAT(22 to 53), DOUBLE

FLOAT FLOAT(1 to 21), REAL

FLOAT EXTERNAL -

INTEGER INT
INTEGER EXTERNAL INT EXTERNAL
SMALLINT -

TIME EXTERNAL -

TIMESTAMP EXTERNAL -

VARBINARY VARBYTE, VARRAW, VARCHAR CHARSET 65535

VARCHAR -

Date and time formats of input and result
data

When you load date and time data, those values must be in a format recognized
by StorHouse. When you unload data, you can specify a format mask for the

StorHouse SQL Reference Manual 3-19

FileTek Proprietary and Confidential

StorHouse data types

Loader and unloader data types

result data. The following table identifies the valid formats of date and time
input and result data.

Formats for loading and unloading date and time data

Loader data type Input or result data format

DATE EXTERNAL YYYY-M[M]-D[D]
M[M)/D[DJ/YYYY
D[D].M[ML.YYYY

TIME EXTERNAL H[H]:M[M]
H[H].M[M]
H[H]:M[M] AM|PM
H[H]:M[M]:S[S]
H[H]:M[M]:S[S].CCC
H[H].M[M].S[S].CCC

TIMESTAMP EXTERNAL YYYY-M[M]-D[D]-H[H].M[M].S[S].[CCCCCC]
M[MI/DIDI/YYYY H[H]:M[M]:S[S].[cCCCCC]
M[M)/D[DJ/YYYY H[H].M[M].S[S].[cCCCCC]

The year value (YYYY) can range from 0001 to 9999. For example, the value
0099 refers to year 99. The value 1999 refers to year 1999.

The default formats for unloading data are as follows:

= DATE EXTERNAL — MM/DD/YYYY
s TIME EXTERNAL — H24:MI:SS.MLS
s TIMESTAMP EXTERNAL — MM/DD/YYYY HH24:MI:SS.MLS

A FileTek data loader accepts a TIME data field with no milliseconds (MLS) field.
The FileTek unloader produces the MLS field only if the milliseconds part of the
TIME value being unloaded is nonzero. If you specify a length that is less than
12, the default mask does not contain MLS.

3-20 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types 3
Host language data types

Host language data types

If you use StorHouse ESQL to submit SQL statements in your programs, then
you declare host variables and indicator variables. You can declare variables with
StorHouse data types or host language data types. A host language data type is a
data type supported by the host language, which for ESQL is C or C++.

= To declare host variables with a host language data type, you can use the C
data types char, double, long, and short. StorHouse ESQL also supports
guaranteed-size types for C type int and long. See the table on page 3-23 for a
list of these types.

= To declare host variables with a StorHouse data type, you can use all database
data types except BINARY, VARBINARY, and VARCHAR.

= To declare indicator variables, you can use the StorHouse data type
SMALLINT or the C data type short. You can also declare a new data type
based on SMALLINT or short.

= To declare the following StorHouse data types, you use C language structures:
BLOB, BLOB_FILE, CLOB, CLOB_FILE, DATE, NUMERIC (and synonym
DECIMAL), TIME, and TIMESTAMP.

The following table maps StorHouse data types to C language data types and

structures. Refer to the StorHouse ESQL Manual for more information about host
language data types.

StorHouse SQL Reference Manual 3-21

FileTek Proprietary and Confidential

StorHouse data types

Host language data types

C language equivalent to StorHouse data types

StorHouse C language C language
data type data type structure
BINARY! unsigned char -

BLOB - tpe_blob_t
BLOB_FILE - tpe_blob_file_t
BLOB_LOCATOR int32_t -
CHARACTER char -

CLOB - tpe_clob_t
CLOB_FILE tpe_clob_file_t
CLOB_LOCATOR int32_t

DATE - tpe_date_t
DOUBLE PRECISION double -

INTEGER int32_t -

NUMERIC - tpe_num_t
REAL float? -

SMALLINT short -

TIME - tpe_time_t
TIMESTAMP - tpe_timestamp_t
VARBINARY! unsigned char -

VARCHAR? char -

1 Do not declare host variables as BINARY, VARBINARY, or VARCHAR data types. Instead, use
an SQLDA and the DESCRIBE statement.

2InC language, the float data type represents a single precision floating-point number. However,
ESQL interprets the word “float” as the database data type DOUBLE (synonym FLOAT), which
indicates a double precision floating-point number. To declare a variable as a single precision float-
ing-point number, use database data type REAL.

3-22 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types 3
Data type conversion

Depending on the platform, the C type int may be 16 or 32 bits and the C type
long may be 32 or 64 bits. StorHouse ESQL makes the following guaranteed-size
types available to applications. You can use these type definitions in place of the
built-in C types to ensure portability to new platforms.

Guaranteed-size types for C type int and long

Type Description

int64_t 64-bit signed integer
uint64_t 64-bit unsigned integer
int32_t 32-bit signed integer
uint32_t 32-bit unsigned integer
intl6_t 16-bit signed integer
uintl6_t 16-bit unsigned integer
int8_t 8-bit signed integer
uint8_t 8-bit unsigned integer

Data type conversion

Several data type conversions occur in StorHouse, including conversion of loader
data types, unloader data types, literals, and functions.

Conversion of loader data types

A loader data type doesn't have to match a database data type. For example, you
can define an input data field as BINARY and then load those values into
columns defined as BINARY, BLOB, CHARACTER, CLOB, VARBINARY, or
VARCHAR. StorHouse/RM automatically performs the necessary conversion; but
you need to ensure that the data types are compatible and that the input data
conforms to the format of the column’s data type.

StorHouse SQL Reference Manual 3-23

FileTek Proprietary and Confidential

3 StorHouse data types
Data type conversion

For instance, your load will fail if you try to load data values defined as
SMALLINT into a column defined as CHARACTER. These data types are not
compatible. Your load will also fail if the input data doesn't conform to the
format of the column’s data type. For example, although you can load
CHARACTER data values into a SMALLINT column, those values must consist
of digits (such as 123), not letters (such as ABC).

You also need to ensure that the length of your input data doesn't exceed the
length of the target column. StorHouse/RM trims any data values that exceed the
length of a column’s data type. For example, if you define a column in a user
table as CHARACTER(30) and define input data fields as CHARACTER(35),
then StorHouse/RM would trim any bytes from data values with more than 30
bytes.

StorHouse/RM also rescales DECIMAL and NUMERIC columns when necessary.
For example, if the input data is DECIMAL(7,3) but the column is
NUMERIC(7,2), StorHouse/RM rescales and stores the input data as NUMERIC
(7,2).

The following table identifies the allowable data type conversions for loading
data into StorHouse. In the table:

= The Input type is the data type of the input data (loader data type).

= The Target type is the data type of the table being loaded (CREATE TABLE
data type).

3-24 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Data type conversion

Synonyms are not listed but are supported. For example, BYTE, a synonym for
BINARY, has the same conversions as BINARY.

Data type conversions for loading data

Input type

Target type

BINARY

BLOB

DATE

DOUBLE PRECISION
NUMERIC (DECIMAL)

INTEGER
REAL
SMALLINT
TIME
TIMESTAMP

BINARY

BINARY EXTERNAL

X | X

X | x | CHARACTER

x | < | VARBINARY

x
x
x
x

X | x | VARCHAR

BLOB

X | < | x | CLOB

BLOB_FILE

CHARACTER

CLOB

X | X | X | X | X |X

CLOB_FILE

DATE

DECIMAL

DECIMAL EXTERNAL

DOUBLE

FLOAT(REAL)

FLOAT EXTERNAL

INTEGER

INTEGER EXTERNAL

SMALLINT

X | X | X | X | X | X |X|X
X | X | X | X | X | X |X|X

TIME EXTERNAL

TIMESTAMP EXTERNAL

StorHouse SQL Reference Manual

3-25

FileTek Proprietary and Confidential

3 StorHouse data types
Data type conversion

Data type conversions for loading data (continued)

Target type

z o
o <
) =
O @)
B E) 8 o | >
Input type = a =~ - S| & g
. 3) w| x| z < | < | <
< wis|im|s w | W
I HEEHREIEE
m| o 0|0l |z|x|n|F|F|>]5
VARBINARY X X| X| X X | X
VARCHAR X X| X| X| X| X| X| X| X| X| X| X| X| X

Conversion of unloader data types

StorHouse/RM automatically performs necessary data type conversions when

you unload data, but you must ensure that the result data types are compatible

with the column data types. The following table summarizes the data type
conversions for unloading data from StorHouse. In the table:

= The Result type is the data type of the result data (the unloader data type).
= The Source type is the data type of the expression being unloaded.

3-26 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Synonyms are not listed but are supported.

Data type conversion

Data type conversions for unloading data

Result type

Source type

DATE

DOUBLE PRECISION

INTEGER

NUMERIC (DECIMAL)

SMALLINT
TIMESTAMP

REAL
TIME

BINARY

BINARY EXTERNAL

X | x | BINARY

% | % | CHARACTER

x

x

x | x | VARBINARY

X | x | VARCHAR

BLOB

X | < | x | CLOB

BLOB_FILE

CHARACTER

CLOB

X | X | X | X |X|x |BLOB

CLOB_FILE

DATE EXTERNAL

DECIMAL

DECIMAL EXTERNAL

DOUBLE

FLOAT(REAL)

FLOAT EXTERNAL

INTEGER

INTEGER EXTERNAL

SMALLINT

TIME EXTERNAL

TIMESTAMP EXTERNAL

VARBINARY

VARCHAR

StorHouse SQL Reference Manual

3-27

FileTek Proprietary and Confidential

3 StorHouse data types
Data type conversion

Conversion of literals

StorHouse/RM is flexible in that you can use different literal types to specify a
value. For instance, you can use a character literal (quoted string) to specify a
value in a column defined as a CHARACTER, CLOB, DATE, INTEGER,
NUMERIC, REAL, SMALLINT, TIME, TIMESTAMP, or VARCHAR data type.
The literal must conform to the format of the column data type. For example, if
you specify a character literal for a NUMERIC data value, then that character
literal should contain decimal digits and a decimal point.

Here's an example. Assume you defined a column named COL1 with data type
INTEGER. You can specify a literal for an INTEGER data value in a variety of
formats, including an integer literal:

SELECT *
FROM MYTABLE
WHERE COL1 = 1024

or a character literal (quoted string):

SELECT *
FROM MYTABLE
WHERE COL1 = ‘1024’

In the first query, no conversion occurs because the integer literal is the same
format as the INTEGER column. In the second query, however, StorHouse/RM
converts the character literal to the data type of the column (INTEGER). So the
string value 1 - 0 - 2 - 4 becomes the integer value 1024 (one thousand twenty
four).

3-28 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types 3
Data type conversion

The following table identifies the types of literals you can use with database data
types.

Literals you can use with database data types

Result data type
- - S &
Literal b el Q = S < | Z
& x B | 0| 3 h| 2| %
0 0| w T o | O
<) | s L L
2 S/£/9%la El3 51 S S| | %%
o m|O|O|A4dlad S|l Z|l|wn|F|F|>|>
Character X1 X| X X| X | X| X| X| X X
Decimal X| X| X | X
Floating point X X| X | X| X X
Hexadecimal X | X X
Integer X X| X| X | X| X X

Conversion of function data types

When you perform a function, the result data type may differ from the data type
of the specified expression. For example, the LENGTH function returns the
length (INTEGER data type) of a character expression (CHARACTER data type).
The TO_NUMBER function converts a CHARACTER data value to a NUMERIC
data value.

The following table identifies the result data type of the StorHouse functions.

Result data type of StorHouse functions

Function Result data type

ABS Depends on expression
ADD_MONTHS DATE
ASCII SMALLINT

StorHouse SQL Reference Manual 3-29

FileTek Proprietary and Confidential

StorHouse data types

Data type conversion

Result data type of StorHouse functions (continued)

Function Result data type

AVG Depends on expression
BIT_LENGTH DECIMAL

BLOB BLOB

CHAR_LENGTH INTEGER

CHR CHAR

CLOB CLOB

CONCAT Depends on expressions
COUNT INTEGER
DAYOFMONTH SMALLINT
DAYOFWEEK SMALLINT
DAYOFYEAR SMALLINT

DAYS INTEGER

DECODE Same as first match expression
GREATEST Same as first expression
HOUR SMALLINT

INITCAP Same as expression
INSTR INTEGER

LAST_DAY DATE

LEAST Same as first expression
LENGTH INTEGER

LOWER Same as expression
LPAD Same as expression
LTRIM Same as expression
MAX Same as expression

3-30 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse data types

Data type conversion

Result data type of StorHouse functions (continued)

Function Result data type
MIN Same as expression
MINUTE SMALLINT

MONTH SMALLINT
MONTHS_BETWEEN INTEGER

NEXT_DAY DATE

NVL Same as first expression

OCTET_LENGTH

INTEGER

OVERLAY Depends on first expression
POSITION INTEGER

QUARTER SMALLINT

RPAD Same as expression

RTRIM Same as expression
SECOND SMALLINT

SUBSTR Same as first expression
SUM DECIMAL

TO_CHAR VARCHAR or CLOB, depending on expression
TO_DATE DATE

TO_HEX CHAR or CLOB
TO_NUMBER NUMERIC

TO_TIME TIME

TRANSLATE Same as first expression
TRIM Depends on first expression
UPPER Same as expression

StorHouse SQL Reference Manual 3-31

FileTek Proprietary and Confidential

StorHouse data types

Data type conversion

Result data type of StorHouse functions (continued)

Function Result data type

WEEK SMALLINT

YEAR SMALLINT

3-32 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

A

StorHouse SQL statements

This chapter contains formats and examples of StorHouse SQL statements.

About StorHouse SQL statements

StorHouse SQL statements are instructions used to manage StorHouse databases.
Statements consist of one or more parts that form a clause. Clauses begin with a
keyword followed by arguments. Arguments complete or modify the meaning of
the keyword (for example, WHERE CUSTOMER='SMITH).

Statements generally act on components in a database. A component is a named
database structure. Components include tables, views, columns, user tablespaces,
synonyms, and indexes.

The use of these statements is controlled by database and database component
privileges assigned by the StorHouse system or database administrator. You must
have certain privileges to use many of these statements. The privileges required to
use a statement are listed in the description for each statement.

StorHouse SQL Reference Manual 4-1

FileTek Proprietary and Confidential

StorHouse SQL statements

List of StorHouse SQL statements

List of StorHouse SQL statements

The following table contains an alphabetical list and a description of the
StorHouse SQL statements. All StorHouse SQL statements can be static, but only
some can be both static and dynamic. The Dynamic column means the
statement can be dynamically prepared.

List of StorHouse SQL statements

SQL statement Description Dynamic

ALTER TABLE SPACE Changes user tablespace Yes 4-7
parameters

BEGIN and END Declares variables, types, and arrays No 4-11

DECLARE SECTION

CLOSE Closes an open cursor No 4-19

COMMIT WORK Terminates a transaction, making No 4-20
changes to the database permanent

CONNECT Opens a connection with a database No 4-22

CREATE INDEX Creates a hash, value, or range Yes 4-24
index for a user table

CREATE SYNONYM Creates a synonym for a table, view, Yes 4-27
or synonym

CREATE TABLE Creates an empty user table Yes 4-29

CREATE TABLE Creates a user tablespace Yes 4-35

SPACE

CREATE VIEW Creates a view for a table or view Yes 4-40

DECLARE Assigns a cursor name and No 4-42

associates a cursor with a query

DELETE Removes one or more rows from a Yes 4-44
system table or system table view

DESCRIBE Provides information about input or No 4-46
output host variables

4-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements

List of StorHouse SQL statements

List of StorHouse SQL statements (continued)

SQL statement Description \ Dynamic Page

DISCONNECT Terminates a connection between a No 4-49
program and a database

DROP INDEX Removes an index Yes 4-50

DROP SYNONYM Removes a synonym Yes 4-52

DROP TABLE Removes a user table Yes 4-53

DROP TABLE SPACE Removes a user tablespace Yes 4-54

DROP VIEW Removes a view Yes 4-56

EXECUTE Executes a prepared (dynamic) non- No 4-57
SELECT SQL statement

EXECUTE IMMEDIATE Prepares and executes an SQL No 4-60
statement represented as a
statement string or host variable

FETCH Retrieves the result set for queries No 4-62
that return multiple rows

FREE LOCATOR Releases the server storage used by No 4-66
a locator variable

GRANT Grants database or database Yes 4-67
component privileges to StorHouse
accounts

INSERT Inserts new rows into a system table Yes 4-70
or system table view

OPEN Executes a query for a cursor and No 4-72
identifies the rows in the result set

PREPARE Parses an SQL statement for syntax No 4-75
errors and assigns an identifier to the
statement

REVOKE Removes database or database Yes 4-77

component privileges from a

StorHouse account

StorHouse SQL Reference Manual 4-3

FileTek Proprietary and Confidential

StorHouse SQL statements

List of StorHouse SQL statements

List of StorHouse SQL statements (continued)

SQL statement Description \ Dynamic Page

ROLLBACK WORK Cancels the current transaction and No 4-80
rolls back any changes performed
during the transaction

SELECT Retrieves information from one or Yes 4-82
more tables

SET CONNECTION Makes the named connection the No 4-105
current one

UPDATE Changes some or all values in a Yes 4-106
system table or system table view

VALUES INTO Manipulates values and expressions Yes 4-108
previously selected using locator
variables

WHENEVER Specifies an action for NOT FOUND, No 4-109

SQLERROR, and SQLWARNING
runtime exceptions

4-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

Categories of SQL

Categories of SQL

There are four categories of StorHouse SQL statements:

» Data Definition Language (DDL) statements create, alter, and drop database
components and grant and revoke privileges. StorHouse/RM implicitly
commits a transaction before and after every DDL statement. This means that
DDL statements are atomic; you cannot roll them back.

» Data Manipulation Language (DML) statements query and manipulate data.

= Transaction Control statements manage changes to a database.

= ESQL statements, declarative and executable, can be included in a program.

The following table lists the specific statements in each category.

Categories of StorHouse SQL statements

Category SQL statement

Data Definition Language (DDL)

ALTER TABLE SPACE
CREATE INDEX
CREATE SYNONYM
CREATE TABLE
CREATE TABLE SPACE
DROP INDEX

DROP SYNONYM
DROP TABLE

DROP TABLE SPACE
DROP VIEW

GRANT

REVOKE

Data Manipulation Language (DML)

DELETE
INSERT
SELECT
UPDATE
VALUES INTO

StorHouse SQL Reference Manual 4-5

FileTek Proprietary and Confidential

StorHouse SQL statements
Categories of SQL

Categories of StorHouse SQL statements (continued)

Category SQL statement

Transaction Control COMMIT WORK
ROLLBACK WORK

ESQL BEGIN and END DECLARE SECTION
CLOSE
CONNECT
DECLARE
DESCRIBE
DISCONNECT
EXECUTE
EXECUTE IMMEDIATE
FETCH
FREE LOCATOR
OPEN
PREPARE
SET CONNECTION
WHENEVER

4-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
ALTER TABLE SPACE

ALTER TABLE SPACE

ALTER TABLE SPACE changes the storage specifications of an existing user
tablespace. Any new segments are stored according to the new specifications.
Existing segments are stored according to the old specifications. You must have
DBA privilege to alter a user tablespace. Note the following:

= You cannot use a ROLLBACK WORK statement to undo an ALTER TABLE
SPACE statement.

= At least one SUBSPACE clause with one argument is required. StorHouse/RM
does not check for a specific argument as part of its required syntax.

= Enclose all of the subspace clauses in one set of parentheses. Separate subspace
clauses with commas.

= You must delimit volume set and file set names that do not follow SQL
identifier naming conventions.

= TABLE SPACE can be one or two words (TABLE SPACE or TABLESPACE).

Format

ALTER TABLE SPACE tablespace_name
(SUBSPACE subspace_number param_value [param_value]...
[, SUBSPACE subspace_number param_value [param_value]...]...)

where param_value is any of the following:

VSET vset_name

FSET fset_name
OBJECT_TYPE type_value
ATF atf value

VTF vtf_value

EDC edc_value

StorHouse SQL Reference Manual 4-7

FileTek Proprietary and Confidential

StorHouse SQL statements
ALTER TABLE SPACE

GROUP group_name
MAX_EXT_SIZE size_in_megabytes
HOLD number_of_days
HOLD_SPECIAL number_of_days

Argument Description

tablespace_name (required) Name of the user tablespace.
subspace_number (required) Number assigned to the subspace you are
changing.
param_value (one required) Parameter(s) to change for this subspace.
VSET vset_name Name of the volume set to contain components in this
subspace.
FSET fset_name Name of the file set to contain components in this subspace.
OBJECT_TYPE Type of component to be stored in the subspace. Valid
type_value values are:

» blank — (default) Allow all components.
» T — Allow table data only.

= H — Allow hash indexes only.

» V — Allow value indexes only.

« L — Allow LOB data only.

ATF atf_value Access Time Factor for components in this subspace. Valid
values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

» 1 — Short access time is very important.
» 2 — Short access time is moderately important.

= 3 — Short access time is minimally important.

4-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

ALTER TABLE SPACE

Argument Description

VTF vtf_value Vulnerability Time Factor for components in this subspace.
Valid values are:

» DEFAULT - (default) Use the value of the StorHouse VTF
system parameter.

» NOW — Write the file to the performance buffer first and
then copy it immediately to its file set.

=« NEXT — Write the file to the performance buffer and copy it
to its file set during the next StorHouse write-back
operation.

« DIRECT — Bypass the performance buffer and write the
file directly to its file set. (DF and map extents, however,
are always copied to the performance buffer as well as to
the file set.)

EDC edc_value Error Detection Code (EDC) flag indicating whether the
StorHouse error detection capability is to be used for
components in this subspace. Valid values are:

» D — (default) Use the value of the StorHouse EDC system
parameter.

= Y —Use EDC.
= N - Do not use EDC.

GROUP Name of the StorHouse file access group to contain

group_name components in this subspace. If you include the GROUP
keyword with an empty delimited name (") or an all-blank
delimited name or all blanks, StorHouse/RM uses the
default group STH.

MAX_EXT_SIZE Maximum size of extents in this subspace. Valid values are:

size_in_megabytes » 0 — (default) 100 MB for LOB subsegment files or use the
value of the applicable StorHouse system parameter for
the component type:

SQL_MAX_EXT_DATA for table data files
SQL_MAX_EXT_HASH for hash index files
SQL_MAX_EXT_VAL for value index files

= 1 to the maximum surface size for the VSET. Refer to the
StorHouse Concepts and Facilities Manual for details on
extent size considerations.

StorHouse SQL Reference Manual 4-9

FileTek Proprietary and Confidential

StorHouse SQL statements
ALTER TABLE SPACE

Argument Description

HOLD Number of days to keep data extents in the performance
number_of_days buffer. Valid values are:

» 0 — (default) 0 days for LOB subsegment files or use the
value of the applicable StorHouse system parameter for
the component type:

SQL_HOLD_DATA for table data files
SQL_HOLD_INDX for hash and value index files

« 110 32767

HOLD_SPECIAL Number of days to keep DF and map extents of table data
number_of_days files, index files, and LOB subsegment files in the
performance buffer. Valid values are:

» 0 — (default) Use the value of the SQL_HOLD_SPECIAL
StorHouse system parameter.

« 1t0 32767

Examples

= The following ALTER TABLE SPACE statement changes the volume set and file
set names assigned to SUBSPACE 1 in the BILLINGTABLE user tablespace.

ALTER TABLE SPACE BILLINGTABLE
(SUBSPACE 1 VSET FEB2000T FSET FEB2000T)

= The following ALTER TABLE SPACE statement changes the ATF value for
SUBSPACE 1, the MAX_EXT_SIZE for SUBSPACE 2, and the number of days
to hold special extents in the performance buffer for SUBSPACE 3 in the
BILLINGJAN user tablespace.

ALTER TABLE SPACE BILLINGJAN

(SUBSPACE 1 ATF 1,

SUBSPACE 2 MAX_EXT_SIZE 400,
SUBSPACE 3 HOLD_SPECIAL 32767)

4-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
BEGIN and END DECLARE SECTION

BEGIN and END DECLARE SECTION

BEGIN DECLARE SECTION and END DECLARE SECTION mark the
beginning and end of a Declare Section in an ESQL program. A Declare Section
contains declaration statements in ESQL or C language formats. You can declare:

» Host and indicator variables as certain host language or StorHouse data types

= Variables as host arrays

= New data types with the characteristics of host language or StorHouse data
types; then declare variables and arrays using the newly defined data type

Note the following:

= Your program can contain more than one Declare Section.

= A Declare Section cannot reference names declared in typedef statements.

= A Declare Section must be located before other ESQL constructs. Only C
statements can precede a Declare Section.

Format

EXEC SQL BEGIN DECLARE SECTION
declaration_statements
EXEC SQL END DECLARE SECTION

where declaration_statements include variable_declarations, array_declarations, and
type_declarations:

variable_declarations

ESQL format variable_name IS OF TYPE type_category

C format type_category variable_name

StorHouse SQL Reference Manual 4-11

FileTek Proprietary and Confidential

StorHouse SQL statements
BEGIN and END DECLARE SECTION

array_declarations

ESQL variable_name IS AN ARRAY OF type_name WITH SIZE constant_id
format

C (non-char array) host_language_type_name variable_name [constant_id]

format (char array) host_language_type_name variable_name [constant_id] [length]

type_declarations

ESQL TYPE new_type_name IS OF TYPE type_category
format

TYPE new_type_name IS AN ARRAY OF element_type_name
WITH SIZE constant_id

Declaring host and indicator variables

You can declare host variables (including locator variables and file reference
variables) and indicator variables in ESQL or C language formats. Note the
following:

= You can declare host variables with all of the data types listed in the table on
page 4-13.

You cannot declare host variables as BINARY, VARBINARY, and VARCHAR
data types. Instead, use an SQLDA and the DESCRIBE statement.

You can declare indicator variables as C type short or database type
SMALLINT.

C type float typically represents a single precision floating-point number;
however, ESQL interprets float as a synonym for DOUBLE (a double precision
floating-point number). To declare a variable as a single-precision floating-
point number, use the StorHouse REAL data type.

4-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
BEGIN and END DECLARE SECTION

ESQL format

variable_name IS OF TYPE type_category
where type_category is:

{ host_language_type | storhouse_type }

C language format

type_category variable_name
where type_category is:

{ host_language_type | storhouse_type }

Argument Description

variable_name (required) Name of the host variable being declared.

host_language_type (required for specifying a host language type) Name of the
host language type. ESQL supports the following C types:

[unsigned] char double
[unsigned] short [unsigned] long

In place of C type int or long, you can use a guaranteed-size
type listed in the table on page 3-23.

storhouse_type (required for specifying a StorHouse data type) Name of the
StorHouse data type.
BLOB BLOB_FILE BLOB_LOCATOR
CHARACTER CLOB CLOB_FILE
CLOB_LOCATOR DATE DECIMAL
DOUBLE FLOAT INTEGER
NUMERIC REAL SMALLINT
TIME TIMESTAMP

See the table on page 3-22 for the mapping of StorHouse
data types to C language types and structures.

StorHouse SQL Reference Manual 4-13

FileTek Proprietary and Confidential

4 StorHouse SQL statements
BEGIN and END DECLARE SECTION

Examples

The following example uses the ESQL format to declare the host variable
customer_no as the StorHouse type INTEGER:

EXEC SQL BEGIN DECLARE SECTION ;
customer_no IS OF TYPE INTEGER ;
EXEC SQL END DECLARE SECTION ;

The following example uses the C language format to declare the host variable
customer_no as the C language type long:

EXEC SQL BEGIN DECLARE SECTION ;
long customer_no ;
EXEC SQL END DECLARE SECTION ;

The following example uses the C language format to declare the locator
variable hv_prod_locator as StorHouse type CLOB_LOCATOR and the host
variable hv_product as StorHouse type CLOB:

EXEC SQL BEGIN DECLARE SECTION ;
CLOB_LOCATOR hv_prod_locator ;
CLOB(2M) hv_product ;

EXEC SQL END DECLARE SECTION ;

Declaring arrays

An array is a group of data items or elements assigned to one variable name. In a
Declare Section, you declare host and indicator variables as arrays, identifying the
data type and setting the size of the array. You can declare an array in ESQL
format or in C language format.

4-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

BEGIN and END DECLARE SECTION

ESQL format to declare an array

variable_name IS AN ARRAY OF type_name WITH SIZE constant_id

Argument Description

variable_name (required) Name of the array being declared.
type_name (required) Data type assigned to variable_name.
constant_id (required) Number of elements in variable_name.

C language format to declare a non-char array

host_language_type_name variable_name [constant_id]

Argument Description

host_language_type _name (required) Data type assigned to variable_name.

variable_name (required) Name of the array being declared.

constant_id (required) Number of elements in variable_name.

C language format to declare a char array

host_language_type_name variable_name [constant_id] [length]

Argument Description

host_language_type_name (required) Data type assigned to variable_name.

variable_name (required) Name of the array being declared.
constant_id (required) Number of elements in variable_name.
length (required) Length of each char element in

variable_name.

StorHouse SQL Reference Manual 4-15

FileTek Proprietary and Confidential

4 StorHouse SQL statements
BEGIN and END DECLARE SECTION

Examples

The following example uses the ESQL format to declare the array
arrayexample. This array is of type long and has 12 elements:

EXEC SQL BEGIN DECLARE SECTION ;
arrayexample IS AN ARRAY OF long OF SIZE 12 ;
EXEC SQL END DECLARE SECTION ;

The following example uses the C language format to declare the non-char
array arrayexample. This array is of type long and has 12 elements:

EXEC SQL BEGIN DECLARE SECTION ;
long arrayexample [12] ;
EXEC SQL END DECLARE SECTION ;

The following example uses the C language format to declare the char array
myarray. There are 10 elements in the array, and each element is 2 characters
long:

EXEC SQL BEGIN DECLARE SECTION ;
char myarray [10] [2];
EXEC SQL END DECLARE SECTION ;

Declaring type definitions for variables and
arrays

You can define a new data type with the same characteristics as an existing host
language or StorHouse data type. Then you can declare host variables and arrays
using the new data type.

ESQL format to declare a new data type for a variable

TYPE new_type_name IS OF TYPE type_category

4-16 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
BEGIN and END DECLARE SECTION

where type_category is defined as:

host_language_type | storhouse_type

Argument Description

new_type_name (required) Name of the new type being declared.

host_language_type (required for specifying a host language type) Name of the host
language type. ESQL supports the following C types:

[unsigned] char double
[unsigned] short [unsigned] long

In place of C type int or long, you can use a guaranteed-size
type listed in the table on page 3-23.

storhouse_type (required for specifying a StorHouse data type) Name of the
StorHouse data type.
BLOB BLOB_FILE BLOB_LOCATOR
CHARACTER CLOB CLOB_FILE
CLOB_LOCATOR DATE DECIMAL
DOUBLE FLOAT INTEGER
NUMERIC REAL SMALLINT
TIME TIMESTAMP

See the table on page 3-22 for the mapping of StorHouse data
types to C language types and structures.

ESQL format to declare a new data type for an array

TYPE new_type_name IS AN ARRAY OF element_type_name
WITH SIZE constant_id

Argument Description

new_type_name (required) Name of the new type you are declaring.

element_type_name (required) Host language type or StorHouse type that
appears in the array.

constant_id (required) Size of each element in the array.

StorHouse SQL Reference Manual 4-17

FileTek Proprietary and Confidential

4 StorHouse SQL statements
BEGIN and END DECLARE SECTION

Examples

The following example defines a new data type called customer_no with the
characteristics of C type unsigned long. It then declares the host variable
input_v as the type customer_no:

EXEC SQL BEGIN DECLARE SECTION ;
TYPE customer_no IS OF TYPE unsigned long ;
customer_no input_v ;

EXEC SQL END DECLARE SECTION ;

The following example defines a new data type called array_type with the
same characteristics as the C type char. The new data type array_type
represents a char array where each element contains 10 characters. The
example then declares the array my_array using the new data type array_type.
There are 30 elements in my_array.

EXEC SQL BEGIN DECLARE SECTION ;
TYPE array_type IS AN ARRAY OF char WITH SIZE 10 ;
my_array IS AN ARRAY OF array_type WITH SIZE 30 ;
EXEC SQL END DECLARE SECTION ;

4-18 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

CLOSE

StorHouse SQL statements 4
CLOSE

CLOSE sets the state of an open cursor to closed. StorHouse/RM automatically
closes a cursor when a transaction is committed, but it’s good practice to close a
cursor explicitly. Once a cursor is closed, you cannot perform FETCH operations
on the cursor.

Format

EXEC SQL
CLOSE cursor_name

Argument Description

cursor_name (required) Name of the open cursor that you want to close.

Example
The following example closes the open cursor named cust_cur:

EXEC SQL
CLOSE cust_cur ;

StorHouse SQL Reference Manual 4-19

FileTek Proprietary and Confidential
4 StorHouse SQL statements
COMMIT WORK

COMMIT WORK

COMMIT WORK terminates a transaction by making all changes to the database
during the transaction permanent. It also releases all held locks, open cursors,
server storage used by locator variables, and prepared statements for the
transaction. Once you commit a transaction, you cannot cancel the changes.
Should the system fail, StorHouse/RM automatically cancels a transaction and
rolls back the database to its initial state.

Note the following:

= In StorHouse/RM, DDL statement execution is atomic and permanent. The
software always performs an implicit COMMIT WORK before and after every
DDL statement. You cannot roll back changes to a StorHouse database after
issuing DDL statements.

= Non-DDL statements, like PREPARE and SELECT, place locks on tables until
the transaction is committed. Therefore, you must explicitly issue a
COMMIT WORK statement after each non-DDL statement to release those
locks. You can cancel the effect of non-DDL processing before committing a
transaction by issuing the ROLLBACK WORK statement.

Format

EXEC SQL
COMMIT WORK

4-20 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
COMMIT WORK

Examples

The following example commits the change to the sysadm.syssmusers system
table:

EXEC SQL
UPDATE sysadm.syssmusers
SET default_ts = :def _tbspace
WHERE accountid = :acct_id ;

EXEC SQL
COMMIT WORK;

The following example commits the SELECT statement and releases the locks
that were held on emptable.

EXEC SQL
SELECT empname
FROM emptable ;

EXEC SQL
COMMIT WORK ;

StorHouse SQL Reference Manual 4-21

FileTek Proprietary and Confidential

4 StorHouse SQL statements
CONNECT

CONNECT

CONNECT opens a connection between a program and a database. A program
can connect to multiple databases but execute SQL statements in only one
database at a time. A program can open up to 10 connections at a time. The
SQL_SESSIONS system parameter sets the total number of connections allowed
system-wide.

Caution: The USING clause, which supplies the StorHouse account password, is
optional. However, if you omit the USING clause in a CONNECT statement in

an ESQL program, StorHouse/RM will prompt stdin for the password. If stdin is

not a terminal, the CONNECT will fail.

Format

EXEC SQL
CONNECT TO database_name
[AS connection_name]
[[USER account_id [USING :host_variable_name]]]

Argument Description

database_name (required) Name of the database, expressed as a character
literal or a host variable. When connecting to a remote
database, you must specify a connect string in the following
format:

filetek:T:remote_host_name:database_name

connection_name (optional) Name of the connection, expressed as a character
literal or host variable.

account_id (required with the USER clause) StorHouse account ID,
expressed as a character literal or a host variable.

:host_variable_name (required with the USING clause) StorHouse account
password expressed as a host variable. A literal is not
accepted.

4-22 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CONNECT

Example

The following example connects in remote mode to a database called salesdb:

EXEC SQL
CONNECT TO *filetek:T:remotehost:salesdb’ AS ‘conn_2’
USER ‘jack’ USING :pword ;

In this example:

» filetek:T:remotehost:salesdb is the connect string

n filetek is a constant

= Tisaconstant

= remotehost is the name of the remote machine containing salesdb
= salesdb is the StorHouse database name

= conn_2 is the connection name

= jack is the StorHouse account ID

= :pword is the host variable for the StorHouse account password

StorHouse SQL Reference Manual 4-23

FileTek Proprietary and Confidential
4 StorHouse SQL statements
CREATE INDEX

CREATE INDEX

CREATE INDEX creates an index for the specified user table. StorHouse supports
three types of indexes: value, hash, and range. You must have DBA or
RESOURCE privilege, own the user table, or have INDEX privilege on the user
table to create an index. Note the following:

= You cannot use a ROLLBACK WORK statement to undo a CREATE INDEX
statement.

= You can create indexes before or after a user table is loaded.

= If a table contains data, you must create a deferred index by including the
DEFERRED keyword. An error occurs if you omit the DEFERRED keyword
and the table contains data. After creating the deferred index, use a FileTek
data loader to load the index for existing segments.

= |fyou omit the VALUE, HASH, or RANGE keywords, StorHouse/RM uses the
value of the SQL_IDX_TYPE system parameter to determine which type of
index to create.

= The maximum number of columns you can specify in a single CREATE
INDEX statement is 16.

= If you omit the TABLE SPACE clause, StorHouse/RM assigns the index to the
same user tablespace as the table, that is, the user tablespace specified on the
CREATE TABLE statement.

Format

CREATE [VALUE | HASH | RANGE] INDEX index_name

ON [owner.] table_name (column_name [, column_name]...)
[DEFERRED]

[TABLE SPACE tablespace_name]

4-24 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CREATE INDEX

Argument Description

VALUE (optional) Type of index that contains an ordered list of all row
values for an indexed column and maps the row values to their
corresponding row data in the table data file. Best used for
gueries based on a range of values (for example, greater than or
less than).

HASH (optional) Type of index that uses hash values for each index
entry. Best used for queries based on equalities.

RANGE (optional) Type of index that contains the highest and lowest
values in each segment. Only the appropriate segment is
searched. Best used for queries on tables with multiple
segments.

index_name (required) Name of the index you are creating. This name must
be unique within the database.

owner. (optional) Account ID of the owner of the user table.

table_name (required) Name of the user table for which you are creating the
index.

column_name (required) Name of the column in the index. If you specify more

than one column, StorHouse/RM creates a compound index. The
column can be any database data type except BLOB or CLOB.

DEFERRED (optional) Type of index created after a table has been loaded. If
the table contains data, you must include this keyword. You can
create a deferred index for all index types: value, hash, and
range. After creating the index, use a FileTek data loader to load
the deferred index (by using a LOAD INDEX statement) for
existing segments.

tablespace_name (optional) Name of the user tablespace to contain the index.
TABLE SPACE can be one or two words. If you omit this clause,
the default is the same user tablespace as the user table.

StorHouse SQL Reference Manual 4-25

FileTek Proprietary and Confidential

4 StorHouse SQL statements
CREATE INDEX

Examples

The following CREATE INDEX Statement creates a HASH index named
ORDINDEX using the ORDER_NO column in the ORDERS table. The index is
stored in the same user tablespace as the table (no TABLE SPACE clause).

CREATE HASH INDEX ORDINDEX
ON ORDERS (ORDER_NO)

The following CREATE INDEX statement creates a compound VALUE index
named CUSTOMER_ORDERS using the ORDER_NO and CUSTOMER_NAME
columns in the ORDERS table. The index is assigned to the BILLING user
tablespace.

CREATE VALUE INDEX CUSTOMER_ORDERS
ON ORDERS (ORDER_NO, CUSTOMER_NAME)
TABLE SPACE BILLING

The following CREATE INDEX statement creates a compound VALUE index
named ORDERS2000 for the ORDERS table. This statement contains the
DEFERRED keyword to create a deferred index.

CREATE VALUE INDEX ORDERS2000

ON ORDERS (ORDER_NO, ORDER_DATE, CUSTOMER_NAME)
DEFERRED

TABLE SPACE BILLING

4-26 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
CREATE SYNONYM

CREATE SYNONYM

CREATE SYNONYM creates a synonym (another name) for the specified table,
view, or synonym. You can create private synonyms for your own use or if
authorized, public synonyms for all StorHouse accounts. You must have DBA or
RESOURCE privilege to use CREATE SYNONYM. You must have DBA privilege
to use CREATE PUBLIC SYNONYM.

Note: You cannot use a ROLLBACK WORK statement to undo a CREATE
SYNONYM statement.

Format

CREATE [PUBLIC] SYNONYM synonym_name
FOR [owner.[{table_name | view_name | synonym}

Argument Description

PUBLIC (optional) Indicates that any account can refer to this synonym
without having to specify the owner’s account ID. If you omit
PUBLIC, StorHouse/RM creates a private synonym. To reference
a private synonym owned by another account, you must start that
synonym name with the owner’s account ID.

synonym_name (required) Name of the synonym you are creating.

owner. (optional) Account ID of the owner of the table, view, or synonym
to be associated with this synonym.

table_name (required if you are creating a synonym for a table) Name of the
table to be associated with this synonym.

view_name (required if you are creating a synonym for a view) Name of the
view to be associated with this synonym.

synonym (required if you are creating a synonym for another synonym)
Name of the synonym to be associated with this synonym.

StorHouse SQL Reference Manual 4-27

FileTek Proprietary and Confidential

4 StorHouse SQL statements
CREATE SYNONYM

Example

The following CREATE SYNONYM statement creates the PUBLIC synonym
PUBLIC_SUPPLIERS for the SUPPLIERS table, which is owned by SMITH.

CREATE PUBLIC SYNONYM PUBLIC_SUPPLIERS
FOR SMITH.SUPPLIERS

4-28 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
CREATE TABLE

CREATE TABLE

CREATE TABLE defines a user table in the current database. You must specify at
least one column definition. CREATE TABLE requires DBA or RESOURCE
privilege or DBA privilege to create a user table for another owner. Note the
following:

= Only a FileTek data loader can insert rows into a user table. You cannot use

INSERT, UPDATE, or DELETE statements to add, change, or remove rows in
user tables.

= You cannot use a ROLLBACK WORK statement to undo a CREATE TABLE
statement.

= Table names (and other database user components like indexes, views,

synonyms, and user tablespaces) may not start with SYS, for instance,
SYS_STARTUP or SYSSERVICE. The SYS prefix is reserved for system tables.

Format

CREATE TABLE [owner.]table_name
({column_definition} [,column_definition]...)
[TABLE SPACE tablespace_name]

where column_definition is defined as:

column_name column_type [DEFAULT default_definition]
[column_constraints] [lob_options]

and where lob_options is defined as:

[INLINE [(length [K])] | NOT INLINE]
[STORE WITH column_name]
[TABLE SPACE tablespace_name]

StorHouse SQL Reference Manual 4-29

FileTek Proprietary and Confidential

StorHouse SQL statements
CREATE TABLE

Argument Description

owner. (optional) Account ID of the table owner. If you omit
the owner, StorHouse/RM makes you the owner of
the user table. You must have DBA privilege to
specify another account as owner of the table.

table_name (required) Name of the user table. The fully qualified
table name is the combined owner name and user
table name. This combination must be unique from
other tables, views, and synonyms in the current
database.

column_name (required) Name of the column. A column name must
be unique within a user table.

column_type (required for each column definition) Data type of the
column. The lengths are optional and if omitted, the
default length is used.

BINARY (length) Fixed-length array of bit data with a length from 1 to
256 bytes.

BLOB(length [K|M|G]) or Variable-length array of bytes with a length from:
BINARY LARGE OBJECT 1 15 2147483638 bytes

(length [K|M|G])
« 1102097152 K

» 1102048 M

«=1lor2G
CHAR(length) or Fixed-length array of characters with a length from 1
CHARACTER(length) to 256.
CLOB(length [K|M|G]) or Variable-length array of characters measured in
CHARACTER LARGE bytes with a length from:

OBJECT(length [KIMIG]) | 1 {5 2147483638 bytes
« 1to0 2097152 K

= 1102048 M

«lor2G
DATE Date value representing a month, day, and year.
DOUBLE PRECISION Double precision floating-point number.

4-30 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CREATE TABLE
Argument Description
INTEGER Large integer value ranging from -2147483648 to
+2147483647.
NUMERIC(PL,S]) or Signed decimal number with a precision (P) and
DECIMAL(P[,S]) scale (S). P can range from 1 to 31, with a default of
31. S can range from 0 to P, with a default of 0.
REAL Single precision floating-point number.
SMALLINT Small integer value ranging from -32768 to +32767.
TIME Time value representing an hour, minutes, seconds,

and milliseconds.

TIMESTAMP Date and time combination representing a month,
day, year, hour, minutes, seconds, and
microseconds.

VARBINARY (length) Variable-length array of bit data ranging in length
from 1 to 32705 bytes inclusive.

VARCHAR(length) Variable-length array of characters ranging in length
from 1 to 32705 characters inclusive. The maximum
length for an indexed VARCHAR column is 256.

DEFAULT (optional) Default value for the column. During a
default_definition load, the column takes the default value if no value is
supplied.
literal Specific binary, numeric, or character constant.
NULL NULL value. If you omit DEFAULT, the default is
NULL.
SYSDATE Current date. SYSDATE is valid for DATE columns
only.
SYSTIME Current time. SYSTIME is valid for TIME columns
only.
USER Account ID performing the load. USER is valid for
CHAR and VARCHAR columns that have a minimum
length of 12.

StorHouse SQL Reference Manual 4-31

FileTek Proprietary and Confidential

StorHouse SQL statements
CREATE TABLE

Argument Description

column_constraints (optional) Column-level constraints that StorHouse
applies to the column during a load. The load returns
an error if the value being loaded does not satisfy the
column constraint.

NOT NULL Null values are not allowed in this column.
CHECK (srch_cnd) CHECK is not currently implemented.
TABLE SPACE (optional) Name of the user tablespace to contain
tablespace_name this user table. TABLE SPACE can be one or two

words. If you omit this clause, StorHouse/RM uses
your account default user tablespace. If you do not
have an account default user tablespace,
StorHouse/RM uses the database default user
tablespace.

lob_options (optional for BLOB and CLOB column definitions)
Column-level options for a LOB.

INLINE [(length [K])] Option to store a column’s LOB values with the table
data and to set a maximum length for in-line data.
The default maximum length is 32 K.

» If you omit the length, StorHouse/RM stores a LOB
value with the table data when the row size does
not exceed 32705 bytes.

If you specify a length, StorHouse/RM stores a
LOB value with the table data as long as the value
does not exceed the in-line length limit and the row
length limit. For instance, if the in-line length limit
for a LOB column is 10 K, StorHouse/RM stores
any LOB values that are 10 K or less and that fit in
the row.

NOT INLINE Option to always store a column’s LOB values in
separate LOB subsegment files from the table data
file.

4-32 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CREATE TABLE
Argument Description
STORE WITH Name of a different LOB column in which to store this
column_name column’s LOB values. This option enables you to

store the values of multiple LOB columns together in
the same LOB subsegment file(s).

TABLE SPACE Name of the user tablespace to contain this column’s

tablespace_name LOB values. If you omit this clause, StorHouse/RM
stores the column’s LOB values in the same user
tablespace as the user table.

Examples

The following CREATE TABLE Statement creates a user table named
SUPPLIER_ITEM with three INTEGER columns: SUPP_NO, ITEM_NO, and
QTY. The SUPP_NO column cannot contain NULL values. The table is
associated with a user tablespace named SUPL0395.

CREATE TABLE SUPPLIER_ITEM
(SUPP_NO INTEGER NOT NULL,
ITEM_NO INTEGER,

QTY INTEGER)

TABLE SPACE SUPL0395

The following CREATE TABLE statement creates a user table named EMP with
two INTEGER columns (EMPNO, DEPTNO) and a DATE column (JOIN_DATE)
in user tablespace EMPL.

CREATE TABLE EMP

(EMPNO INTEGER,

DEPTNO INTEGER DEFAULT 10,
JOIN_DATE DATE DEFAULT NULL),
TABLE SPACE EMPL

StorHouse SQL Reference Manual 4-33

FileTek Proprietary and Confidential

4 StorHouse SQL statements
CREATE TABLE

Default values are assigned for two columns.

— The default value for the DEPTNO column is 10. During a load,
StorHouse/RM inserts a data value of 10 into the DEPTNO column when a
value is not supplied.

— The default value of the JOIN_DATE column is NULL. StorHouse/RM
inserts a NULL value into the JOIN_DATE column when a value is not
supplied.

» The following CREATE TABLE statement illustrates different LOB options.

CREATE TABLE LOB_EXAMPLE
(CHAR_COL CHAR(6),

INT_COL INTEGER,

FIRST_LOB CLOB STORE WITH OTHER_CLOB,
SECOND_LOB BLOB NOT INLINE,
OTHER_CLOB CLOB TABLESPACE XYZ)
TABLE SPACE ABC

— Values for the CHAR_COL and INT_COL are stored in a table data file in
the ABC tablespace.

— If there are multiple LOB columns in a row that could be stored in-line
(such as FIRST_LOB and OTHER_CLOB), the order of the LOB columns is
important. In this example, FIRST_LOB column gets first priority for in-
line storage.

— If the values for FIRST_LOB and/or OTHER_CLOB) fit in the row, they are
stored in-line in the table data file in the ABC tablespace. But if they don't
fit, the values for the FIRST_LOB and/or OTHER_CLOB columns are
stored in the same LOB subsegment file(s) in the Xz tablespace.

— Values for the SECOND_LOB column are stored in a different LOB

subsegment file(s) (from the other LOBs and the table data file) in the ABC
tablespace.

4-34 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
CREATE TABLE SPACE

CREATE TABLE SPACE

CREATE TABLE SPACE creates a user tablespace in the current database. A user
tablespace defines storage specifications for user table, index, and LOB data. You
must have DBA privilege to create a user tablespace. Note the following:

= You cannot use a ROLLBACK WORK statement to undo a CREATE TABLE
SPACE statement.

= At least one SUBSPACE clause is required.

= Enclose all of the subspace clauses in one set of parentheses. Separate subspace
clauses with commas.

= If you omit the optional subspace parameters, the defaults are used.

= You must delimit volume set and file set names that do not follow SQL
identifier naming conventions.

= TABLE SPACE can be one or two words (TABLESPACE or TABLE SPACE).

Format

CREATE TABLE SPACE tablespace_name

(SUBSPACE subspace_number VSET vset_name FSET fset_name
param_value [param_value]...

[, SUBSPACE subspace_number VSET vset_name FSET fset_name
param_value [param_value]...]...)

StorHouse SQL Reference Manual 4-35

FileTek Proprietary and Confidential

StorHouse SQL statements
CREATE TABLE SPACE

where param_value is any of the following:

OBJECT_TYPE type_value

ATF atf value

VTF vtf_value

EDC edc_value

GROUP group_name
MAX_EXT_SIZE size_in_megabytes
HOLD number_of days
HOLD_SPECIAL number_of days

Argument Description

tablespace_name (required) Name of the user tablespace. This name must be
unique in a database.

subspace_number (required) Number to assign to the subspace. This number
can range from 0 to 2,147,483,647. Subspace numbers
must be unique within a user tablespace.

VSET vset_name (required) Name of the volume set to contain components in
this subspace.

FSET fset_name (required) Name of the file set to contain components in this
subspace.
param_value (optional) Storage parameter for this subspace.
OBJECT_TYPE (optional) Type of component to be stored in the subspace.
type_value Valid values are:

» blank — (default) Allow all components.
« T — Allow table data only.

» H — Allow hash indexes only.

= V — Allow value indexes only.

» L — Allow LOB data only.

4-36 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CREATE TABLE SPACE

Argument Description

ATF atf_value (optional) Access Time Factor for components in this
subspace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

» 1 — Short access time is very important.
» 2 — Short access time is moderately important.

» 3 — Short access time is minimally important.

VTF vtf_value (optional) Vulnerability Time Factor for components in this
subspace. Valid values are:

» DEFAULT — (default) Use the value of the StorHouse VTF
system parameter.

= NOW — Write the file to the performance buffer first and
then copy it immediately to its file set.

» NEXT — Write the file to the performance buffer and copy it
to its file set during the next StorHouse write-back
operation.

» DIRECT - Bypass the performance buffer and write the
file directly to its file set. (DF and map extents, however,
are always copied to the performance buffer as well as to
the file set.)

EDC edc_value (optional) Error Detection Code (EDC) flag indicating
whether the StorHouse error detection capability is to be
used for components in this subspace. Valid values are:

» D — (default) Use the value of the StorHouse EDC system
parameter.

= Y —Use EDC.
= N —Do not use EDC.

GROUP (optional) Name of the StorHouse file access group to

group_name contain components in this subspace. If you omit this
parameter, the default group is STH. If you include the
GROUP keyword with an empty delimited name (") or an
all-blank delimited name or all blanks, StorHouse/RM uses
the default group STH.

StorHouse SQL Reference Manual 4-37

FileTek Proprietary and Confidential

StorHouse SQL statements
CREATE TABLE SPACE

Argument Description

MAX_EXT_SIZE (optional) Maximum size (in MB) of extents in this subspace.
size_in_megabytes Valid values are:

» 0 — (default) 100 MB for LOB subsegment files or use the
value of the applicable system parameter for the file type:

SQL_MAX_EXT_DATA for table data files
SQL_MAX_EXT_HASH for hash index files
SQL_MAX_EXT_VAL for value index files

= 1 to the maximum surface size for the VSET. Refer to the
StorHouse Concepts and Facilities Manual for details on
extent size considerations.

HOLD (optional) Number of days to keep data extents in the
number_of_days performance buffer. Valid values are:

» 0 — (default) 0 days for LOB subsegment files or use the
value of the system parameter for the file type:

SQL_HOLD_DATA for table data files
SQL_HOLD_INDX for index files

« 1t0 32767

HOLD_SPECIAL (optional) Number of days to keep DF and map extents in
number_of_days the performance buffer. Valid values are:

» 0 — (default) Use the value of the SQL_HOLD_SPECIAL
system parameter.

« 110 32767

4-38 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
CREATE TABLE SPACE

Examples

The following CREATE TABLE SPACE statement creates a user tablespace
called BILLINGTABLE with one subspace that uses all of the default values:

CREATE TABLE SPACE BILLINGTABLE
(SUBSPACE 1 VSET JAN2000T FSET JAN2000T)

The following CREATE TABLE SPACE statement creates a user tablespace
called BILLINGJAN with four subspaces, one for each component type.

CREATE TABLE SPACE BILLINGJAN
(SUBSPACE 1 VSET JAN2000T FSET JAN2000T OBJECT TYPE T
ATF 2 VTF NOW MAX_EXT_SIZE 400 HOLD 30 HOLD_SPECIAL 60,
SUBSPACE 2 VSET JAN2000H FSET JAN2000H OBJECT_TYPE H
ATF 1 VTF NEXT MAX_EXT_SIZE 800 HOLD 90 HOLD_SPECIAL 365,
SUBSPACE 3 VSET JAN2000V FSET JAN2000V OBJECT_TYPE V
ATF 1 VTF NEXT MAX_EXT_SIZE 500 HOLD 90 HOLD_SPECIAL 365
SUBSPACE 4 VSET JAN2000L FSET JAN2000L OBJECT _TYPE L
ATF 2 VTF NOW MAX_EXT_SIZE 800 HOLD 30 HOLD_SPECIAL 60)

StorHouse SQL Reference Manual 4-39

FileTek Proprietary and Confidential

4 StorHouse SQL statements
CREATE VIEW

CREATE VIEW

CREATE VIEW creates a view for one or more user tables, system tables, or views.
To create a view, you must have the following privileges:

= DBA or RESOURCE privilege
= SELECT privilege on all references tables or views
= DBA privilege to create a view for another owner

Note the following rules for creating views:

= You cannot use a ROLLBACK WORK statement to undo a CREATE VIEW
statement.

= The view must contain a single query. Subqueries are not allowed.

= The view can reference multiple tables and/or views.

= The query may not contain an ORDER BY clause.

= You cannot use DELETE, INSERT, or UPDATE statements with views derived

from user tables. These statements are restricted to system tables and views
based on system tables.

4-40 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

CREATE VIEW

Format
CREATE VIEW [owner.]Jview_name

[(column_name [, column_name]...)]
AS query_expression

Argument Description

owner. (optional) Account ID of the owner of the view to be created.
view_name (required) Name of the view to be created.
column_name (optional) Name of the column to be included in the view. If

omitted, the view uses the same column names specified in
guery_expression.

qguery_expression (required) Query that defines and fills the new view.

Example

The following CREATE VIEW statement creates a six-column view named
NE_CUSTOMERS. The view fills the columns with each row from the
CUSTOMER table where STATE contains NH, MA, NY, Or VT.

CREATE VIEW NE_CUSTOMERS AS

SELECT CUST_NO, NAME, STREET, CITY, STATE, ZIP
FROM CUSTOMER

WHERE STATE IN ('NH', 'MA', 'NY"', 'VT")

StorHouse SQL Reference Manual 4-41

FileTek Proprietary and Confidential

StorHouse SQL statements
DECLARE

DECLARE

DECLARE assigns a name to a cursor and associates a cursor with a static query
or a prepared dynamic query. Place a DECLARE statement before any other SQL
statement that references that cursor. ESQL cannot interpret a reference to a
cursor that is not declared. Note the following:

= A cursor declared in one ESQL source file cannot be referenced in another
ESQL source file.

= Cursor names must be unique within a file.

= The DECLARE statement and the following OPEN statement for the same
cursor must occur within the same transaction definition.

= |f the DECLARE statement contains references to host variables, then the
associated OPEN statement must occur within the same scope as that of the
referenced variables.

Format

EXEC SQL
DECLARE cursor_name CURSOR FOR
{ query_expression | prepared_statement_name }

Argument Description

cursor_name (required) Unique name for the cursor.

query_expression (required for static queries) SELECT statement you are
associating with the cursor.

prepared_statement_name (required for prepared dynamic queries) Name of the
prepared statement assigned in a PREPARE statement.

4-42 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

DECLARE

Examples

The following example declares the cursor cust_cur for a static query on the
customer table:

EXEC SQL
DECLARE cust_cur CURSOR FOR
SELECT cust_no, name, street, city, state
FROM customer ;

The following example declares the cursor select_cursor for the prepared
statement select_stmt represented by the string variable stmt_str:

EXEC SQL BEGIN DECLARE SECTION ;
char stmt_str [256] ;
EXEC SQL END DECLARE SECTION ;

EXEC SQL

PREPARE select_stmt FROM :stmt_str ;
DECLARE select_cursor CURSOR for select_stmt ;

StorHouse SQL Reference Manual 4-43

FileTek Proprietary and Confidential

StorHouse SQL statements

DELETE

DELETE

DELETE removes zero, one, or more rows from the specified system table or
system table view. You cannot delete rows from user tables or user table views. If
you specify WHERE, only rows that satisfy the WHERE search condition are
deleted. If you omit WHERE, then all rows of the specified system table or system
table view are deleted.

You must have DBA privilege, DELETE privilege on the system table, or own the
system table to use this statement. If the target is a view, DELETE privilege is
required on the target base table referenced in the view definition. In StorHouse,
the SYSADM account owns the system tables.

Format

DELETE FROM [owner.[{table_name | view_name}
[WHERE condition]

Argument Description

owner. (optional) Account ID of the owner of the system table or system
table view.

table_name (required if view_name is omitted) Name of the system table.

view_name (required if table_name is omitted) Name of the system table view.

condition (optional) Predicate that limits the range of rows deleted. If you

omit the condition, StorHouse/RM deletes all rows in the specified
system table or system table view. See Chapter 5, “StorHouse
SQL Predicates,” for additional information about predicates.

4-44 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
DELETE

Example

The following DELETE statement deletes the row that contains the account ID
USER1 from the SYSSMUSERS system table.

DELETE FROM SYSADM.SYSSMUSERS
WHERE ACCOUNTID='USER1'

StorHouse SQL Reference Manual 4-45

FileTek Proprietary and Confidential

StorHouse SQL statements
DESCRIBE

DESCRIBE

DESCRIBE provides information about input or output host variables in an SQL
statement. The statement has two formats: DESCRIBE BIND VARIABLES and
DESCRIBE SELECT LIST.

DESCRIBE BIND VARIABLES

DESCRIBE BIND VARIABLES describes the number of input host variables in an
SQL statement and stores that number in an input SQLDA. You execute
DESCRIBE BIND VARIABLES after you prepare the SQL statement and before
you execute it or open the corresponding cursor. Use the following form of
OPEN with DESCRIBE BIND VARIABLES:

EXEC SQL
OPEN cursor_name USING DESCRIPTOR input_sglda_pointer

Format

EXEC SQL
DESCRIBE BIND VARIABLES FOR statement_name
INTO input_sqlda_pointer

Argument Description

statement_name (required) Statement identifier of the prepared SQL statement
whose variables are being described.

input_sglda_pointer (required) Pointer to the input SQLDA that will contain the
number of input host variables in the select list.

4-46 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
DESCRIBE

The following example describes the input host variables for a dynamic SELECT
statement into an input SQLDA (isqgldaptr is the pointer to this SQLDA):

Example

EXEC SQL
DESCRIBE BIND VARIABLES FOR dynstmt INTO isqgldaptr ;

DESCRIBE SELECT LIST

DESCRIBE SELECT LIST describes the output variables in a SELECT statement
and stores the information in an output SQLDA. You execute DESCRIBE
SELECT LIST after you open the cursor for the associated SQL statement and
before you issue a FETCH for the corresponding cursor.

DESCRIBE SELECT LIST stores the following information about output items in
an SQLDA:

= Number of output items that are returned

= Data type of each output item

= Length of each output item

= Precision value for DECIMAL or NUMERIC output item
= Scale value for each DECIMAL or NUMERIC output item
= Null value indicator for each output item

= Name of each item in the select list

StorHouse SQL Reference Manual 4-47

FileTek Proprietary and Confidential

StorHouse SQL statements
DESCRIBE

Format

EXEC SQL
DESCRIBE SELECT LIST FOR statement_name
INTO output_sqlda_pointer

Argument Description

statement_name (required) Statement identifier of the prepared SQL statement
whose variables are being described.

output_sqglda_pointer (required) Pointer to the output SQLDA that will contain the
number of output host variables, their data types, and column
lengths.

Example

The following example describes a select list for a dynamic SQL statement into an
output SQLDA (osgldaptr is the pointer to this SQLDA):

EXEC SQL
DESCRIBE SELECT LIST FOR dynstmt INTO osqldaptr ;

4-48 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

DISCONNECT

DISCONNECT

DISCONNECT terminates the connection between a program and a StorHouse
database. You can terminate a specific connection, the current connection, or all
established connections.

Format

EXEC SQL
DISCONNECT {connection_name | ALL | CURRENT }

Argument Description

connection_name (required when ALL or CURRENT is omitted) Disconnects from a
specific connection, expressed as a character literal or a host
variable.

ALL (required when connection_name or CURRENT is omitted)
Disconnects from all established connections.

CURRENT (required when connection_name or ALL is omitted) Disconnects
from the current connection.

Examples

= The following example terminates the connection established by the conn_2
connect string:

EXEC SQL
DISCONNECT ‘conn_2’ ;

= The following example terminates all connections:

EXEC SQL
DISCONNECT ALL ;

StorHouse SQL Reference Manual 4-49

FileTek Proprietary and Confidential

4 StorHouse SQL statements
DROP INDEX

DROP INDEX

DROP INDEX deletes an index from the specified user table. You can delete an
index if you own the user table, use the SYSADM account, or have one of the
following privileges:

= DBA
= RESOURCE
= INDEX privilege on the user table

Note the following:

= If the index is a value or hash index, this statement removes all index files
(StorHouse primary files) for all corresponding segments.

» If the index is a range index, this statement removes all index entries for all
corresponding segments from the range index system tables.

= You cannot use a ROLLBACK WORK statement to undo a DROP INDEX
statement.

Format

DROP INDEX index_name [ON [owner.] table_name]

Argument Description

index_name (required) Name of the index that you want to remove.

owner. (optional) Account ID of the owner of the table to which the index
belongs. You must have DBA privilege to drop an index owned by
another account.

table_name (optional) Name of the table to which the index belongs.

4-50 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
DROP INDEX

Example

The following DROP INDEX statement removes the CUSTINDEX index on the
CUSTOMER table from the current database.

DROP INDEX CUSTINDEX ON CUSTOMER

StorHouse SQL Reference Manual 4-51

FileTek Proprietary and Confidential

4 StorHouse SQL statements
DROP SYNONYM

DROP SYNONYM

DROP SYNONYM removes the specified synonym. You must have DBA privilege
or own the synonym to drop a private synonym. DBA privilege is required to
drop a public synonym.

Note: You cannot use a ROLLBACK WORK statement to undo a DROP
SYNONYM statement.

Format

DROP [PUBLIC] SYNONYM synonym

Argument Description

PUBLIC (optional) Indicates that you are dropping a public synonym. If you
omit PUBLIC, StorHouse/RM assumes you want to remove a
private synonym.

synonym (required) Name of the synonym you want to remove.

Example

The following DROP SYNONYM statement removes a private synonym named
CUSTOMER.

DROP SYNONYM CUSTOMER

4-52 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
DROP TABLE

DROP TABLE

DROP TABLE removes the specified user table from the current database. You
must have DBA privilege or own the user table to use DROP TABLE. When you
drop a user table, StorHouse/RM also drops any associated indexes and privileges
and marks the StorHouse file for deletion. StorHouse/RM does not automatically
drop any views dependent on the table, but they do become invalid.

Note: You cannot use a ROLLBACK WORK statement to undo a DROP TABLE
statement.

Format

DROP TABLE [owner.]table_name

Argument Description

owner. (optional) Account ID of the owner of the table to be dropped. You
must have DBA privilege to drop a table owned by another
account.
table_name (required) Name of the table to be removed.
Example

The following DROP TABLE statement removes the CUSTOMER user table from
the current database.

DROP TABLE CUSTOMER

StorHouse SQL Reference Manual 4-53

FileTek Proprietary and Confidential
4 StorHouse SQL statements
DROP TABLE SPACE

DROP TABLE SPACE

DROP TABLE SPACE removes an existing user tablespace from the current
database. You must have DBA privilege to drop a user tablespace. Note the
following:

= Before dropping a user tablespace, you must drop all user tables in that user
tablespace. When you drop a user table, StorHouse/RM automatically drops
the indexes associated with the user table.

= Dropping a user tablespace drops all subspaces.

= You cannot use a ROLLBACK WORK statement to undo a DROP TABLE
SPACE statement.

= You cannot drop system and temporary tablespaces.

= TABLE SPACE can be one or two words.

Format

DROP TABLE SPACE tablespace_name

Argument Description

tablespace_name (required) Name of the user tablespace to be dropped. You
must specify an existing tablespace name within the current
database.

4-54 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
DROP TABLE SPACE

Example

The following DROP TABLE SPACE statement drops the BILL98 tablespace from
the current database.

DROP TABLE SPACE BILL98

StorHouse SQL Reference Manual 4-55

FileTek Proprietary and Confidential

4 StorHouse SQL statements
DROP VIEW

DROP VIEW

DROP VIEW removes the specified view from the current database. You must
have DBA privilege or own the view to use DROP VIEW. When you drop a view,
StorHouse/RM does not automatically drop dependent views; instead, it makes
them invalid.

Note: You cannot use a ROLLBACK WORK statement to undo a DROP VIEW
statement.

Format

DROP VIEW [owner.]view_nhame

Argument Description

owner. (optional) Account ID of the owner of the view. You must have DBA
privilege to drop a view owned by another account.

view_name (required) Name of the view to be removed.

Example

The following DROP VIEW statement removes a view named NEWCUSTOMERS
from the current database.

DROP VIEW NEWCUSTOMERS

4-56 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

EXECUTE

StorHouse SQL statements 4
EXECUTE

EXECUTE executes a prepared (dynamic) non-SELECT SQL statement. To use
EXECUTE, you must have the required privileges to execute the prepared SQL
statement. Note that:

You must always PREPARE and EXECUTE an SQL statement within the same
transaction.

You cannot specify output host variables on EXECUTE.

You can execute a prepared SQL statement one or more times with different
host variables by repeating calls to EXECUTE within the same transaction.

EXECUTE has two optional clauses:

USING :host_variable [:indicator_variable] — Specifies input host variables and
input indicator variables. Use this clause when your application knows the
number of host and indicator variables and their data types at compile time.
Specify host variable names in the same order as their associated host variable
markers appear in the prepared SQL statement you are executing. See
“PREPARE” on page 4-75 for more information about host variable markers.

USING DESCRIPTOR input_sglda_pointer — Specifies information about input
host variables that are allocated at runtime. Use this clause when the number
of input host variables and their data types are unknown until runtime.

StorHouse SQL Reference Manual 4-57

FileTek Proprietary and Confidential

StorHouse SQL statements
EXECUTE

Format

EXEC SQL
EXECUTE statement_name
[USING { :host_variable [:indicator_variable]
[, :host_variable [:indicator_variable] ...
| DESCRIPTOR input_sqglda_pointer }]

Argument Description

statement_name (required) Statement identifier assigned by PREPARE.
This identifier specifies the SQL statement to be executed.

USING (required only when statement_name contains input host
variables that are declared in your program’s Declare
Section) USING specifies:

:host_variable (required with USING) Name of an input host variable in
statement_name.

:indicator_variable (optional) Name of the input indicator variable that is
associated with the preceding input host variable.

USING DESCRIPTOR (required only when statement_name contains input host
variables that are allocated at runtime) USING
DESCRIPTOR specifies:

input_sglda_pointer (required with USING DESCRIPTOR) Pointer to the
SQLDA that contains information about the input host
variables in statement_name.

4-58 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
EXECUTE

Examples

The following example deletes a row in the sysadm.syssmusers system table.
The host variable in the USING clause is :accountid. The program declares this
variable in the Declare Section. The associated host variable marker for
:accountid is :account_id_marker, which appears in the SQL statement string
sql_string.

EXEC SQL BEGIN DECLARE SECTION ;
char sqgl_string [256] ;

char account_id [12] ;
EXEC SQL END DECLARE SECTION ;

strcpy (sqgl_string, "DELETE FROM sysadm.syssmusers WHERE
accountid = :account_id_marker") ;
EXEC SQL PREPARE stmtl FROM :sql_string ;

EXEC SQL EXECUTE stmtl USING :account_id ;

The following example uses the USING DESCRIPTOR clause to identify the
pointer to the SQLDA that contains information about input host variables:

EXEC SQL BEGIN DECLARE SECTION ;
char stmt [256] ;
EXEC SQL END DECLARE SECTION ;

EXEC SQL PREPARE stmtid FROM :stmt ;
EXEC SQL EXECUTE stmt USING DESCRIPTOR sgldaptr ;

StorHouse SQL Reference Manual 4-59

FileTek Proprietary and Confidential

StorHouse SQL statements
EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE prepares and executes—in one step—an SQL statement
represented as a statement string or host variable. It parses the specified statement
string and reports any errors in the SQLCA. To use EXECUTE IMMEDIATE, you
must have the required privileges to execute the associated SQL statement. Note
the following:

= EXECUTE IMMEDIATE can only be embedded in an ESQL application
program. It is an executable statement that cannot be prepared.

= If you execute the same SQL statement more than once, PREPARE and
EXECUTE are more efficient than EXECUTE IMMEDIATE.

Format

EXEC SQL
EXECUTE IMMEDIATE { :host_variable | statement_string }

Argument Description

:host_variable (required if statement_string is omitted) Name of the host variable
that specifies the SQL statement to be prepared and executed.

statement_string (required if :host_variable is omitted) Character string format of the
SQL statement to be prepared and executed. The statement string
must:

» Be enclosed in quotes
= Not contain host variable references or parameter markers
» Not start with EXEC SQL

= Not terminate with a semicolon

4-60 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
EXECUTE IMMEDIATE

Example

The following example deletes a row in the syssmusers system table when the
accountid column equals the character literal user:

EXEC SQL
EXECUTE IMMEDIATE
“DELETE FROM sysadm.syssmusers WHERE accountid = ‘userl™ ;

StorHouse SQL Reference Manual 4-61

FileTek Proprietary and Confidential

4 StorHouse SQL statements
FETCH

FETCH

FETCH retrieves the result set (active set) for queries that return more than one
row. It moves the cursor to the next row of the active set and retrieves the column
values of the current row of the active set into specified host variables or the
output SQLDA. You must open a cursor for a SELECT statement before you
execute a FETCH for that cursor.

ESQL positions the cursor as follows:

= The first FETCH after an OPEN cursor positions the cursor at the first row in
the result set. The first row then becomes the current row.

= Subsequent FETCH operations advance the cursor position one row in the
active set, making that row the current row.

= You can move the cursor forward in the active set only by executing
subsequent FETCH statements.

= You can move the cursor to the beginning of the active set only by closing and
then reopening the cursor.

FETCH has two formats: INTO and USING DESCRIPTOR. Use the INTO clause
if the statement contains known output host variables. Use the USING
DESCRIPTOR clause if you are using an SQLDA.

If the cursor is positioned on the last row of the active set or if the active set does
not contain any rows, FETCH returns status code 100 in the SQLCA. This
indicates that there are no more rows to be fetched or the SQL_ NOT_FOUND
condition. Upon successful execution, FETCH returns the cumulative number of
rows fetched so far for a given cursor since the last open in the SQLCA field
sqlerrd[8].

You can fetch multiple rows in one FETCH call by using ESQL array variables in
the INTO clause. In this case, FETCH returns status code 100 in the SQLCA
when it reaches the end of the active set, even if the current execution of FETCH

4-62 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

FETCH

returns one or more rows. When you use ESQL array variables with FETCH,
ESQL automatically sets the argument tpe_size in the C structure that represents
the array to the number of rows that were actually fetched. If you use C instead
of SQL to fetch, you must manually set tpe_size to the number of rows that were
fetched.

Format

EXEC SQL
FETCH cursor_name
{ INTO :host_variable [:indicator_variable]
[,:host_variable [:indicator_variable] |...
| USING DESCRIPTOR output_sqglda_pointer }

Argument Description

cursor_name (required) Name of the cursor associated with the prepared
SELECT statement.

:host_variable (required with INTO) Name of the output host variable that will
contain a column value from the active set.

:indicator_variable (optional) Name of the output indicator variable associated with
the preceding host variable.

output_sqlda_pointer (required with USING DESCRIPTOR) Pointer to the SQLDA
that defines storage areas for the output host variables.

StorHouse SQL Reference Manual 4-63

FileTek Proprietary and Confidential
4 StorHouse SQL statements
FETCH

Examples

= The following example fetches the current row in the active set into the
output host variables cust_no_v, name_v, street_v, city v, and state_v:

EXEC SQL BEGIN DECLARE SECTION ;
long cust_no_v;
char name_v [20] ;
char street_v [40] ;
char city_v [10] ;
char state_v [2] ;
EXEC SQL END DECLARE SECTION ;

EXEC SQL OPEN cust_cur ;
for (i)
{
EXEC SQL
FETCH cust_cur
INTO :cust_no_v, :name_yv, :street v, :city v, :state v ;

= The following example uses the output SQLDA (sgldaptr is the pointer to this
SQLDA) to obtain information about the output host variables:

EXEC SQL
FETCH cust_cur USING DESCRIPTOR sqldaptr ;

4-64 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
FETCH

The following example declares a locator variable named hv_prod_locator for
CLOB data:

EXEC SQL BEGIN DECLARE SECTION ;
CLOB_LOCATOR hv_prod_locator ;
CLOB(2M)hv_product ;

EXEC SQL END DECLARE SECTION ;

Then declares and opens a cursor called my_cursor to execute the query:

EXEC SQL
DECLARE my_cursor CURSOR FOR
SELECT ProdDescr
FROM ProdInfo
WHERE ProdName LIKE “%Wrench%" ;
EXEC SQL
OPEN my_cursor ;

And finally associates the result with the locator variable:
EXEC SQL

FETCH my_cursor
INTO :hv_prod_locator ;

StorHouse SQL Reference Manual 4-65

FileTek Proprietary and Confidential
4 StorHouse SQL statements
FREE LOCATOR

FREE LOCATOR

FREE LOCATOR releases one or more locator variables before the end of a
transaction, freeing the server storage used by the locator variable. If you do not
explicitly release a locator variable, StorHouse/RM releases it at the end of the
transaction. You can continue to use a locator variable as long as it has not been
released with FREE LOCATOR or the transaction has not ended.

Format

EXEC SQL
FREE LOCATOR :locator_variable [, :locator_variable]...

Argument Description

:locator_variable (required) Name(s) of one or more locator variables to be
released.

Example

The following example releases the LOB locators called :product_locator and
:product_desc_locator.

EXEC SQL
FREE LOCATOR :product_locator, :product_desc_locator ;

4-66 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

GRANT

StorHouse SQL statements 4
GRANT

GRANT assigns database or database component privileges to the specified
StorHouse accounts.

Note: You cannot use a ROLLBACK WORK statement to undo a GRANT
statement.

Format

The GRANT statement has two formats. The first format grants database
privileges to specific accounts. You must have DBA privilege to use this format.

GRANT {RESOURCE, DBA, SCAN}
TO account_id [,account_id]...

The second format grants privileges to accounts for tables and views in the
database. You must own the tables and views or have DBA privilege to use this
format.

GRANT {privilege [,privilege]... | ALL}

ON {table_name | view_name}

TO {account_id [,account_id]... | PUBLIC}
[WITH GRANT OPTION]

where privilege is defined as:

{DELETE | INDEX | INSERT | SELECT
| UPDATE [(column [,column]...)]}

StorHouse SQL Reference Manual 4-67

4 StorHouse SQL statements

FileTek Proprietary and Confidential

GRANT

Argument
RESOURCE

Description

(required if you omit DBA and SCAN) Grants RESOURCE
privilege, which enables the specified account(s) to create
indexes (on tables the account owns), user tables, and views.

DBA

(required if you omit RESOURCE and SCAN) Grants DBA
privilege, which enables the specified account(s) to access
and modify any table or view in the database. DBA privilege
includes all the privileges provided by the RESOURCE
privilege but does not include SCAN privilege.

SCAN

(required if you omit RESOURCE and DBA) Grants SCAN
privilege, which enables the specified account(s) to execute
queries that scan all rows of a user table (full table scans).

privilege

DELETE

INDEX

INSERT

SELECT

UPDATE

(required if ALL is omitted) Type of privilege(s) you are
granting. Valid values are:

Grants DELETE privilege, which enables the specified
account(s) to use DELETE on the specified system table or
system table view.

Grants INDEX privilege, which enables the specified
account(s) to create an index on the specified table.

Grants INSERT privilege, which enables the specified
account(s) to insert rows in the specified system table or load
data into the specified user table/view.

Grants SELECT privilege, which enables the specified
account(s) to perform queries on the specified table/view.

Grants UPDATE privilege, which enables the specified
account(s) to use UPDATE on the specified system table or
system table view. You may limit this privilege to specified
columns of the system table/view.

column

(required) Name of the column for which UPDATE privilege is
granted.

ALL

(required if an individual privilege is omitted) Grants DELETE,
INDEX, INSERT, SELECT, and UPDATE privileges.

table_name

(required if view_name is not specified) Name of the table on
which you are granting the privilege(s).

view_name

4-68 StorHouse SQL Reference Manual

(required if table_name is not specified) Name of the view on
which you are granting the privilege(s).

FileTek Proprietary and Confidential

StorHouse SQL statements 4

GRANT
Argument Description
account_id (required if PUBLIC is omitted) Account ID of the user to
receive the new privilege(s).
PUBLIC (required if account_id is omitted) Grants the specified
privileges on the table to every valid StorHouse account.
WITH GRANT (optional) Allows the specified account(s) to grant their access
OPTION rights or a subset of their rights to other accounts.
Examples

The following GRANT statement grants DBA privilege to two accounts:
USER1 and USER2.

GRANT DBA
TO USER1, USER2

The following GRANT statement grants INDEX privilege on a table named
CUST_VIEW to an account named DBUSER1.

GRANT INDEX

ON CUST_VIEW
TO DBUSER1

StorHouse SQL Reference Manual 4-69

FileTek Proprietary and Confidential

StorHouse SQL statements

INSERT

INSERT

INSERT inserts new rows into the specified system table or system table view. You
cannot insert rows into user tables. You specify the values for the inserted rows.
You must have DBA privilege, own the system table, or have INSERT privilege on
the system table to use INSERT. To specify a query expression, you must have
DBA privilege or have SELECT privilege on all the tables/views referred to in the
query expression.

Format

INSERT INTO [owner.[{table_name | view_name}
[(column_name [,column_name]...)]

{VALUES (value [,value]...) |

guery_expression}

Argument Description

owner. (optional) Account ID of the owner of the system table or system
table view. If you are not the owner, you must have DBA privilege
or INSERT privilege to insert new rows.

table_name (required for system table inserts) Name of the system table.

view_name (required for system view inserts) Name of the system table view.

4-70 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
INSERT

Argument Description

column_name (optional or required depending on other specifications) Name of
the column to receive the inserted values.

» If you specify one or more column names, you must supply
values for those columns only. In this case, value specification
must match the order of column specification. StorHouse/RM
places NULL values in the other columns of the inserted row,
provided the column definition allows NULL values and no
default definitions exist for the columns.

If a default definition exists for a column and the column is not
included in the optional list, StorHouse/RM places the default
value in the column.

If you omit column name, you must specify values for all
columns. In this case, value specification order must match the
order of column specification when the table was created.

value (required) Actual values you want to insert. You can insert only
one row of specified values at a time.

guery_expression (optional) SELECT statement that selects values from another
table or view.

Example

The following INSERT statement inserts a new account 1D called DBUSER1 and a
default user tablespace called USER1TS in the SYSSMUSERS system table.

INSERT INTO SYSADM.SYSSMUSERS (ACCOUNTID, DEFAULT_TS)
VALUES ('DBUSERY’, ‘USERI1TS’)

StorHouse SQL Reference Manual 4-71

FileTek Proprietary and Confidential

4 StorHouse SQL statements
OPEN

OPEN

OPEN executes the query that is associated with the specified cursor and
identifies the rows in the result set (also called the active set). OPEN places the
cursor in an open state just before the first row of the active set. Once the cursor
is opened, the active set does not change, and host variables are not re-examined.
If you subsequently change a host variable value and need to determine a new
active set, you must close and reopen the cursor. OPEN requires DBA privilege or
SELECT privilege on all tables/views specified in the associated SELECT
statement.

OPEN has an optional USING clause for specifying host variables. The USING
clause has two formats:

= USING :host_variable [:indicator_variable] — Provides information about host
variables in the prepared query. Specify host variable names in the USING
clause in exactly the same order as their associated host variable markers are
specified in the SQL statement associated with the same cursor. See
“PREPARE” on page 4-75 for more information about host variable markers.

= USING DESCRIPTOR input_sglda_pointer — Provides information about host
variables that are allocated at runtime.

Note the following:
= You cannot open a cursor that is already in the open state.

= DECLARE and OPEN for the same cursor must occur within the same
transaction.

= If the DECLARE statement contains references to host variables, the

associated OPEN statement must occur within the same scope as that of the
referenced variables.

4-72 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
OPEN

Format

EXEC SQL
OPEN cursor_name
[{ USING :host_variable [:indicator_variable]
[,:host_variable [:indicator_variable] ...
| USING DESCRIPTOR input_sqlda_pointer } |

Argument Description

cursor_name (required) Name of the cursor to be opened.

USING (required only if the prepared SQL statement associated with
cursor_name contains input host variables that are declared
in your program’s Declare Section) USING specifies:

:host_variable (required with USING) Name of an input host variable in the
prepared SQL statement associated with cursor_name.

:indicator_variable (optional) Name of the input indicator variable that is
associated with the preceding input host variable.

USING DESCRIPTOR (required only if the prepared SQL statement associated with
cursor_name contains input host variables that are allocated
at runtime) USING DESCRIPTOR specifies:

input_sglda_pointer (required with USING DESCRIPTOR) A pointer to the
SQLDA that contains information about the input host
variables in the prepared SQL statement associated with
cursor_name.

StorHouse SQL Reference Manual 4-73

FileTek Proprietary and Confidential

4 StorHouse SQL statements
OPEN

Examples

The following example opens the cursor cust_cursor:

EXEC SQL
OPEN cust_cur ;

The following example opens the cursor ord_cur and specifies the input host
variable order_no_v. This input host variable must have been declared in your
program’s Declare Section.

EXEC SQL
OPEN ord_cur USING :order_no_v ;

The following example opens the cursor dyn_cur and specifies a pointer
(sgldaptr) to the input SQLDA that contains information about input host
variables.

EXEC SQL
OPEN dyn_cur USING DESCRIPTOR sqldaptr ;

4-74 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
PREPARE

PREPARE

PREPARE parses an SQL statement for syntax errors and then assigns an identifier
to the statement. The parser returns an error in the SQLCA if the statement
syntax is incorrect. You prepare an SQL statement once and then execute it as
often as necessary within the same transaction. If the current transaction is
committed or rolled back and the SQL statement is to be re-executed, you must
prepare the statement again. PREPARE requires DBA privilege or the privilege to
execute the statement being prepared.

Note: If the prepared statement is a SELECT, use OPEN, FETCH and CLOSE
instead of EXECUTE to obtain the result set.

Format

EXEC SQL
PREPARE statement_name FROM string_variable

where string_variable is defined as:

character_string | :host_variable

Argument Description

statement_name (required) Assigned identifier for the SQL statement represented by
string_variable. Statement_name must be unique within a file.

string_variable (required) String variable (character string or host variable) that
contains the SQL statement being prepared. If you specify a host
variable, you must declare it as a character array in a Declare
Section.

StorHouse SQL Reference Manual 4-75

FileTek Proprietary and Confidential

4 StorHouse SQL statements
PREPARE

Examples

The following example prepares an SQL statement from a character string:

EXEC SQL
PREPARE delstmt FROM ‘delete from sysadm.syssmusers
where accountid=:mkrl’ ;

The following example prepares and executes the SQL statement represented
by the string variable sql_string. The substitution marker :id_marker is a place
holder for the host variable :account_id, which appears in the USING clause.

EXEC SQL BEGIN DECLARE SECTION ;
char sql_string [256] ;
char account_id [12] ;

EXEC SQL END DECLARE SECTION ;

strepy (sqgl_string,
"DELETE FROM sysadm.syssmusers WHERE accountid =
;id_marker") ;

EXEC SQL PREPARE del_acct_stmt FROM :sql_string ;
EXEC SQL EXECUTE del_acct_stmt USING :account_id ;

4-76 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

REVOKE

StorHouse SQL statements 4
REVOKE

REVOKE removes the specified access privileges from the specified StorHouse
accounts in a database. If one account was granted access to a table by several
other accounts, all those other accounts must issue a REVOKE for the account to
lose access to the table. Revoking an account’s access privileges also revokes any
privileges that account may have given to others.

Note: You cannot use a ROLLBACK WORK statement to undo a REVOKE
statement.

Format

The REVOKE statement has two formats. The first format revokes database
privileges from specified accounts. You must have DBA privilege to use this
format.

REVOKE {RESOURCE, DBA, SCAN}
FROM account_id [,account_id]...

The second format revokes various access privileges to tables and views in a
database. To use this format, you must own the tables and views, have DBA
privilege, or have been granted the privileges by another account through the
WITH GRANT OPTION.

REVOKE {privilege [,privilege]... | ALL}
ON {table_name | view_name}
FROM {account_id [,account_id]... | PUBLIC}

where privilege is defined as:

{DELETE | INDEX | INSERT | SELECT
| UPDATE [(column [,column]...)1}

StorHouse SQL Reference Manual 4-77

FileTek Proprietary and Confidential

StorHouse SQL statements
REVOKE

Argument Description

RESOURCE (required if you omit DBA and SCAN) Revokes RESOURCE
privilege.

DBA (required if you omit RESOURCE and SCAN) Revokes DBA
privilege.

SCAN (required if you omit RESOURCE and DBA) Revokes SCAN
privilege.

account_id (required if PUBLIC is omitted) Account ID of the user whose

privilege(s) is being revoked.

privilege (required unless you specify ALL) Type of privilege(s) being
revoked. Valid values are:
DELETE Revokes DELETE privilege.
INDEX Revokes INDEX privilege.
INSERT Revokes INSERT privilege.
SELECT Revokes SELECT privilege.
UPDATE Revokes UPDATE privilege.
column Name of the column for which UPDATE privilege is revoked.
ALL (required unless you specify at least one individual privilege)
Revokes DELETE, INDEX, INSERT, SELECT, and UPDATE
privileges.
table_name (required if view_name not specified) Name of the table from

which you are revoking privileges.

view_name (required if table_name not specified) Name of the view from
which you are revoking privileges.

PUBLIC (required if an account_id is omitted) Revokes the specified
rights on the table or view from every StorHouse account.

4-78 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
REVOKE

Examples

= The following REVOKE statement revokes SCAN privilege from an account
named DBUSER1.

REVOKE SCAN
FROM DBUSER1

= The following REVOKE statement revokes INDEX privilege on a table named
CUST_VIEW from an account named DBUSER?2.

REVOKE INDEX
ON CUST_VIEW
FROM DBUSER?2

StorHouse SQL Reference Manual 4-79

FileTek Proprietary and Confidential

4 StorHouse SQL statements
ROLLBACK WORK

ROLLBACK WORK

ROLLBACK WORK cancels the current transaction and rolls back any database
changes performed during the transaction. Note the following:

= You cannot use ROLLBACK WORK after issuing the following SQL
statements:

— ALTER TABLE SPACE
— CREATE INDEX

— CREATE SYNONYM
— CREATE TABLE

— CREATE TABLE SPACE
— CREATE VIEW

— DROP INDEX

— DROP SYNONYM

— DROP TABLE

— DROP TABLE SPACE
— DROP VIEW

— GRANT

- REVOKE

= All locks held by the transaction are released when the transaction is rolled
back.

= A transaction is automatically rolled back in the event of a hardware failure,
software failure, or lock time-out error.

= Ifan active transaction exists when an ESQL application disconnects from a
database, StorHouse/RM automatically rolls back the transaction.

= Avrollback operation closes all cursors and releases (frees) all LOB locators
opened during the transaction.

4-80 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Format

EXEC SQL
ROLLBACK WORK

Example

StorHouse SQL statements 4
ROLLBACK WORK

The following example cancels the change to the sysadm.syssmusers System

table:

EXEC SQL
UPDATE sysadm.syssmusers
SET default_ts = :def_tbspace
WHERE accountid = :acct_id ;

EXEC SQL
ROLLBACK WORK ;

StorHouse SQL Reference Manual 4-81

FileTek Proprietary and Confidential

4 StorHouse SQL statements
SELECT

SELECT

SELECT retrieves information from one or more tables in a database. The
column names and expressions that follow the SELECT keyword make up your
select list. You can perform a join (see page 4-94) when you specify multiple table
names. You can use set operators to combine two SELECT statements for more
complex queries.

You must have DBA privilege, own the table, or have SELECT privilege on the
table to use SELECT. You cannot execute a query that requires a full table scan
unless you have SELECT privilege on the user table and the database-level SCAN
privilege. SCAN privilege is often provided only on an as needed basis because
full table scans are resource-intensive and can affect system performance.

Note the following:

= Certain types of queries qualify for extractor processing. Refer to the
StorHouse ESQL Manual for more information about the StorHouse extractor.

= LOB columns cannot be used to join two tables, and LOB data types are not
allowed with the following SELECT statement clauses: DISTINCT, ORDER
BY and GROUP BY.

Format

SELECT [ALL | DISTINCT]

{* | expr [column_alias] [, expr [column_alias]]...}

[INTO :host_variable [,:host_variable]...]]

[FROM table_spec [, table_spec]...]

[WHERE condition]

[GROUP BY column_name [,column_name]... [HAVING condition]]

[{UNION | UNION ALL } SELECT..]]

[ORDER BY {expr | position} [ASC | DESC] [, {expr | position} [ASC | DESC]
1]

[FOR {FETCH | READ} ONLY]

4-82 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

SELECT

Argument Description

ALL (optional) Returns all selected rows, including duplicates. If you
omit ALL and DISTINCT, the default is ALL.

DISTINCT (optional) Returns only unique rows. LOB data types are not
allowed with DISTINCT.

* (required if table.column_alias and expr are omitted) Indicates to
select from all columns in the specified table(s).

expr (required if * and column_alias are omitted) Item to be selected
presented as an identifier, function, value, or other valid type of
expression.

column_alias (required if * and expr are omitted) Name of the column to be

selected by the query.

INTO :host variable (required for an embedded SQL query that returns one row)
Clause indicating the name(s) of the host variables that receive
the selected data. The INTO clause, if present, must precede the
FROM clause.

FROM (optional) Clause indicating the table(s) to be accessed and any
join information. If you omit this clause, the select list can contain
only constants and special registers.

WHERE (optional) Clause indicating the search conditions (predicates) to
be used for row selection. If you omit this clause, the query
returns all rows of the specified table (if the user has SCAN
privilege on the user table) or the Cartesian product of all tables
specified in the FROM clause.

GROUP BY (optional) Clause that specifies how to group rows returned by
column_name the query. LOB data types are not allowed with GROUP BY.
HAVING (optional) Clause that applies one or more qualifying conditions

for selected groups.

StorHouse SQL Reference Manual 4-83

FileTek Proprietary and Confidential

StorHouse SQL statements
SELECT

Argument Description

set_operator (optional) Specifies the action to apply on two sets of rows that
are returned by separate queries. The set_operator argument is
preceded and followed by a SELECT statement. You cannot use
set operators in subqueries. Set operators are:

= UNION — Unites the output of two or more queries into a single
set of rows and columns, excluding duplicate rows from the
output.

= UNION ALL — Unites the output of two or more queries into a
single set of rows and columns, including duplicate rows in the
output.

ORDER BY (optional) Clause that specifies the order of the rows selected by
the query. Include ORDER BY to ensure a specific row order in a
result set. LOB data types are not allowed with ORDER BY.

FOR (optional) Clause allowing IBM DB2 programs to work correctly
without changing the SQL.

4-84 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

SELECT

INTO clause

INTO specifies the names of the output host variables to receive the data
retrieved by a static SELECT statement. You can use the INTO clause in a
SELECT statement that returns one row only. If the SELECT statement returns
multiple rows, you must include an INTO clause as part of the FETCH
statement. The INTO clause must precede the FROM clause.

Format

INTO :host_variable [,:host_variable]...

Argument Description

:host_variable (required) Name of the output host variable to contain the resulting
value. The number of output host variables must equal the number
of specified columns.

Examples

= The following SELECT statement selects a row from the customer table where
the cust_no column contains the specified number. The resulting cust_name
value is assigned to output host variable :cust_v.

SELECT cust_name
INTO :cust_v
FROM customer
WHERE cust_no=8973205;

= The following SELECT statement associates the result (a product description)
with the locator variable :hv_prod_locator.

SELECT ProdDescr
INTO :hv_prod_locator
FROM ProdInfo
WHERE ProdName LIKE “%Wrench%" ;

StorHouse SQL Reference Manual 4-85

FileTek Proprietary and Confidential

StorHouse SQL statements
SELECT

FROM clause

FROM specifies the table(s) or view(s) to be accessed as well as any join
specifications. See “Joins” on page 4-94 for more information about joining
tables.

Format

FROM table_spec [, table_spec]...
where table_spec is:

table_reference [correlation] | joined_table

Argument Description

table_reference (required) Name of the table.

correlation (optional) Correlation name for a table participating in a join.
The format is:

[AS] correlation_name

joined_table (optional) Join specification. The format is:

(joined_table) | table_spec {[INNER] | LEFT [OUTER]}
JOIN table_spec ON join_condition

(joined_table) Anything that qualifies as a joined_table can be enclosed in
parentheses and considered as a joined_table itself. For
example:

FROM pilot JOIN (service JOIN plane

ON plane.serial_num = service.serial_num)
ON plane.serial_num = pilot.serial_num

INNER JOIN Join operator that specifies an inner-join operation. When the
join condition is true, the matched rows of the tables are
combined. The unmatched rows are omitted from the result
table. The following operators are valid for inner-join:

= JOIN
= INNER JOIN

4-86 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

Argument Description

LEFT OUTER JOIN Join operator that specifies a left outer-join operation. When
the join condition is true, the matched rows of the tables are
combined (like an inner-join) and the unmatched rows of the
table to the left of the join operator are preserved, combined
with NULL values for the columns in the table to the right of
the join operator. The following operators are valid for outer-
join:

» LEFT JOIN
=« LEFT OUTER JOIN

join_condition Search condition, or predicate, that evaluates to true, false,
or unknown for a given row. You can specify multiple
predicates with logical operators AND and OR. The join
condition cannot contain a subquery.

Example

The following SELECT statement selects all rows from the AGENTS table where
the COMMISSION earned is between 10% and 12% inclusive.

SELECT *

FROM AGENTS
WHERE COMMISSION BETWEEN .10 AND .12

StorHouse SQL Reference Manual 4-87

FileTek Proprietary and Confidential

StorHouse SQL statements
SELECT

WHERE clause

WHERE specifies the restrictions to be applied for row selection.

Format

WHERE condition

Argument Description

condition (required) Condition or predicate that evaluates to true or false for
a given row or group. StorHouse/RM applies the condition to each
row of the result set of the WHERE clause and selects only those
rows that satisfy the condition for the result set. See Chapter 5,
“StorHouse SQL predicates,” for more information about
predicates.

Example

The following SELECT statement selects all rows from the CUSTOMER table
where the CITY is BURLINGTON and STATE i MA.

SELECT *

FROM CUSTOMER
WHERE CITY="BURLINGTON’ AND STATE="MA’

4-88 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

GROUP BY clause

GROUP BY combines groups of rows into summary results. It allows you to
define a subset of values in one column in terms of another column, and then
apply an aggregate function to that subset. When you use GROUP BY, the
SELECT statement select list can contain only those columns specified in
GROUP BY, aggregate functions on any column, or both.

Format

GROUP BY column_name [,column_namel]...

Argument Description

column_name (required) Name of the column(s) used to group the results. The
column can be any data type except BLOB or CLOB.

Example

The following SELECT statement finds each subscriber’s largest telephone bill.
SELECT SUBSCRIBER MAX(AMT)

FROM BILLING
GROUP BY SUBSCRIBER

StorHouse SQL Reference Manual 4-89

FileTek Proprietary and Confidential

StorHouse SQL statements
SELECT

HAVING clause

HAVING applies one or more qualifying conditions to groups specified in the
GROUP BY clause. (HAVING is like a WHERE clause for a GROUP BY clause.) If
HAVING is used without GROUP BY, the implicit group refers to all rows
returned by the SELECT statement WHERE clause.

Format

HAVING condition

Argument Description

condition (required) Compares one aggregate function value with another
aggregate function value or a literal. Arguments specified in a
condition must have a single value per output group. Refer to
Chapter 6, “StorHouse SQL functions,” for more information about
aggregate functions.

Example

The following SELECT statement finds the maximum sales over 5000.00 for each
customer sales representative on each order date.

SELECT CUST_REP, ODATE, MAX(SALES)
FROM ORDERS

GROUP BY CUST_REP,ODATE

HAVING MAX(SALES)>5000.00

4-90 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

SELECT

ORDER BY clause

ORDER BY specifies how to order the rows in a result set. Including ORDER BY
is the only way to ensure the row order of a result set. If you identify only one
column, the rows are ordered by the values of that column. If you identify
multiple columns, the rows are ordered by the values of the first specified
column, then by the values of the second, and so on. A NULL value is considered
lower than all other values.

Note: If a query contains set operators, you must specify only a column position
in the ORDER BY clause, rather than a column name.

Format

[ORDER BY {expr | position} [ASC | DESC] [,{expr | position}]ASC | DESC]]...

Argument Description

expr (required) Item used to order rows in the result set, presented as
an identifier, function, value, or other valid type of expression. The
expression can be any data type except BLOB or CLOB.

position (required if expr is omitted) Integer that represents the placement
of a column or expression in the select list.

ASC (optional) Specifies an ascending order for the returned rows. If
ASC and DESC are omitted, the default is ASC.

DESC (optional) Specifies a descending order for the returned rows.

StorHouse SQL Reference Manual 4-91

FileTek Proprietary and Confidential

4 StorHouse SQL statements
SELECT

Examples

The following SELECT statement selects name and address information from
the CUSTOMER table and returns the results in ascending order according to
NAME.

SELECT NAME, STREET, CITY, STATE, ZIP
FROM CUSTOMER
ORDER BY NAME

The following SELECT statement selects first names, last names, and
completed sales from the SALES_EAST and SALES_WEST tables. The
statement returns the results in ascending order by LAST _NAME.

SELECT FIRST_NAME, LAST_NAME, COMPLETED_SALES
FROM SALES_EAST

UNION

SELECT FIRST_NAME, LAST_NAME, COMPLETED_SALES
FROM SALES_WEST

ORDER BY 2

4-92 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

FOR clause

StorHouse SQL supports the FOR clause in the SELECT statement syntax only
for compatibility with IBM DB2 SQL. DB2 programs that use a SELECT
statement with the FOR clause to access StorHouse database tables will be parsed
correctly. The FOR clause has no effect on SELECT statement execution, even
when a system table is included in the SELECT statement table list. The FOR
clause must follow the FROM, WHERE, GROUP BY, HAVING, and ORDER BY
clauses and any set operators in the SELECT statement syntax.

Format

[FOR {FETCH | READ} ONLY]

StorHouse SQL Reference Manual 4-93

FileTek Proprietary and Confidential

4 StorHouse SQL statements
SELECT

Joins

A join is a SELECT statement that combines data in multiple tables or views or
within a table or view. StorHouse/RM supports the ANSI SQL join syntax. You
write queries with explicit join operations in the FROM clause of a SELECT
statement, using an ON clause to specify the join condition. StorHouse/RM
currently supports inner-join and left outer-join operations.

Basic guidelines for writing queries are as follows:

You can perform multiple join operations in the same query, for instance,
multiple inner-join operations, multiple outer-join operations, or a
combination of the two.

Any column referenced in a join condition must be a column in one of the
tables of the associated join operation.

Table order is significant for outer-join operations, insignificant for inner-join
operations.

For left outer-joins, the table referenced to the left of the join operator is the
preserved table.

You can use parentheses to specify the sequence to perform join operations.

The WHERE clause has a different effect on query results from the ON clause.

The next several sections contain examples that illustrate these basic guidelines.

4-94 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

Sample tables

The join examples in this document reference the following tables.

Pilot table

firstname lastname serial_num
John Smith
Mary Jones DC1001
Brad Knickerbocker DC1002
Lucy Hayes BOE001
Rutherford Hayes BOEO002

Plane table
DC1001 DC 10
DC1002 DC 10
BOE001 Boeing 747
BOE002 Boeing 737
FOKO001 Fokker

Service table

serial_num descr

DC1002 Oil Change

FOKO001 New Propeller

StorHouse SQL Reference Manual 4-95

FileTek Proprietary and Confidential
4 StorHouse SQL statements
SELECT

Performing multiple inner-join operations

StorHouse/RM supports queries with multiple join operations. Joins are
processed in order based on the position of the join condition (ON clause). You
can also use parentheses (see the example on page 4-99) to specify join order.

For example, the following query, which joins the Service, Plane, and Pilot tables,
locates the names of the pilots to be notified that their planes require service.

SELECT firstname, lastname, plane.serial_num
FROM service INNER JOIN plane ON service.serial_num = plane.serial_num
INNER JOIN pilot ON plane.serial_num = pilot.serial_num

This query consists of two inner-join operations. The first inner-join operation
joins the Service table and the Plane table on the serial_num column. The ON
clause for this inner-join operation may only reference the columns in the
participating tables. In other words, referencing a column in the Pilot table
would be invalid because the Pilot table is outside the scope of this ON clause.
The result of the first inner-join is this intermediate table:

Intermediate table joining Service and Plane

serial_num descr serial_num descr
DC1002 Oil Change DC1002 DC 10
FOKO001 New Propeller FOKO001 Fokker

The second inner-join operation joins the intermediate table with the Pilot table.
The scope of the second ON clause includes references to any columns in the
Service table and the Plane table on the one side of the INNER JOIN operator
and any columns in the Pilot table on the other side of the join operator. The
result of the second inner-join operation is this result table:

Result of inner-join operations

firsthame lasthame serial_num
Brad Knickerbocker DC1002

4-96 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

A left outer-join operation includes all matched rows as well as unmatched rows,
preserving the unmatched rows in the left table (the table before the join
operator) by adding NULL values for the right table columns (the table after the
join operator). A left outer-join means that the preserved table appears to the left
of the join operator.

Performing a left outer-join

For example, the following query determines pilots and their aircraft assignments
as well as pilots without aircraft assignments.

SELECT firstname, lastname, plane.serial_numserial_num, descr
FROM pilot LEFT OUTER JOIN plane
ON pilot.serial_num = plane.serial_num

In this example, the result table contains all rows from the Pilot table and NULL

values for unmatched rows in the Plane table. All pilots, except John Smith, have
plane assignments.

Result of left outer-join

firstname lastname serial_ num descr
John Smith

Mary Jones DC1001 DC 10
Brad Knickerbocker DC1002 DC 10
Lucy Hayes BOEOO1 Boeing 747
Rutherford Hayes BOEO002 Boeing 737

StorHouse SQL Reference Manual 4-97

FileTek Proprietary and Confidential

StorHouse SQL statements
SELECT

Changing the table order

For an inner-join operation, the order of the table references in the FROM clause
is insignificant. You can specify the tables in any order and the final result set is
the same.

For example, both of the following inner-join operations produce the same
result:

SELECT firstname, lastname, plane.serial_num
FROM service INNER JOIN plane ON service.serial_num = plane.serial_num
INNER JOIN pilot ON plane.serial_num = pilot.serial_num

SELECT firstname, lastname, plane.serial_num
FROM pilot INNER JOIN service ON pilot.serial_num = service.serial_num
INNER JOIN plane ON plane.serial_num = pilot.serial_num

Result of both inner-join operations

firsthame lasthame serial_num
Brad Knickerbocker DC1002

For an outer-join, however, the order in which tables are joined and the order in
which they appear in the FROM clause is significant. The results differ depending
on the order in which the tables are joined. For example, the following outer-join
operation produces a result table with two rows:

SELECT firstname, lastname, plane.serial_num, service.descr
FROM service LEFT JOIN plane ON service.serial_num = plane.serial_num
LEFT JOIN pilot ON pilot.serial_num = plane.serial_num

Result of outer-join on Service, Plane, and Pilot

firstname lastname serial_ num descr
Mary Jones DC1001 QOil Change
FOKO001 New Propeller

4-98 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

SELECT

Changing the table order in the FROM clause produces a different result:

SELECT firstname, lastname, plane.serial_num, service.descr
FROM pilot LEFT JOIN plane ON pilot.serial_num = plane.serial_num
LEFT JOIN service ON service.serial_num = pilot.serial_num

Result of outer-join on Pilot, Plane, and Service

firsthame lasthame serial_ nhum descr
John Smith

Mary Jones DC1001 Oil Change
Brad Knickerbocker DC1002

Lucy Hayes BOEOO1

Rutherford Hayes BOEO002

Using parentheses to specify join order

You can use parentheses to specify precedence or to improve the readability of the
join operations. For example, the inner-join operation within parentheses is
processed before the one outside of the parentheses:

SELECT firstname, lastname, plane.serial_num

FROM pilot JOIN

(service JOIN plane ON plane.serial_num = service.serial_num)
ON plane.serial_num = pilot.serial_num

Another way to think of this in this example is:

pilot JOIN intermediate_table

where intermediate_table is the result of the inner-join on the Service and Plane
tables. The ON clause within the parentheses applies to the inner-join of Service

and Plane. Only columns from these two tables are in the scope of the join
condition for this ON clause. The scope of the ON clause outside the parentheses

StorHouse SQL Reference Manual 4-99

FileTek Proprietary and Confidential

StorHouse SQL statements

SELECT

may include references to columns in the Pilot table and columns in the tables
within the parentheses.

Combining inner-join and outer-join operations

You can combine inner-join with outer-join operations in the same query. For
example:

SELECT firstname, lastname, plane.serial_num, service.descr
FROM pilot INNER JOIN plane ON pilot.serial_num = plane.serial_num
LEFT JOIN service ON service.serial_num = pilot.serial_num

Here’s the intermediate result from the inner-join on Pilot and Plane:

Intermediate table of inner-join on Pilot and Plane

firsthame lasthame serial_num
Mary Jones DC1001
Brad Knickerbocker DC1002
Lucy Hayes BOEO001
Rutherford Hayes BOEO002

Here’s the result of the left outer-join with the intermediate table and Service.

Result of the join

firstname lastname serial_ num descr
Mary Jones DC1001 Oil Change
Brad Knickerbocker DC1002

Lucy Hayes BOE001

Rutherford Hayes BOEO002

4-100 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SELECT

A WHERE clause, which is optional and additional to the ON clause, affects the
final result set. The ON clause specifies the join condition. The WHERE clause
further restricts the result of the final joined table. The ON clause must reference
only the tables in the join condition. The WHERE clause can reference any table
in the query.

Using a WHERE clause with ajoin

For example, the following outer-join operations produce different results. The
first query contains an ON clause with two predicates, no WHERE clause:

SELECT * FROM pilot LEFT OUTER JOIN plane
ON pilot.serial_num = plane.serial_num AND plane.descr="DC 10’

The second query contains an ON clause with one predicate and a WHERE
clause:

SELECT * FROM pilot LEFT OUTER JOIN plane
ON pilot.serial_num = plane.serial_num
WHERE plane.descr="DC 10’

Explanation of query 1. The first step in an outer-join operation is to combine
the matching rows, that is, to perform an inner-join. Then the preserved rows are
added to the final result table. In the first query, the join condition (ON clause)
consists of two predicates.

SELECT * FROM pilot LEFT OUTER JOIN plane
ON pilot.serial_num = plane.serial_num AND plane.descr="DC 10’

StorHouse SQL Reference Manual 4-101

FileTek Proprietary and Confidential

StorHouse SQL statements

SELECT

Only two rows in both tables match the join condition (serial_nums match and
descr iS DC 10).

Intermediate table of inner-join between Pilot and Plane

firsthame lasthame serial_ hum serial hum descr
Mary Jones DC1001 DC1001 DC 10
Brad Knickerbocker DC1002 DC1002 DC 10

For an outer-join, the table to the left of the join operator is the preserved table.
In this example, the Pilot table is the preserved table. These three unmatched
rows in the Pilot table will be preserved in the final result table:

Unmatched rows in the Pilot table

firstname lastname serial_num
John Smith

Lucy Hayes BOEOO1
Rutherford Hayes BOEO002

The result table is a union of the intermediate table and the unmatched rows in
the Pilot table along with NULL values for the columns in the Plane table.

Result table of query 1

firsthame lasthame serial_ nhum serial nhum descr
Lucy Hayes BOEOO1

Rutherford Hayes BOEO002

Mary Jones DC1001 DC1001 DC 10
Brad Knickerbocker DC1002 DC1002 DC 10
John Smith

4-102 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4

SELECT

Explanation of query 2. In the second query, the join condition (ON clause)
consists of one predicate.

SELECT * FROM pilot LEFT OUTER JOIN plane
ON pilot.serial_num = plane.serial_num
WHERE plane.descr="DC 10’

Four rows in both tables match the join condition.

Intermediate table of the inner-join between Pilot and Plane

firsthame lasthame serial_num serial_ num descr
Lucy Hayes BOEOO1 BOEOO1 Boeing 747
Rutherford Hayes BOE002 BOE002 Boeing 737
Mary Jones DC1001 DC1001 DC 10
Brad Knickerbocker DC1002 DC1002 DC 10

Only one row in the Pilot table is unmatched:

Unmatched row in the Pilot table

firsthame lasthame serial_num
John Smith

StorHouse SQL Reference Manual 4-103

FileTek Proprietary and Confidential

StorHouse SQL statements

SELECT

The union of the preserved row in the Pilot table with the intermediate table
produces the following:

Outer-join of Pilot and intermediate table

firsthame lasthame serial_ hum serial hum descr
Lucy Hayes BOE001 BOE001 Boeing 747
Rutherford Hayes BOEO002 BOEO002 Boeing 737
Mary Jones DC1001 DC1001 DC 10
Brad Knickerbocker DC1002 DC1002 DC 10
John Smith

Finally, after applying the predicate in the WHERE clause (descr is DC 10), two
rows in the outer-join table match the search condition, producing the result.

Result table of query 2

firstname lastname serial_num serial_ num descr
Mary Jones DC1001 DC1001 DC 10
Brad Knickerbocker DC1002 DC1002 DC 10

4-104 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
SET CONNECTION

SET CONNECTION

SET CONNECTION makes the named connection the current one. Although
you can establish multiple connections with the CONNECT statement, you can
execute SQL statements for one (the current) connection at a time.

Format

EXEC SQL
SET CONNECTION connection_name

Argument Description

connection_name (required) Name of the connection you are restoring,
expressed as a character literal or a host variable. This
connection must have been established by a previous
CONNECT statement and must not have been terminated by
a previous DISCONNECT statement.

Example
The following example makes the conn_3 connection the current one:

EXEC SQL
SET CONNECTION ‘conn_3’;

StorHouse SQL Reference Manual 4-105

FileTek Proprietary and Confidential

StorHouse SQL statements
UPDATE

UPDATE

UPDATE changes some or all values in an existing row of the specified system
table or system table view. You cannot update user tables or user table views. To
use UPDATE, you need DBA privilege or UPDATE privilege on all specified
columns of the target system table or view.

Format

UPDATE {table_name | view_name}
SET assignment [,assignment]...
[WHERE condition]

where assignment indicates:

column_name = { expr | NULL } | (column [,column]...) = (expr [,expt]...)

Argument Description

table_name (required if view_name not specified) Name of the system
table to be updated.

view_name (required if table_name not specified) Name of the system
table view to be updated.

SET (required) Specifies the changes to specific column(s).
column_name/column (required) Name of the column to be updated.

expr (required with column_name if NULL is omitted; required
with column) New value for the specified column indicated
as an expression.

NULL (required with column_name if expr is omitted) Indicates a
NULL value for the column.

WHERE (optional) Limits the range of the update according to the
condition. If specified, only rows that satisfy the condition
are changed. If omitted, all rows of the specified system
table or view are updated.

condition (required with WHERE) Condition limiting update range.

4-106 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
UPDATE

Example

The following UPDATE statement updates the SYSSMUSERS system table by
changing the default tablespace for ACCOUNTID BOB to DEF99.

UPDATE SYSADM.SYSSMUSERS
SET DEFAULT_TS='DEF99’
WHERE ACCOUNTID='BOB’

StorHouse SQL Reference Manual 4-107

FileTek Proprietary and Confidential

StorHouse SQL statements
VALUES INTO

VALUES INTO

VALUES INTO produces a result set consisting of one row and assigns the values
in that row to host variables. This statement operates on values and expressions
previously selected using locator variables.

Format

VALUES { expr | (expr [,expr]...) } INTO :host_variable [,:host_variable]...

Argument Description

expr (required) Expression that defines a single value of a one-
column result set.

(expr) (optional) One or more expressions that define the values
for one or more columns of a result set.

:host_variable (required) Host variable to which the value in the result
row is assigned. If a result row contains multiple values,
the first value is assigned to the first host variable in the
list, the second value to the second variable, and so on.

Example

The following example uses the INSTR function to locate the start and end of a
product description using a locator variable called :hv_prod_locator.

EXEC SQL
VALUES (INSTR(:hv_prod_locator,<Description>"))
INTO :hv_start descr ;

EXEC SQL

VALUES (INSTR(:hv_prod_locator,'</Description>"))
INTO :hv_end_descr;

4-108 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
WHENEVER

WHENEVER

WHENEVER specifies an action for three SQL runtime exceptions:

= NOT FOUND
= SQLERROR
= SQLWARNING

Depending on the exception, you can tell the program to continue with the next
statement, branch to a host language label, or stop execution. You can code
multiple WHENEVER statements for the same exception. WHENEVER applies
until the next WHENEVER statement for the same exception or until the end of
the ESQL source file. In other words, each WHENEVER overrides the previous
WHENEVER statement specified for the same exception.

Note: FileTek recommends that you use CONTINUE or GOTO instead of STOP.
Also, don't use NOT FOUND with array FETCH.

Format

EXEC SQL
WHENEVER exception_sp action_sp

where exception_sp is defined as:
{NOT FOUND | SQLERROR | SQLWARNING}

and action_sp is defined as:

{STOP | CONTINUE | GOTO host_language_label

StorHouse SQL Reference Manual 4-109

FileTek Proprietary and Confidential

4 StorHouse SQL statements
WHENEVER

Argument Description

exception_sp (required) One of three exception conditions:
NOT FOUND sqlcode is set to 100 (SQL_NOT_FOUND).
SQLERROR sqglcode is set to negative.
SQLWARNING sqlwarn[0] is set to W.

action_sp (required) One of the following specific actions:
STOP Terminate the program without any final reporting.
CONTINUE Ignore the specified exception and continue executing

the next program statement. CONTINUE is the default
for each exception.

GOTO Branch to the statement corresponding to the
host_language_label.

host_language_label The specific program label to which you're branching.

Host language rules determine the correct use of
WHENEVER with GOTO host_language_label. This
label must be within the scope of all SQL statements for
which the GOTO host_language_label action is active.
The GOTO host_language_label action is active
starting from the corresponding WHENEVER until
another WHENEVER statement for the same exception
or until the end of the ESQL source file.

Example

The following example uses WHENEVER to ignore the specified exception and
continue with the next program statement:

EXEC SQL
WHENEVER SQLERROR GOTO err ;

EXEC SQL
UPDATE sysadm.syssmusers
SET default_ts = ‘juneaccount’
WHERE accountid = ‘userl’;

4-110 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL statements 4
WHENEVER

err:
EXEC SQL
WHENEVER SQLERROR CONTINUE ;

EXEC SQL
ROLLBACK WORK ;

StorHouse SQL Reference Manual 4-111

FileTek Proprietary and Confidential

4 StorHouse SQL statements
WHENEVER

4-112 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

5

StorHouse SQL predicates

This chapter describes the following predicates supported by StorHouse:

= Basic predicate

= Complex predicate
» Quantified predicate
BETWEEN

EXISTS

IN

LIKE

NULL

About StorHouse SQL predicates

Predicates reduce the number of rows returned by a query. You use them to set
conditions within the WHERE clause of SELECT and DELETE statements. These
conditions can be true or false for any row of the table. The query returns only
those rows for which the predicate is true.

For example, the following SQL statement selects the ORDER_NO column from
the CUSTOMER table, but only for rows that contain JOHN in the NAME column.

SELECT ORDER_NO

FROM CUSTOMER

WHERE NAME = 'JOHN'

The WHERE clause checks each row in the CUSTOMER table and returns only the
rows that meet the condition NAME = 'JOHN'".

StorHouse SQL Reference Manual 5-1

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
About StorHouse SQL predicates

Predicate order

The optimizer typically processes predicates in the order you code them in an
SQL statement. This allows some user control of which predicate is used first; so
try to code the most selective predicate first. The optimizer overrides the user-
specified order only when it knows that another predicate is more selective.

Comparisons of CHAR and VARCHAR fields
with blanks

If a predicate compares a CHAR field (column, literal, or function value) to a
VARCHAR field containing trailing blanks, and the two fields match exactly or
match exactly except for additional trailing blanks in the VARCHAR field, the
result is “greater than” rather than “equal.” Currently, comparison semantics trim
trailing blanks from CHAR fields but not from VARCHAR fields.

For example, assume you're comparing two fields that match exactly: a CHAR
operand with one trailing blank to a VARCHAR operand with one trailing blank.

'FIELD<blank>' to 'FIELD<blank>'

StorHouse/RM trims the blank from the CHAR operand but not from the
VARCHAR operand; therefore, the result is “greater than.”

'FIELD' to 'FIELD<blank>'

Additionally, StorHouse/RM treats literals as CHAR fields, so a comparison
between a literal and a VARCHAR field containing trailing blanks always
produces an “unequal” result. Use of a VARCHAR host variable, however, does
produce an “equal” result when compared to a literal, provided that the number
of trailing blanks match.

5-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates

Basic predicate

Basic predicate

A basic predicate compares two values with a relational operator. If any expression
in the predicate evaluates to NULL, the result is UNKNOWN.

Format
[NOT] basic_pred [AND | OR basic_pred]
where basic_pred is defined as:

exprl rel_op {expr2 | query_expression}

Argument Description

exprl (required) First value in the comparison expressed as an identifier
or a value.
rel_op (required) Relational operator (also known as a comparison

operator) that compares two values. Valid operators are:

= two equal values

> first value greater than second

< first value less than second

>= first value greater than or equal to second
<= first value less than or equal to second
<> first value not equal to second

expr2 (required if you omit query_expression) Second value in the
comparison expressed as an identifier or a value.

guery_expression (required if you omit expr2) Second value in the comparison
expressed as a query. A query expression must return only one
value.

StorHouse SQL Reference Manual 5-3

FileTek Proprietary and Confidential
StorHouse SQL predicates
. !
Basic predicate

Example

The following SELECT statement, using the basic predicate COUNTRY <> ‘USA’,
selects the NAME column from the CUSTOMER table. This predicate returns only
those rows where COUNTRY is not equal to USA.

SELECT NAME
FROM CUSTOMER
WHERE COUNTRY <> ‘USA’

5-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates

Complex predicate

Complex predicate

A complex predicate contains logical (or boolean) operators that relate one or
more predicates and produce a true, false, or unknown value. StorHouse
recognizes three logical operators: NOT, AND, and OR.

Operator Description

NOT Takes a predicate as its argument and changes its value from false
to true or true to false.

Example: NOT(NAME = ‘JOHN’) returns only rows that do not
contain JOHN in the NAME column.

AND Takes two predicates as arguments and evaluates them as true
only if both predicates are true.

Example: NAME = ‘JOHN’ AND CITY = ‘CHICAGO’ returns only
rows that contain JOHN in the NAME column and CHICAGO in
the CITY column.

OR Takes two predicates as arguments and evaluates them as true if
either one of the predicates is true.

Example: NAME = ‘JOHN’ OR CITY = ‘CHICAGQO’ returns rows
that contain JOHN in the NAME column or rows that contain
CHICAGO in the CITY column.

When you include multiple logical operators, StorHouse/RM evaluates
conditions within parentheses first. If you don't include parentheses, then
StorHouse/RM evaluates NOT conditions before AND and AND conditions
before OR. StorHouse/RM optimizes conditions with the same logical operator,
for instance, AND and AND.

See “Logical operators (AND, OR, NOT)” on page 2-20 for more information
about the results of OR and AND operators.

StorHouse SQL Reference Manual 5-5

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
Complex predicate

Examples

In the first complex predicate that follows, StorHouse/RM applies AND
before OR. In the second, StorHouse/RM applies OR before AND.

SALARY > SSN AND COMM > CC OR BONUS > BB
SALARY > SSN AND (COMM > CC OR BONUS > BB)

In the first complex predicate that follows, StorHouse/RM applies NOT
before AND. In the second, StorHouse/RM applies AND before NOT.

NOT SALARY > SSN AND COMM > CC

NOT (SALARY > SSN AND COMM > CC)

In the following complex predicate, StorHouse/RM applies AND first.
StorHouse/RM can select the order of applying the ORs without changing the

result.

SALARY > SSN AND COMM > CC OR BONUS > BB OR SEX = FF

5-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates

Quantified predicate

Quantified predicate

A quantified predicate compares a value to a collection of values preceded by the
keyword ANY or SOME. The predicate evaluates to true if the specified
relationship is true for at least one value returned by the query expression. The
predicate evaluates to false if the query expression returns no values or the
specified relationship is false for all returned values.

Format
[NOT] quant_pred [AND | OR quant_pred]
where quant_pred is defined as:

expr rel_op {ANY | SOME} (query_expression)

Argument Description

expr (required) First value in the comparison expressed as an identifier
or a value.
rel_op (required) Relational operator (also known as a comparison

operator) that compares two values. Valid operators are:

= two equal values

> first value greater than second

< first value less than second

>= first value greater than or equal to second
<= first value less than or equal to second
<> first value not equal to second

guery_expression (required) Values in the comparison expressed as a query.

StorHouse SQL Reference Manual 5-7

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
Quantified predicate

Example

The following SELECT statement, using the quantified predicate ANY, selects the
NAME column from the CUSTOMER table where COUNTRY equals any of the
countries in the SUPPLIER table.

SELECT NAME

FROM CUSTOMER
WHERE COUNTRY = ANY
(SELECT COUNTRY
FROM SUPPLIER)

5-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates 5
BETWEEN

BETWEEN

BETWEEN determines whether a value falls within a specified range. The first
expression specifies the lower limit, and the second expression specifies the upper
limit. The predicate evaluates to true if the value falls within the specified range
or is equal to either the lower or upper limit.

Format

[NOT] between_pred [AND | OR between_pred]
where between_pred is defined as:

expr [NOT] BETWEEN exprl AND expr2

Argument Description

expr (required) First value in the comparison expressed as an identifier
or a value.
exprl (required) Lower limit of the range expressed as an identifier or a
value.
expr2 (required) Upper limit of the range expressed as an identifier or a
value.
Example

The following SELECT statement, using the BETWEEN predicate, selects the
JOB_TITLE column from the EMPLOYEE table where the value in the SALARY
column falls between 2000.00 and 10000.00.

SELECT JOB_TITLE
FROM EMPLOYEE
WHERE SALARY BETWEEN 2000.00 AND 10000.00

StorHouse SQL Reference Manual 5-9

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
EXISTS

EXISTS

EXISTS checks for the existence of specific rows. In this case, the query
expression returns entire rows rather than values. The predicate evaluates to true
if the number of rows returned by the query expression is not equal to zero.

Format
[NOT] exists_pred [AND | OR exists_pred]
where exists_pred is defined as:

EXISTS (query_expression)

Argument Definition

guery_expression (required) Query that defines the rows you want to check.

Example

The following statement, using the EXISTS predicate, evaluates to true if the
CUST_ID column in the ORDER_TBL table has any rows that contain the CUSTID
4531,

EXISTS (SELECT * FROM ORDER_TBL
WHERE CUSTID = 4531)

5-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates 5

IN

IN checks whether a specified value falls within a stated set of values.

Format
[NOT] in_pred [AND | OR in_pred]
where in_pred is defined as:

expr [NOT] IN (query_expression) | (:host_variable | literal)
[,(:host_variable | literal)]...

Argument Description

expr (required) Value you want to check defined as an identifier or a
value.

guery_expression (required if you omit a literal) Query that defines the set of values.

:host_variable (required if you omit a query_expression and literal) Host
language variable referred to on an SQL statement.

literal (required if you omit a query_expression and :host_variable)
Constant that defines a member of the value set.

Example

The following statement, using the IN predicate, checks whether any values in the
STATE column of the ADDRESS table equal MA or NH. The predicate evaluates to
true if at least one row contains MA or NH.

ADDRESS.STATE IN (‘MA’, ‘NH")

StorHouse SQL Reference Manual 5-11

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
LIKE

LIKE

LIKE searches a specified column for strings that contain a specified pattern. An
underscore (_) in the pattern matches any single character of the string. A
percent sign (%) in the pattern matches zero or more characters of the string. You
can use the optional ESCAPE clause to disable the special meaning given to the
underscore and percent sign.

The LIKE predicate, when applied to an indexed column, can use an index scan
instead of a full table scan. StorHouse can scan range indexes and value indexes.
Those indexes can be simple indexes or compound indexes with the column as
the first field in the index.

LIKE does not ignore trailing blanks in the column value. To be matched, the
pattern string must contain matching trailing blanks, or a matching number of
trailing *_’ characters, or a trailing ‘%” character.

Note: If you specify NOT LIKE or LIKE with leading wildcard characters (for
example, LIKE ‘%ABC’), StorHouse must sequentially read the entire index.

Format
[NOT] like_pred [AND | OR like_pred]
where like_pred is defined as:

column_name [NOT] LIKE {string_constant | :host_variable}
[ESCAPE character_constantl]

Argument Description

column_name (required) Name of the column to be searched for the specified
string. Type must be a CHAR type.

string_constant (required if you don't specify :host_variable) String constant
that contains the search pattern.

5-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL predicates 5

LIKE

Argument Description

:host_variable (required if you don't specify string_constant) Host variable that
contains the search pattern. The host variable must be a
character string type variable.

character_constantl (required with optional ESCAPE clause) Character to be used
as the ESCAPE character.

Examples

= The following statement, using the LIKE predicate, evaluates to true for all
values in the CUST_NAME column that contain the literal string
COMPUTER.

CUST_NAME LIKE ‘%COMPUTER%’

= The following statement, using the LIKE predicate, evaluates to true for all
values in the CUST_NAME column that contain exactly three characters.

CUST_NAME LIKE *__

= The following statement, using the LIKE predicate, uses the backslash (\) to
specify the ESCAPE character that disables the special interpretation given to
the underscore. This predicate evaluates to true for all rows in the
ITEM_NAME column that contain underscore characters.

ITEM_NAME LIKE ‘%\ % ESCAPE '\

StorHouse SQL Reference Manual 5-13

FileTek Proprietary and Confidential

5 StorHouse SQL predicates
NULL

NULL

NULL checks the specified column for NULL values. You can specify NOT to test
for non-NULL values.

Format
[NOT] null_pred [AND | OR null_pred]
where null_pred is defined as:

column_name IS [NOT] NULL

Argument Description

column_name (required) Name of the column to be tested.

Examples

= The following SELECT statement, using the NULL predicate, selects the
ORDER_NO column from the ORDERS table where the CONTACT_NAME
column contains a NULL value.

SELECT ORDER_NO
FROM ORDERS
WHERE CONTACT_NAME IS NULL

= The following SELECT statement, using the NULL predicate with the NOT
keyword, selects the NAME column from the CUSTOMER table where the
LAST_ORDER column does not contain a NULL value.

SELECT NAME

FROM CUSTOMER
WHERE LAST_ORDER IS NOT NULL

5-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Chapter

6

StorHouse SQL functions

This chapter contains formats and examples of the aggregate and scalar functions
supported by StorHouse. Functions are described in alphabetical order.

About StorHouse SQL functions

A function is a named operation followed by one or more arguments in
parentheses. You use functions to map a group of values to a single value.
StorHouse supports two types of functions: aggregate and scalar. You can use
both types of functions in SELECT statements.

Aggregate functions

An aggregate function, also called column function, is an SQL operation that
derives its result from a collection of values across one or more rows. If the
statement contains a GROUP BY clause, the aggregate function returns one value
for each group. Otherwise, StorHouse/RM treats the result of the entire SELECT
statement as one group. You cannot nest aggregate functions (for example,
average a count).

StorHouse SQL Reference Manual 6-1

FileTek Proprietary and Confidential

StorHouse SQL functions
About StorHouse SQL functions

The following table lists the StorHouse aggregate functions.

Aggregate function Description Page

AVG Computes the average of a set of numbers 6-9

COUNT Counts the number of rows or non-NULL values 6-18

MAX Returns the highest value in a column or 6-37
expression

MIN Returns the lowest value in a column or 6-38
expression

SUM Calculates the sum of all values in a column or 6-55
expression

Scalar functions

A scalar function is an SQL operation that produces a single value from another
value. You express a scalar function as a function name followed by a list of
arguments enclosed in parentheses. The following table lists the StorHouse scalar

functions:

Scalar function Description Page
ABS Computes an absolute value of an expression 6-5
ADD_MONTHS Adds a specified number of months to a date 6-7
ASCII Returns the ASCII value of the first character 6-8
BIT_LENGTH Returns the length (in bits) of an expression 6-11
BLOB Returns a BLOB representation of an expression 6-12
CHAR_LENGTH Returns the length (in characters) of an expression 6-13
CHR Returns a character string for an integer expression 6-14
CLOB Returns a CLOB representation of a character string 6-15
CONCAT Concatenates two expressions 6-16

6-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

About StorHouse SQL functions

Scalar function Description Page
DAYOFMONTH Returns the day of the month for a date expression 6-19
DAYOFWEEK Returns the day of the week for a date expression 6-20
DAYOFYEAR Returns the day of the year for a date expression 6-21
DAYS Returns an integer value equal to the number of 6-22
days since 1/1/0001 plus 1.
DECODE Compares a value to criteria and returns values 6-23
according to a match expression
GREATEST Returns the greatest value of an expression 6-25
HOUR Returns the hour (0-24) of a time expression 6-26
INITCAP Converts the first character of character expression 6-27
to uppercase and subsequent characters to
lowercase
INSTR Searches for an expression and returns its position 6-28
LAST_DAY Returns the date of the last day of the month in a 6-30
date expression
LEAST Returns the lowest value of specified expressions 6-31
LENGTH Calculates the length of a value in an expression 6-32
LOWER Converts a character string to lowercase 6-33
LPAD Pads to the left (beginning) of a character string 6-34
LTRIM Trims leading characters from a character string 6-36
MINUTE Returns the minute value in a time expression 6-39
MONTH Returns the month value in a date expression 6-40
MONTHS_BETWEEN Computes the number of months between two dates 6-41
NEXT_DAY Calculates the date of the next occurrence of the 6-42
specified day of the week after the date expression
NVL Returns the value of the first expression; but if 6-43
NULL, returns the value of the second expression
OCTET_LENGTH Returns the length (in bytes) of an argument 6-44

StorHouse SQL Reference Manual

6-3

FileTek Proprietary and Confidential

StorHouse SQL functions

About StorHouse SQL functions

Scalar function Description Page

OVERLAY Replaces a substring from the first argument with 6-45
the second argument

POSITION Determines the starting position at which the first 6-47
expression is found in the second expression

QUARTER Determines the quarter of the year in which a date 6-48
occurred

RPAD Pads to the right (ending) of a character string 6-49

RTRIM Removes ending characters from a character string 6-51

SECOND Returns the number of seconds in a time expression 6-52

SUBSTR Returns a part of an expression based on a starting 6-53

position and a length

TO_CHAR Converts an expression to a character value 6-57
TO_DATE Converts a character expression to a date value 6-58
TO_HEX Converts a BINARY, BLOB, or VARBINARY column 6-59
value to a character value
TO_NUMBER Converts a character expression to a number value 6-61
TO_TIME Converts a character expression to a time value 6-62
TRANSLATE Translates each character in a character expression 6-63
TRIM Removes leading values, trailing values, or both 6-65
UPPER Converts a character expression to uppercase 6-67
WEEK Returns the week of a year in a date expression 6-68
YEAR Returns the year in a date expression 6-69

6-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

ABS

ABS

The scalar function ABS computes the absolute value of a specified expression. If
the expression evaluates to NULL, the result is NULL. The result data type is as
follows:

If the input type is The the result type is

REAL DOUBLE PRECISION

DOUBLE PRECISION DOUBLE PRECISION

SMALLINT INTEGER

INTEGER INTEGER

NUMERIC NUMERIC (31,8)
Format

ABS (expression)

Argument Description

expression (required) Identifier or value for which you want the absolute value
calculated. The data type must be SMALLINT, INTEGER,
NUMERIC, REAL, or DOUBLE PRECISION.

StorHouse SQL Reference Manual 6-5

FileTek Proprietary and Confidential

StorHouse SQL functions
ABS

Example

The following SELECT statement, using the scalar function ABS, selects the
absolute value of the months between the current (system) date and the date in
the ORDER_DATE column of the ORDERS table, but only where the absolute
value is greater than 3.

SELECT ABS (MONTHS_BETWEEN (SYSDATE, ORDER_DATE))

FROM ORDERS
WHERE ABS (MONTHS_BETWEEN (SYSDATE, ORDER_DATE)) > 3

6-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
ADD_MONTHS

ADD_MONTHS

The scalar function ADD_MONTHS adds a specified number of months to a
specified date. The result data type is DATE. If any argument evaluates to NULL,
the result is NULL. Note that when the integer_expression is negative, you will
actually subtract from the date.

Format

ADD_MONTHS (date_expression, integer_expression)

Argument Description

date_expression (required) Date to which you want to add months. The data type
must be DATE.

integer_expression (required) Number of months you want to add to the
date_expression. The data type must be INTEGER.

Example

The following SELECT statement, using the scalar function ADD_MONTHS,
selects all rows from the CUSTOMER table, where the date in the START_DATE
column plus six months is greater than the current (system) date.

SELECT *

FROM CUSTOMER
WHERE ADD_MONTHS (START_DATE, 6) > SYSDATE

StorHouse SQL Reference Manual 6-7

FileTek Proprietary and Confidential

StorHouse SQL functions
ASCII

ASCII

The scalar function ASCII returns the ASCII value of the first character of the
specified character expression. The result data type is SMALLINT. If the character
expression evaluates to NULL, the result is NULL.

Format

ASCII (char_expression)

Argument Description

char_expression (required) Expression for which you want to calculate the ASCII
value of the first character. The data type must be CHAR, CLOB,
or VARCHAR.
Example

The following SELECT statement, using the scalar function Ascli, calculates the
ASCII value of the first character of the zIP column from the CUSTOMER table.

SELECT ASCII (ZIP)
FROM CUSTOMER

6-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

AVG

AVG

The aggregate function AVG computes the average of a set of numbers.
StorHouse/RM eliminates NULL values before computing the average. If all
values are NULL, the result is NULL. The result data type is as follows:

If the input type is Then the result type is
REAL DOUBLE PRECISION
DOUBLE PRECISION DOUBLE PRECISION
SMALLINT DECIMAL(13,8)
INTEGER DECIMAL(18,8)
DECIMAL(p1,s1) S=MIN(31-pl,8)+sl
p=pl-sl+s
Format

AVG ({[ALL] expression} | {DISTINCT column_ref})

Argument Description

ALL (optional) Includes duplicate values in the calculation.
DISTINCT (optional) Excludes duplicate values in the calculation.
expression (required if you omit column_ref) Arithmetic expression that

contains at least one column_name and does not contain another
aggregate function specification. The data type must be
SMALLINT, INTEGER, DECIMAL, REAL, or DOUBLE

PRECISION.

column_ref (required if you omit expression) Name of the column whose
average will be calculated. The column data type must be
SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL or DOUBLE
PRECISION.

StorHouse SQL Reference Manual 6-9

FileTek Proprietary and Confidential

StorHouse SQL functions
AVG

Example

The following SELECT statement, using the aggregate function AvVG, calculates
the average salary of all employees in department number 20.

SELECT AVG (SALARY)
FROM EMPLOYEE
WHERE DEPTNO = 20

6-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
BIT_LENGTH

BIT_LENGTH

The scalar function BIT_LENGTH returns the length, in bits, of an expression.
The result data type is DECIMAL (19,8). If the expression is NULL, the result is
NULL.

Format

BIT_LENGTH (expression)

Argument Description

expression (required) Expression to be searched. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

Example

The following SELECT statement, using the scalar function BIT_LENGTH, returns
the length of the column NAME in bits.

SELECT BIT_LENGTH(NAME)
FROM CUSTOMER

StorHouse SQL Reference Manual 6-11

FileTek Proprietary and Confidential

StorHouse SQL functions
BLOB

BLOB

The scalar function BLOB returns a BLOB representation of a string. The result
data type is BLOB. If the expression is NULL, the result is NULL.

Format

BLOB (expression [, length])

Argument Description

expression (required) Expression to be returned as a BLOB representation of
a string. The data type must be BINARY, CHAR, VARBINARY, or
VARCHAR.

length (optional) Length of the resulting string. Include a length to limit

the result to the specified length.

Example

The following SELECT statement, using the scalar function BLOB, allows for
comparison against a BLOB column.

SELECT *
FROM BLOB_DATA
WHERE BLOB_COLUMN = BLOB(X'12345678")

6-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
CHAR_LENGTH

CHAR_LENGTH

The scalar function CHAR_LENGTH returns the length, in characters, of an
expression. The result data type is INTEGER. If the expression is NULL, the
result is NULL.

Format

CHAR_LENGTH (expression)

Argument Description

expression (required) Expression to be searched. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

Example

The following SELECT statement, using the scalar function CHAR_LENGTH,
selects all names greater than 10 characters from the CUSTOMER table.

SELECT NAME

FROM CUSTOMER
WHERE CHAR_LENGTH(NAME) > 10

StorHouse SQL Reference Manual 6-13

FileTek Proprietary and Confidential

StorHouse SQL functions
CHR

CHR

The scalar function CHR takes an integer expression as an argument and returns
a character string whose first character has the ASCII value equal to the integer
expression. The result data type is CHAR. If the integer expression evaluates to
NULL, the result is NULL.

Format

CHR (integer_expression)

Argument Description

integer_expression (required) Number you want to convert to a character. The data
type must be INTEGER or SMALLINT.

Example

The following SELECT statement, using the scalar function CHR, selects all the
values in the CUSTOMER table where the first character of the zip code is equal to
the Ascll value 53.

SELECT *

FROM CUSTOMER
WHERE SUBSTR (ZIP, 1, 1) = CHR (53)

6-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

CLOB

CLOB

The scalar function CLOB returns a CLOB representation of a character string.
The result data type is CLOB. If the expression is NULL, the result is NULL.

Format

CLOB (char_expression [, length])

Argument Description

char_expression (required) Expression to be returned as a CLOB representation of
a string. The data type must be CHAR or VARCHAR.

length (optional) Length of the resulting string. Include a length to limit
the result to the specified length.

Example

The following SELECT statement, using the scalar function CLOB, forces a
column to be returned in the data type CLOB.

SELECT CLOB(NAME) FROM CUSTOMER

StorHouse SQL Reference Manual 6-15

FileTek Proprietary and Confidential

StorHouse SQL functions
CONCAT

CONCAT

The scalar function CONCAT returns the concatenation of two compatible string
arguments. You can also use the concatenation operator (|[) in place of the
CONCAT keyword. Note the following:

= If either of the expressions is CLOB, the result is CLOB.
= If either of the expressions is BLOB, the result is BLOB.

= Otherwise, if the first expression is CHAR or VARCHAR, the result is a
character string of VARCHAR data type.

= Or if the first expression is BINARY or VARBINARY, the result is a binary
string of VARBINARY data type.

Trailing blanks are preserved in CHAR input expressions. If one of the
expressions evaluates to NULL, then the result is NULL. If one of the expressions
is a zero-length string, then the result is the other expression. The resulting
length is the sum of the lengths of the two arguments. If this length is greater
than the maximum length of the result data type, StorHouse/RM trims the result.

Format

CONCAT (expressionl, expression2)

Argument Description

expressionl (required) First argument (expressed as an identifier or value) to
concatenate to the second argument. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

expression2 (required) Second argument (expressed as an identifier or value)
to concatenate to the first argument. The data type must be
compatible with the first argument, that is, both character types or
both binary types.

6-16 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
CONCAT

Examples

The following SELECT statement, using the scalar function CONCAT, selects
names, employee numbers, and salaries from the CUSTOMER table where the
PROJECT is equal to the PROJ_NAME preceded by the characters Us.

SELECT NAME, EMPNO, SALARY

FROM CUSTOMER
WHERE PROJECT = CONCAT(US', PROJ_NAM)

The following concatenation operation returns Hello World!

‘Hello ’ || ‘World?’

StorHouse SQL Reference Manual 6-17

FileTek Proprietary and Confidential

StorHouse SQL functions

COUNT

COUNT

The aggregate function COUNT computes either the number of rows in a table
or the number of non-NULL values in a column or group of values. The result
data type is INTEGER, and it cannot have a NULL value.

Format

COUNT ({[ALL] expression} | [DISTINCT] column_ref | *})

Argument Description

ALL (optional) Includes duplicate values in the count.

expression (required if you omit column_ref or *) Argument to be counted
expressed as either an identifier or a value. Any data type is valid.

DISTINCT (optional) Eliminates duplicate values from the count. You cannot
use the DISTINCT option if the column_ref is a BLOB or CLOB
data type.

column_ref (required if you omit expression or *) Name of the column to be

counted. Any data type is valid.

* (required if you omit expression or column_ref) Indicates that the
function will count the number of rows in a table.

Example

The following SELECT statement, using the aggregate function COUNT, counts
the number of rows that have an order date equal to the current (system) date.

SELECT COUNT (*)
FROM ORDERS
WHERE ORDER_DATE = SYSDATE

6-18 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
DAYOFMONTH

DAYOFMONTH

The scalar function DAYOFMONTH returns the day of the month in the
argument as a SMALLINT ranging from 1 to 31. The result data type is
SMALLINT. If the date expression evaluates to NULL, the result is NULL.

Format

DAYOFMONTH (date_expression)

Argument Description

date_expression (required) Date you want expressed as a day-of-the-month (1-31)
value. This data type must be DATE.

Example

The following SELECT statement, using the scalar function DAYOFMONTH,
selects rows from the ORDERS table where the order date is the fourteenth day of
the month.

SELECT *

FROM ORDERS
WHERE DAYOFMONTH (ORDER_DATE) = 14

StorHouse SQL Reference Manual 6-19

FileTek Proprietary and Confidential

StorHouse SQL functions
DAYOFWEEK

DAYOFWEEK

The scalar function DAYOFWEEK returns the day of the week in the argument as
a SMALLINT ranging from 1 to 7. The result data type is SMALLINT. If the date
expression evaluates to NULL, the result is NULL.

Format

DAYOFWEEK (date_expression)

Argument Description

date_expression (required) Date you want expressed as a day-of-the-week value
(1-7; where Sunday is 1, Monday is 2, and so on). The data type
must be DATE.

Example

The following SELECT statement, using the scalar function DAYOFWEEK, selects
all rows in the ORDERS table with an order date of Monday.

SELECT *

FROM ORDERS
WHERE DAYOFWEEK (ORDER_DATE) = 2

6-20 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
DAYOFYEAR

DAYOFYEAR

The scalar function DAYOFYEAR returns the day of the year in the argument as a
SMALLINT ranging from 1 to 366. The result data type is SMALLINT. If the date
expression evaluates to NULL, the result is NULL.

Format

DAYOFYEAR (date_expression)

Argument Description

date_expression (required) Date you want expressed as a day-of-the-year value.
The data type must be DATE.

Example

The following SELECT statement, using the scalar function DAYOFYEAR, selects
all rows in the ORDERS table where the order date is the 300th day of the year.

SELECT *

FROM ORDERS
WHERE DAYOFYEAR (ORDER_DATE) = 300

StorHouse SQL Reference Manual 6-21

FileTek Proprietary and Confidential

StorHouse SQL functions
DAYS

DAYS

The scalar function DAYS returns an integer representation of a date. The single
input argument must be a DATE, a TIMESTAMP, or a CHAR or VARCHAR that
contains a valid string representation of a date or timestamp. The result is an
integer value equal to the number of days since 1/1/0001, plus 1. If the argument
is NULL, the result is a NULL value.

Format

DAYS (date_expression)

Argument Description

date_expression (required) Date you want expressed as the number of days since
1/1/0001 plus 1. The data type must be DATE, TIMESTAMP,
CHAR, or VARCHAR.

Example

The following SELECT statement, using the scalar function DAYS, returns the
number of days from the date that employee JSMITH was hired to the current
date.

SELECT DAYS (SYSDATE) - DAYS (HIREDATE)
FROM EMPLOYEES
WHERE EMP_NAME ="JSMITH’

6-22 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

DECODE

DECODE

The scalar function DECODE compares the value of the first expression with one
or more search expressions. For matches, DECODE returns the corresponding
match expression. For no matches, DECODE returns the specified default
expression. The result type is the same as that of the first match expression. For
no match conditions where the default expression is omitted, DECODE returns a
NULL value.

Format

DECODE (expression, search_expression, match_expression
[, search_expression, match_expression]...
[, default_expression])

Argument Description

expression (required) First argument in the comparison expressed as an
identifier or a value. Any data type except BLOB or CLOB is valid.

search_expression (at least one is required) Arguments in the comparison expressed
as an identifier or a value. The data type of each
search_expression must be compatible with the expression data

type.

match_expression (at least one is required) Identifier or value that is returned when
expression and search_expression compare equally. Any
expression type is valid; however, all match_expressions must
have the same data type within a DECODE function.

default_expression (optional) Default expression expressed as an identifier or a
value. The default_expression data type must be compatible with
expression data type.

StorHouse SQL Reference Manual 6-23

FileTek Proprietary and Confidential

StorHouse SQL functions
DECODE

Example

The following SELECT statement, using the scalar function DECODE, selects all
employees from the EMPLOYEE table and assigns them department names
according to their department number (DEPTNO) values. For example, all
employees with a department number of 20 are assigned to the RESEARCH
department.

SELECT ENAME,
DECODE (DEPTNO,
10, 'ACCOUNTS,,
20, 'RESEARCH,,
30, 'SALES',

40, 'SUPPORT’,
‘NOT ASSIGNED?)
FROM EMPLOYEE

When an employee’s department number is not equal to 10, 20, 30, or 40, that
employee is considered "NOT ASSIGNED."

6-24 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
GREATEST

GREATEST

The scalar function GREATEST returns the greatest value of the specified
expressions. The result data type is the same type as the first expression. If any
expression evaluates to NULL, the result is NULL.

Format

GREATEST (expression [,expression]...)

Argument Description

expression (at least one is required) An identifier or a value to be included in
the comparison of values. The first expression can be any data
type except BLOB or CLOB. All subsequent expressions must be
the same data type as the first.

Example

The following SELECT statement, using the scalar function GREATEST, returns
all customer numbers and names from the CUSTOMER table with the later of the
last date a payment was made and the last time the customer called customer
services.

SELECT CUST_NO, NAME,

GREATEST (LAST_PYMT_DATE, LAST_CALL_DATE)
FROM CUSTOMER

StorHouse SQL Reference Manual 6-25

FileTek Proprietary and Confidential

StorHouse SQL functions
HOUR

HOUR

The scalar function HOUR returns the hour in the argument as a SMALLINT
ranging from O to 24. The result data type is SMALLINT. If the time expression
evaluates to NULL, the result is NULL.

Format

HOUR (time_expression)

Argument Description

time_expression (required) Time you want expressed as an hour-of-the-day (0-24)
value. The data type must be TIME or TIMESTAMP.

Example

The following SELECT statement, using the scalar function HOUR, selects all
rows from the ARRIVALS table when the time of arrival (IN_TIME) is before 12:00
PM.

SELECT *
FROM ARRIVALS
WHERE HOUR (IN_TIME) < 12

6-26 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

INITCAP

INITCAP

The scalar function INITCAP converts the first character of a character expression
to uppercase and subsequent characters in that character expression to lowercase.
The result data type is the same as the argument, that is CHAR, VARCHAR, or
CLOB. If the character expression evaluates to NULL, the result is NULL.

Format

INITCAP (char_expression)

Argument Description

char_expression (required) Identifier or value to be converted to initial capitals. The
data type must be CHAR, CLOB, or VARCHAR.

Example

The following SELECT statement, using the scalar function INITCAPR, converts all
names in the CUSTOMER table to initial capitals and converts subsequent
characters to lowercase.

SELECT INITCAP (NAME)
FROM CUSTOMER

StorHouse SQL Reference Manual 6-27

FileTek Proprietary and Confidential

StorHouse SQL functions
INSTR

INSTR

The scalar function INSTR searches within the first specified expression for the
second specified expression and then returns the starting position of the first
occurrence of expressionl1 within expression2. The result data type is INTEGER.
If the search is unsuccessful, the INSTR function returns zero. If either argument
evaluates to NULL, the result is NULL.

Note: The POSITION function performs a similar operation.

Format

INSTR (expressionl, expression?2 [, start_position [, occurrence]])

Argument Description

expressionl (required) String to be searched, expressed as an identifier or a
value. The data type must be BINARY, BLOB, CHAR, CLOB,
VARBINARY, or VARCHAR.

expression2 (required) String to be found, expressed as an identifier or a value.
The data type must be compatible with expressioni, that is, if
expressionl is a CHAR (character string) then expression2 must
be CHAR or VARCHAR. If expressionl is CLOB, then
expression2 must be CHAR, VARCHAR, or CLOB. If expressionl
is BLOB, then expression2 must be BINARY, VARBINARY, or
BLOB.

start_position (optional) Location in expressionl where the search is to start. A 1
indicates the first character or byte, 2 the second character or
byte, and so on. If specified, start_position must be an INTEGER
type. If omitted, the search begins at the first character or byte of
expressionl.

occurrence (optional) Number of occurrences to be found, where 1 is the first,
2 is the second, and so on. If specified, the type must be
INTEGER. If omitted, INSTR searches for the first occurrence
only.

6-28 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
INSTR

Example

The following SELECT statement, using the scalar function INSTR, selects the
customer number and name from all the rows in the CUSTOMER table where the
string 'heritage' appears somewhere in the address column.

SELECT CUST_NO, NAME
FROM CUSTOMER
WHERE INSTR (ADDR, 'heritage’) > 0

The value returned by INSTR contains the actual locations of the string in the
address column. The position must be greater than zero because zero represents a
not found condition. The comparison is always case sensitive unless you use
LOWER or UPPER on expressionl.

StorHouse SQL Reference Manual 6-29

FileTek Proprietary and Confidential

StorHouse SQL functions
LAST_DAY

LAST_DAY

The scalar function LAST_DAY returns the date of the last day of the month
containing the argument date. The result data type is DATE. If the argument
evaluates to NULL, the result is NULL.

Format

LAST_ DAY (date_expression)

Argument Description

date_expression (required) Date for which you want to find the last day of the
month. The data type must be DATE.

Example

The following SELECT statement, using the scalar function LAST_DAY, returns
all orders from the ORDERS table for the month of August.

SELECT *

FROM ORDERS
WHERE LAST_DAY (ORDER_DATE) = '08/31/1995'

6-30 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

LEAST

LEAST

The scalar function LEAST returns the lowest value of the specified expressions.
If any of the expressions evaluate to NULL, then the result is NULL. The result
type is the same type as the first expression.

Format

LEAST (expression [,expression]...)

Argument Description

expression (at least one is required) One of the values to be evaluated
expressed as an identifier or a value. The first expression can be
any data type other than BLOB or CLOB. Subsequent expressions
must be the same data type as the first.

Example

The following SELECT statement, using the scalar function LEAST, returns all
customer numbers and names from the CUSTOMER table with the earlier of the
date the last payment was made and the last time the customer called customer
services.

SELECT CUST_NO, NAME,

LEAST (LAST_PYMT_DATE, LAST_CALL_DATE)
FROM CUSTOMER

StorHouse SQL Reference Manual 6-31

FileTek Proprietary and Confidential

StorHouse SQL functions
LENGTH

LENGTH

The scalar function LENGTH returns the length of the value of the specified
expression. The result data type is INTEGER. If the expression evaluates to
NULL, the result is NULL.

Format

LENGTH (expression)

Argument Description

expression (required) Expression whose length is to be calculated. The data
type must be BINARY, BLOB, CHAR, CLOB, VARBINARY, or
VARCHAR.
Example

The following SELECT statement, using the scalar function LENGTH, selects all
names greater than 5 characters from the CUSTOMER table.

SELECT NAME 'LONG NAME'
FROM CUSTOMER
WHERE LENGTH (NAME) > 5

6-32 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

LOWER

LOWER

The scalar function LOWER takes a specified character expression, converts it to
lowercase, and returns the resulting character string. The result data type is the
same as the expression, that is CHAR, CLOB, or VARCHAR. If the character
expression evaluates to NULL, the result is NULL.

Format

LOWER (char_expression)

Argument Description

char_expression (required) Character expression to be converted to lowercase. The
data type must be CHAR, CLOB, or VARCHAR.

Example

The following SELECT statement, using the scalar function LOWER, converts the
NAME column values in the CUSTOMER table to lowercase for comparison with
the value smith, and then returns all matching names.

SELECT NAME

FROM CUSTOMER
WHERE LOWER (NAME) = 'smith’

StorHouse SQL Reference Manual 6-33

FileTek Proprietary and Confidential

StorHouse SQL functions
LPAD

LPAD

The scalar function LPAD pads the beginning of the character string specified in
the first argument with the character string specified in the third argument. The
length of the resulting character string is specified in the second argument. The
result data type is the same as the expression, that is, CHAR, CLOB, or
VARCHAR. If the character string evaluates to NULL, the result is NULL.

LPAD works as follows:

If first argumentis Then

< specified length It's padded until it reaches the specified length.
= specified length The resulting string is the same length as the first argument.
> specified length It's truncated to the specified length.

Format

LPAD (char_expression, length [, pad_expression])

Argument Description

char_expression (required) Character string to be padded expressed as an
identifier or a value. The data type must be CHAR, CLOB, or
VARCHAR.

length (required) Length of the resulting character string (after padding).
The data type must be INTEGER.

pad_expression (optional) Character used to pad char_expression expressed as
an identifier or a value. If specified, the data type must be CHAR.
If omitted, char_expression is padded with blanks.

6-34 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
LPAD

Examples

The following SELECT statement, using the scalar function LPAD, pads the
beginning of each character string found in the NAME column of the
CUSTOMER table with blanks until it reaches 30 characters in length.

SELECT LPAD (NAME, 30)
FROM CUSTOMER

The following SELECT statement, using the scalar function LPAD, pads the
beginning of each character string found in the NAME column of the
CUSTOMER table with periods until it reaches 30 characters in length.

SELECT LPAD (NAME, 30, ".")
FROM CUSTOMER

StorHouse SQL Reference Manual 6-35

FileTek Proprietary and Confidential

StorHouse SQL functions
LTRIM

LTRIM

The scalar function LTRIM removes all specified leading characters or bytes from
a given expression and returns the resulting expression. The result data type is the
same as the expression type. If the expression evaluates to NULL, the result is
NULL.

Format

LTRIM (expression, char_set)

Argument Description

expression (required) Expression whose leading characters or bytes will be
deleted, expressed as an identifier or a value. The data type must
be BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

char_set (required) Leading characters or bytes to be deleted from the
expression. If the expression is a character type (CHAR,
VARCHAR, CLOB) then the char_set must be a character type
(including a character literal). If the expression is a binary type
(BINARY, VARBINARY, BLOB) then the char_set must be a binary
type (including a hex literal). The default char_setis ' "' (blank) for
character types and x'00' for binary types.

Example

The following SELECT statement, using the scalar function LTRIM, selects names
and addresses from the CUSTOMER table and deletes all leading spaces from the
addresses.

SELECT NAME, LTRIM (ADDR, " ")
FROM CUSTOMER

6-36 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

MAX

MAX

The aggregate function MAX returns the maximum value in a set of values. The
result data type is the same as the expression.

Format

MAX (expression)

Argument Description

expression (required) Group of values included in the comparison expressed
as an identifier or a value. The expression can be any data type
except BLOB or CLOB.

Example

The following SELECT statement, using the aggregate function MAX, selects the
largest order amount for each product by order date from the ORDERS table.

SELECT ORDER_DATE, PRODUCT, MAX (QTY)

FROM ORDERS
GROUP BY ORDER_DATE, PRODUCT

StorHouse SQL Reference Manual 6-37

FileTek Proprietary and Confidential

StorHouse SQL functions
MIN

MIN

The aggregate function MIN returns the minimum value in a set of values. The
result data type is the same as the expression.

Format

MIN (expression)

Argument Description

expression (required) Group of values included in the comparison expressed
as an identifier or a value. The expression can be any data type
except BLOB or CLOB.

Example

The following SELECT statement, using the aggregate function MIN, selects the
minimum salary in the EMPLOYEE table for employees in department number
20.

SELECT MIN (SALARY)
FROM EMPLOYEE
WHERE DEPTNO = 20

6-38 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

MINUTE

MINUTE

The scalar function MINUTE returns the minute value in the specified time
expression as a SMALLINT ranging from O to 59. If the time expression evaluates
to NULL, the result is NULL.

Format

MINUTE (time_expression)

Argument Description

time_expression (required) Time expression for which you want the minutes value
converted to a SMALLINT in the range of 0-59. The data type
must be TIME or TIMESTAMP.

Example

The following SELECT statement, using the scalar function MINUTE, selects all
rows from the ARRIVALS table where the minutes portion of the IN_TIME is
greater than 10 minutes.

SELECT *

FROM ARRIVALS
WHERE MINUTE (IN_TIME) > 10

StorHouse SQL Reference Manual 6-39

FileTek Proprietary and Confidential

StorHouse SQL functions
MONTH

MONTH

The scalar function MONTH returns the month value in the specified date as a
SMALLINT ranging from 1 to 12. If the date expression evaluates to NULL, the
result is NULL.

Format

MONTH (date_expression)

Argument Description

date_expression (required) Date for which you want the month converted to a
SMALLINT in the range of 1-12. The data type must be DATE.

Example

The following SELECT statement, using the scalar function MONTH, selects all
rows from the ORDERS table where the ORDER_DATE occurs in June.

SELECT *

FROM ORDERS
WHERE MONTH (ORDER_DATE) = 6

6-40 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
MONTHS_BETWEEN

MONTHS_BETWEEN

The scalar function MONTHS_BETWEEN computes the number of months
between two specified dates. The result data type is INTEGER. If either date

expression evaluates to NULL, the result is NULL. The result is negative if the
second date occurs before the first date.

Format

MONTHS_BETWEEN (date_expressionl, date_expression2)

Argument Description

date_expressionl (required) First date in the specified range. The data type must be
DATE.

date_expression2 (required) Second date in the specified range. The data type must
be DATE.

Example

The following SELECT statement, using the scalar function
MONTHS_BETWEEN, calculates the number of months between the current
(system) date and the order date for order number 1002 in the ORDERS table.

SELECT MONTHS_BETWEEN (SYSDATE, ORDER_DATE)
FROM ORDERS
WHERE ORDER_NO = 1002

StorHouse SQL Reference Manual 6-41

FileTek Proprietary and Confidential

StorHouse SQL functions
NEXT_DAY

NEXT_DAY

The scalar function NEXT_DAY calculates the calendar date of the next
occurrence of the specified day of the week after the specified date expression.
The result data type is DATE. If any of the arguments evaluates to NULL, the
result is NULL.

Format

NEXT_DAY (date_expression, day_of week)

Argument Description

date_expression (required) Date that is used as the base date for the day-of-the-
week calculation expressed as an identifier or a value. The data
type must be DATE.

day_of week (required) Day of the week whose calendar date you want to
determine. The data type must be CHAR, and the value must be
either SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY, or SATURDAY.

Example

The following SELECT statement, using the scalar function NEXT_DAY,
calculates and returns the calendar date of the first Monday occurring after each
ORDER_DATE in the ORDERS table.

SELECT NEXT_DAY (ORDER_DATE, '"MONDAY")
FROM ORDERS

6-42 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

NVL

NVL

The scalar function NVL returns the value of the first expression unless it
evaluates to NULL. If the first expression evaluates to NULL, NVL returns the
value of the second expression. The result data type is the same as the first
expression.

Format

NVL (expressionl, expression2)

Argument Description

expressionl (required) Value you want returned (if expressionl is not NULL)
expressed as an identifier or a value. Any data type is valid.

expression2 (required) Value you want returned (if expressionl is NULL)
expressed as an identifier or a value. The data type must be
compatible with expressionl.

Example

The following SELECT statement, using the scalar function NvL, computes and

displays total salary by adding the value of commission (COMM) to each SALARY
in the EMPLOYEE table. If there is no commission, the example adds zero to the
SALARY.

SELECT SALARY + NVL (COMM, 0) 'TOTAL SALARY'
FROM EMPLOYEE

StorHouse SQL Reference Manual 6-43

FileTek Proprietary and Confidential

StorHouse SQL functions
OCTET_LENGTH

OCTET_LENGTH

The scalar function OCTET_LENGTH returns the length, in bytes, of an
expression. The result data type is INTEGER. If the expression is NULL, the
result is NULL.

Format

OCTET_LENGTH (expression)

Argument Description

expression (required) Expression to be searched. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

Example

The following SELECT statement, using the scalar function OCTET_LENGTH,
returns the length of the data in column NAME in octets (bytes).

SELECT OCTET_LENGTH(NAME) FROM CUSTOMER

6-44 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

OVERLAY

OVERLAY

The scalar function OVERLAY replaces a substring from the first expression with
the second expression. The result data type depends on the data type of the first

expression.
If the first expression is Then the result data type is
CHAR or VARCHAR VARCHAR
BINARY or VARBINARY VARBINARY
BLOB BLOB
CLOB CLOB
Format

OVERLAY (expressionl PLACING expression2 FROM start_position
[FOR length 1)

Argument Description

expressionl (required) Substring to be replaced. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

expression2 (required) String to replace expressionl. The data type must be
compatible with expressionl, that is, if expressionl is a CHAR
then expression2 must be CHAR or VARCHAR. If expressionl is
CLOB, then expression2 must be CHAR, VARCHAR, or CLOB. If
expressionl is BLOB, then expression2 must be BINARY,
VARBINARY, or BLOB.

start_position (required) Starting position of the first character or byte to be
replaced.
length (optional) Length of the substring to be replaced. If you omit the

length, expression2 replaces every character or byte in
expressionl from the specified starting position to the end of the
string.

StorHouse SQL Reference Manual 6-45

FileTek Proprietary and Confidential

StorHouse SQL functions
OVERLAY

Example

The following SELECT statement, using the scalar function OVERLAY, changes
the area code to 858 in phone numbers with a 619 area code.

SELECT NAME, OVERLAY(PHONE PLACING '858' FROM 1)

FROM CUSTOMER
WHERE SUBSTR(PHONE,1,3) = '619';

6-46 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

POSITION

POSITION

The scalar function POSITION determines the starting position at which the first
expression is found in the second expression. The result data type is INTEGER.
The POSITION function is similar to the INSTR function, except you can specify
a starting position and an occurrence with the INSTR function.

Format

POSITION (expressionl IN expression2)

Argument Description

expressionl (required) Expression to be located in expression2. The data type
must be BINARY, BLOB, CHAR, CLOB, VARBINARY, or
VARCHAR.

expression2 (required) Expression to be searched. The data type must be

compatible with expressionl, that is, if expressionl is a CHAR
(character string) then expression2 must be CHAR or VARCHAR.
If expressionl is CLOB, then expression2 must be CHAR,
VARCHAR, or CLOB. If expressionl is BLOB, then expression2
must be BINARY, VARBINARY, or BLOB.

Example

The following SELECT statement, using the scalar function POSITION, selects the
customer number and name from all the rows in the CUSTOMER table where the
string 'heritage' appears somewhere in the address column.

SELECT CUST_NO, NAME

FROM CUSTOMER
WHERE POSITION(heritage’ IN ADDR) > 0

StorHouse SQL Reference Manual 6-47

FileTek Proprietary and Confidential

StorHouse SQL functions
QUARTER

QUARTER

The scalar function QUARTER evaluates the specified date expression to
determine the quarter of the year in which the date occurred. It returns the
quarter of the year as a SMALLINT ranging from 1 to 4. If the date expression
evaluates to NULL, the result is NULL.

Format

QUARTER (date_expression)

Argument Description

date_expression (required) Date for which you want the quarter returned expressed
as an identifier or a value. The data type must be DATE.

Example

The following SELECT statement, using the scalar function QUARTER, selects all
rows from the ORDERS table where the order date occurred in the third quarter.

SELECT *

FROM ORDERS
WHERE QUARTER (ORDER_DATE) = 3

6-48 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

RPAD

RPAD

The scalar function RPAD pads to the right of the character expression with the
characters specified in the padding expression. The second argument, length,
specifies the length of the resulting character string. The result data type is the
same as the character expression, that is, CHAR, CLOB, or VARCHAR. If the first
argument evaluates to NULL, the result is NULL.

RPAD works as follows:

If the character expressionis Then

= to the specified length No padding occurs
> than the specified length The expression is truncated to the specified
length
Format

RPAD (char_expression, length [, pad_expression])

Argument Description

char_expression (required) String to be padded to the right expressed as an
identifier or a value. The data type must be CHAR, CLOB, or
VARCHAR.

length (required) Resulting length of the char_expression after padding.

The data type must be INTEGER.

pad_expression (optional) Character string used to pad char_expression. If
specified, the data type must be CHAR. If omitted, the character
string is padded with blanks.

StorHouse SQL Reference Manual 6-49

FileTek Proprietary and Confidential

StorHouse SQL functions
RPAD

Example

The following SELECT statement, using the scalar function RPAD, pads the
names in the CUSTOMER table to the right with periods until each NAME is 30
characters long.

SELECT RPAD (NAME, 30, .")
FROM CUSTOMER

6-50 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

RTRIM

RTRIM

The scalar function RTRIM removes all specified characters or bytes from the end
of an expression. The result data type is the same as the expression type. If the
expression evaluates to NULL, the result is NULL. If the expression is a CHAR
data type, trailing blanks are preserved. If the result has a zero length, then a
VARCHAR value with a zero length is returned.

Format

RTRIM (expression, char_set)

Argument Description

expression (required) Expression whose trailing characters or bytes will be
deleted, expressed as an identifier or a value. The data type must
be BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

char_set (required) One or more single characters or bytes, any of which
are removed if they are the last characters or bytes in expression.
If the expression is a character type (CHAR, VARCHAR, CLOB)
then the char_set must be of character type (including a character
literal). If the expression is a binary type (BINARY, VARBINARY,
BLOB) then the char_set must be binary (including a hex literal).
The default char_set is ' ' (blank) for character types and x'00' for
binary types.

Example

The following SELECT statement, using the scalar function RTRIM, deletes all
trailing spaces from the addresses (ADDR) in the CUSTOMER table and then pads
the addresses to the right with periods until they are 30 characters long.

SELECT RPAD (RTRIM (ADDR, ' ", 30, '.")
FROM CUSTOMER

StorHouse SQL Reference Manual 6-51

FileTek Proprietary and Confidential

StorHouse SQL functions
SECOND

SECOND

The scalar function SECOND returns the number of seconds in the argument as
a SMALLINT ranging from O to 62. If the time expression evaluates to NULL, the
result is NULL.

Format

SECOND (time_expression)

Argument Expression

time_expression (required) Time field whose seconds will be converted to an
integer expressed as an identifier or a value. The data type must
be TIME or TIMESTAMP.

Example

The following SELECT statement, using the scalar function SECOND, selects all
rows from the ARRIVALS table where the seconds portion of the IN_TIME is less
than or equal to 40 seconds.

SELECT *

FROM ARRIVALS
WHERE SECOND (IN_TIME) <= 40

6-52 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
SUBSTR

SUBSTR

The scalar function SUBSTR returns a substring of an argument based on a
starting position in a specified expression and a length. The result data type is the
same as the expression, that is, BLOB, CHAR, CLOB, or VARCHAR. If the
argument evaluates to NULL, the result is NULL.

Format

SUBSTR (expression, start_position [, length])
or
SUBSTR (expression FROM start_position [FOR length])

Argument Description

expression (required) String (expressed as an identifier or a value) used to
create the substring. The data type must be BLOB, CHAR, CLOB,
or VARCHAR.

start_position (required) Position in the expression where the substring begins,

where 1 is the first position, 2 is the second position, and so on.
The data type must be INTEGER.

length (optional) Length of the substring. If specified, the data type must
be INTEGER. If you omit the length, the substring contains every
character or byte in the expression from the specified starting
position to the end of the string.

StorHouse SQL Reference Manual 6-53

FileTek Proprietary and Confidential
StorHouse SQL functions
SUBSTR

Example

The following SELECT statement, using the scalar function SUBSTR, selects
names from the CUSTOMER table and displays the corresponding phone number
as three substrings in the format (999)999-9999.

SELECT NAME, '(, SUBSTR (PHONE, 1, 3) , '),
SUBSTR (PHONE, 4, 3), ',

SUBSTR (PHONE, 7, 4)

FROM CUSTOMER

or

SELECT NAME, '(, SUBSTR (PHONE FROM 1 FOR 3),),
SUBSTR (PHONE FROM 4 FOR 3), ',

SUBSTR (PHONE FROM 7 FOR 4)

FROM CUSTOMER

6-54 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

SUM

SUM

The aggregate function SUM returns the sum of the values in a specified group. A
NULL result is permitted. The result data type is as follows:

If the input type is Then the result type is

REAL DOUBLE

DOUBLE DOUBLE

SMALLINT DECIMAL(15)

INTEGER DECIMAL(20)

DECIMAL(p1,s1) p=MIN (31,pl+10)s=s1
Format

SUM ({[ALL] expression} | {DISTINCT column_ref})

Argument Description

ALL (optional) Include duplicate values in the calculation of the sum.

DISTINCT (optional) Exclude duplicate values in the calculation before
computing the sum.

expression (required if you omit column_ref) Group of identifiers or values
whose sum will be calculated. The data type must be SMALLINT,
INTEGER, DECIMAL, NUMERIC, REAL or DOUBLE

PRECISION.

column_ref (required if you omit expression) Name of the column whose
values will be summed. The data type must be SMALLINT,
INTEGER, DECIMAL, NUMERIC, REAL or DOUBLE

PRECISION.

StorHouse SQL Reference Manual 6-55

FileTek Proprietary and Confidential

StorHouse SQL functions
SUM

Example

The following SELECT statement, using the aggregate function sum, calculates
the sum of the AMOUNT column where the order date is the same as the current
(system) date.

SELECT SUM (AMOUNT)

FROM ORDERS
WHERE ORDER_DATE = SYSDATE

6-56 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
TO_CHAR

TO CHAR

The scalar function TO_CHAR converts a specified expression to character form
and returns the result. The function uses the second argument, if specified, for
conversion. The result data type is VARCHAR if the expression is CLOB or CHAR
if the expression is any other data type except BLOB, which is not a supported
conversion. If any arguments evaluate to NULL, the result is NULL.

Format

TO_CHAR (expression [,format])

Argument Description

expression (required) String to be converted to characters expressed as an
identifier of a value. Any data type except BLOB is valid.

format (optional) Format of the resulting character string. If specified, the
data type must be CHAR. Currently, you can specify format only
when the expression data type is DATE. See page 2-15 for valid
date format strings.

Example

The following SELECT statement, using the scalar function TO_CHAR, selects
names and start dates from the CUSTOMER table and converts all start dates to
the format DD-MON-YYYY.

SELECT NAME, TO_CHAR (START_DATE, 'DD-MON-YYYY")
FROM CUSTOMER

StorHouse SQL Reference Manual 6-57

FileTek Proprietary and Confidential

StorHouse SQL functions

TO_DATE

TO_DATE

The scalar function TO_DATE converts a specified character expression to a date
value. The second argument, if specified, supplies the conversion format. The
result data type is DATE. If any argument evaluates to NULL, the result is NULL.

Format

TO_DATE (char_expression [,format])

Argument Description

char_expression (required) Character string to be converted to a date expressed as
an identifier or a value. The data type must be CHAR, CLOB, or
VARCHAR.

format (optional) Format for the date. If specified, the data type must be

CHAR. If omitted, the default format is MM/DD/YYYY, which is
currently the only format supported.

Example

The following SELECT statement, using the scalar function TO_DATE, selects all
rows from the ORDERS table where the order date is less than or equal to
12/31/1991.

SELECT *
FROM ORDERS
WHERE ORDER_DATE <= TO_DATE ('12/31/1991")

All dates are displayed in the format MM/DD/YYYY.

6-58 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
TO_HEX

TO HEX

The scalar function TO_HEX lets you compare binary columns with a character
string. This function in combination with the LIKE function facilitates wildcard
searches on binary data. TO_HEX converts each byte in the specified binary
column to two characters. For each converted byte, the first character is the hexit
representation of the first four bits, and the second character is the hexit
representation of the last four bits. The result type is CHAR if the expression is
BINARY or VARBINARY or CLOB if the expression is a BLOB. If the column
evaluates to NULL, the result is NULL.

Format

TO_HEX (expression)

Argument Description

expression (required) Name of the column to be converted to a character
string. The data type must be BINARY, BLOB, or VARBINARY.

StorHouse SQL Reference Manual 6-59

FileTek Proprietary and Confidential

StorHouse SQL functions
TO_HEX

Examples

The following SELECT statement, using the scalar function TO_HEX, selects
an entire row from the TABLE1 table for all telephone numbers that begin
with area code 703. The WHERE clause with the LIKE function indicates a
wildcard search.

SELECT *
FROM TABLE1
WHERE TO_HEX (PHONE) LIKE ‘703%’

In this example, PHONE is a BINARY column with two telephone number
digits stored in each byte. TO_HEX converts each byte in PHONE to two
characters for comparison with the character string ‘703’

The following SELECT statement, using the scalar function TO_HEX, selects
all telephone numbers from TABLE1. The example assumes that telephone
numbers are stored as binary data types. TO_HEX converts those binary
formats to character strings for display purposes.

SELECT TO_HEX(PHONE)
FROM TABLE1

6-60 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
TO_NUMBER

TO_NUMBER

The scalar function TO_NUMBER converts a specified character expression to a
number value. The TO_NUMBER function will return data with a precision of
31 and a scale of 8. The result data type is NUMERIC. If any argument evaluates
to NULL, the result is NULL.

Format

TO_NUMBER (char_expression)

Argument Description

char_expression (required) Character string to be converted to a number expressed
as an identifier or a value. The data type must be CHAR, CLOB, or
VARCHAR.
Example

The following SELECT statement, using the scalar function TO_NUMBER, selects
all rows from the CUSTOMER table where the first three digits, or area code, of
the telephone number equal 603.

SELECT *

FROM CUSTOMER
WHERE TO_NUMBER (SUBSTR (PHONE, 1, 3)) = 603

StorHouse SQL Reference Manual 6-61

FileTek Proprietary and Confidential

StorHouse SQL functions

TO_TIME

TO_TIME

The scalar function TO_TIME converts a specified character expression to a time
value. The second argument, if specified, supplies the conversion format. The
result data type is TIME. If any argument evaluates to NULL, the result is NULL.

Format

TO_TIME (char_expression [,format])

Argument Description

char_expression (required) Character string to be converted to a time expressed as
an identifier or a value. The data type must be CHAR, CLOB, or
VARCHAR.

format (optional) Format for the time. If specified, the data type must be

CHAR. See page 2-16 for valid time format strings. If omitted, the
default format is HH:MM:SS.CCC.

Example

The following SELECT statement, using the scalar function To_TIME, selects all
rows from the ORDERS table where the order date is less than 05/15/1991 and the
time of the order is less than 12 noon.

SELECT *

FROM ORDERS

WHERE ORDER_DATE < TO_DATE ('05/15/1991")
AND ORDER_TIME < TO_TIME ('12:00:00"

6-62 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions
TRANSLATE

TRANSLATE

The scalar function TRANSLATE translates each character in char_expression
that is contained in from_set, to the corresponding character in to_set. The
translated string is the same as the expression, that is, data type CHAR, CLOB, or
VARCHAR. If any argument evaluates to NULL, the result is NULL.

Format

TRANSLATE (char_expression, from_set, to_set)

Argument Description

char_expression (required) Character expression to be translated. The data type
must be CHAR, CLOB, or VARCHAR.

from_set (required) Characters in char_expression to be translated. The
data type must be CHAR, CLOB, or VARCHAR.

to_set (required) Replacement characters for the characters in from_set.
The data type must be CHAR, CLOB, or VARCHAR.

For each character in from_set, there should be a corresponding character in
to_set. In other words, from_set and to_set are usually the same length.

If to_set is n characters longer than from_set, then only n leading characters from
to_set are considered (for example, if to_set is five characters and from_set is three
characters, only the first three characters are replaced).

If to_set is shorter than from_set, no translation is performed for the trailing
characters in from_set that do not have a corresponding character in to_set (for
example, if to_set is five characters and from_set is seven characters, only the first
five characters are replaced).

StorHouse SQL Reference Manual 6-63

FileTek Proprietary and Confidential

StorHouse SQL functions
TRANSLATE

Example

The following SELECT statement, using the scalar function TRANSLATE, selects
information in the NAME column from the CUSTOMER table and replaces all
blanks in the street name with underscores.

SELECT NAME, TRANSLATE (STREET, "', ")
FROM CUSTOMER

6-64 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

TRIM

TRIM

The scalar function TRIM performs the same operations as LTRIM (removes
leading characters or bytes) and RTRIM (removes trailing characters or bytes) but
can also remove both leading and trailing characters or bytes in one operation.
The default is to trim both leading and trailing characters or bytes. The default
trim character is blank for CLOB, CHAR, and VARCHAR and X'00" for BLOB,
BINARY, and VARBINARY. The result data type depends on the data type of the
first expression.

If the first expression is Then the result data type is

CHAR or VARCHAR VARCHAR

BINARY or VARBINARY VARBINARY

BLOB BLOB

CLOB CLOB
Format

TRIM ([[LEADING | TRAILING | BOTH] [expression1]
FROM] expression2)

Argument Description

LEADING (optional) Remove the specified characters or bytes (expressionl)
from the beginning of expression2. TRIM (LEADING) is the same
as the LTRIM function.

TRAILING (optional) Remove the specified characters or bytes (expressionl)
from the end of expression2. TRIM (TRAILING) is the same as the
RTRIM function.

BOTH (optional) Remove both leading and trailing characters or bytes
(expressionl) from expression2. TRIM (BOTH) is the same as
LTRIM followed by RTRIM.

StorHouse SQL Reference Manual 6-65

FileTek Proprietary and Confidential

StorHouse SQL functions
TRIM

Argument Description

expressionl (optional) One or more characters or bytes to trim. The data type
must not be BLOB or CLOB. If you omit expressionl, the default
trim character is blank for character types and X'00' for binary

types.

expression2 (required) Expression to be trimmed. The data type must be
BINARY, BLOB, CHAR, CLOB, VARBINARY, or VARCHAR.

Example

The following SELECT statement, using the scalar function TRIM, selects names
and addresses from the CUSTOMER table and deletes all leading and trailing
spaces from the address.

SELECT NAME, TRIM(BOTH ' ' FROM ADDR)
FROM CUSTOMER

6-66 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL functions

UPPER

UPPER

The scalar function UPPER converts the specified character expression to
uppercase. The result data type is the same as the expression, that is, CHAR,
CLOB, or VARCHAR. If the character expression evaluates to NULL, the result is
NULL.

Format

UPPER (char_expression)

Argument Description

char_expression (required) Expression to be converted to uppercase. The data
type must be CHAR, CLOB, or VARCHAR.

Example

The following SELECT statement, using the scalar function UPPER, converts the
NAME column values in the CUSTOMER table to uppercase for comparison with
the value SMITH.

SELECT *

FROM CUSTOMER
WHERE UPPER (NAME) = 'SMITH'

StorHouse SQL Reference Manual 6-67

FileTek Proprietary and Confidential

StorHouse SQL functions
WEEK

WEEK

The scalar function WEEK returns the week of the year as a SMALLINT ranging
from 1 to 53. If the date expression evaluates to NULL, the result is NULL.

Format

WEEK (date_expression)

Argument Description

date_expression (required) Date of the year to be expressed as week of the year.
The data type must be DATE.

Example

The following SELECT statement, using the scalar function WEEK, selects all
rows in the ORDERS table where the ORDER_DATE occurred in the fifth week of
the year.

SELECT *

FROM ORDERS
WHERE WEEK (ORDER_DATE) = 5

6-68 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

YEAR

StorHouse SQL functions
YEAR

The scalar function YEAR returns the year as a SMALLINT ranging from 0 to
9999. If the date expression evaluates to NULL, the result is NULL.

Format

YEAR (date_expression)

Argument Description

date_expression (required) Date to be expressed as the year. The data type must
be DATE.

Example

The following SELECT statement, using the scalar function YEAR, selects all rows
from the ORDERS table where the year portion of the ORDER_DATE equals
1992.

SELECT *
FROM ORDERS
WHERE YEAR (ORDER_DATE) = 1992

StorHouse SQL Reference Manual 6-69

FileTek Proprietary and Confidential

StorHouse SQL functions
YEAR

6-70 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

SQL status codes

This appendix contains status codes generated in response to your StorHouse
SQL statements. These codes are in addition to any codes your standard interface
may generate.

Note: StorHouse/RM also returns StorHouse status codes in SQL status codes.
Six-digit codes between -300000 and -309999 indicate StorHouse errors. Ignore
the -30 prefix to obtain the 4-digit StorHouse status code. For example, SQL
status code -304458 translates to StorHouse status code 4458. Refer to the
StorHouse Messages and Codes Manual for more information about StorHouse
status codes.

List of codes

100

-10000

-10001

-10002

-10003

-10004

Status OK

No rows or no more rows

SQL internal error - field exists
SQL internal error - field not found
Tuple not found

SQL internal error - end of tuple

SQL internal error - invalid hint

StorHouse SQL Reference Manual A-1

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-10005 Segment ID mismatch

-10006 Table ID mismatch

-10007 Not enough overflow pages

-10008 SQL internal error - SegID null in fetch
-10009 SQL internal error - PrevtID not found
-10010 SQL internal error - not enough space
-10011 SQL internal error - base page mismatch
-10100 Index/sort key too long

-10101 SQL internal error - index scan end
-10102 Duplicate key

-10103 SQL internal error - index not found
-10104 Key desc field too long

-10105 Cursor inconsistent

-10106 Index method not supported

-10200 SQL internal error - PTPL overflow
-10201 First file size is small

-10300 SQL internal error - invalid lock type
-10301 Global lock table in invalid state

-10302 Lock wait error

A-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-10303

-10304

-10305

-10306

-10307

-10311

-10312

-10315

-10316

-10317

-10321

-10322

-10323

-10324

-10325

-10326

-10327

-10400

-10401

SQL status codes A
List of codes

Lock table exceeded maximum number of entries
Application deadlock

Lock upgrade failed

Hit 100-table-lock limit for a DB

Hit 100-lock limit for a table

Internal shared memory error

Shared memory permission denied
Out of system shared memory resource
Shared memory already used

Shared memory does not exist error
Internal semaphore error

Semaphore permission denied
Semaphore already removed error
Semaphore interrupt error

Out of system semaphore resource
Semaphore already used

Semaphore does not exist error

Bad log file size

Cannot find log file

StorHouse SQL Reference Manual A-3

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-10402 Error in opening log file

-10403 Log file busy

-10404 Bad log entry

-10405 SQL internal error - log file not found
-10406 SQL internal error - end of log file
-10407 Database not recovered properly
-10408 Not enough log space

-10409 Unable to open log file

-10410 Unable to read log file

-10411 Log file sizes not equal

-10412 Log name too long

-10413 Invalid log entry during snapshot rollback
-10414 Wrong log file during roll forward
-10415 Failure writing archive file

-10499 SQL internal error - checkpoint
-10600 SQL internal error - in tablespace init
-10601 Cannot create any more tablespaces
-10602 Bad file for tablespace

-10603 SQL internal error - end of tablespace

A-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

SQL status codes A

List of codes

-10604 SQL internal error - invalid tablespace number
-10605 Cannot add any more files to tablespace
-10606 SQL internal error - invalid hint

-10607 Page allocation failure in tablespace

-10608 Invalid database file size

-10609 Invalid tablespace number

-10700 SQL internal error - file number too large
-10701 File open error

-10800 SQL internal error - invalid dsl number
-10801 SQL internal error - dsl deadlock

-10900 SQL internal error - event timeout

-10920 Duplicate value in sorted list

-11100 Invalid transaction ID

-11101 No more resources for starting a transaction
-11102 Transaction space allocation failure

-11103 SQL internal error - tds not found

-11104 Transaction marked for abort

-11105 Transaction already active

-11106 Co-ordinator not set for the transaction

StorHouse SQL Reference Manual A-5

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-11107 Cannot start new transactions - transactions disabled
-11108 Invalid consistency level

-11109 Invalid transaction handle

-11110 Transaction entry locked

-11111 Bad isolation level

-11199 SQL internal status code - transaction ended
-11200 Old snapshot

-11201 Invalid snapshot LSN

-20000 SQL internal error

-20001 Memory allocation failure

-20002 Open database failed

-20003 Syntax error

-20004 User not found

-20005 Table/view/synonym not found

-20006 Column not found/specified

-20007 No columns in table

-20008 Inconsistent types

-20009 Column ambiguously specified

-20010 Duplicate column specification

A-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-20011

-20012

-20013

-20014

-20015

-20016

-20017

-20018

-20019

-20020

-20021

-20022

-20023

-20024

-20025

-20026

-20027

-20028

-20029

Invalid length

Invalid precision

Invalid scale

Missing input parameters

Subquery returns multiple rows

SQL status codes A
List of codes

Null value supplied for a mandatory (NOT NULL) column

Too many values specified
Too few values specified

Cannot modify table referred to in subquery

Bad column specification for GROUP BY clause

Non-group-by expression in HAVING clause
Non-group-by expression in SELECT clause
Aggregate function not allowed here

Sorry, operation not implemented yet
Nested aggregate functions

Too many table references

Bad field specification in ORDER BY clause
An index already exists with same name

Index referenced not found

StorHouse SQL Reference Manual A-7

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-20030

-20031

-20032

-20033

-20034

-20035

-20036

-20037

-20038

-20039

-20040

-20041

-20042

-20043

-20044

-20045

-20046

-20047

-20048

Tablespace with same name already exists
Cluster with same name already exists

No cluster with this name

Tablespace not found

Bad free percentage specification

Either a column specification or the NULL clause should be specified
Statement not prepared

Executing SELECT statement

Cursor not closed

Open for non-SELECT statement

Cursor not opened

Table/View/Synonym already exists
DISTINCT specified more than once in query
Tuple size too high

Array size too high

File does not exist or is not accessible

Field value NOT NULL for some tuples
Granting to self not allowed

Revoking for self not allowed

A-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-20049

-20050

-20051

-20052

-20053

-20054

-20055

-20056

-20057

-20058

-20059

-20060

-20061

-20062

-20063

-20064

-20065

-20066

-20067

SQL status codes A
List of codes

Keyword used for a name

Too many fields specified

Too many indexes on this table

Overflow error

Database not opened

Database not specified or improperly specified
Database not started

No DBA access rights

No RESOURCE privileges

Executing SQL statement for an aborted transaction
No files in the tablespace

Table not empty

Input parameter size too high

Full pathname not specified

Duplicate file specification

Invalid attach type

Invalid statement type

Invalid SQLDA

More than one database can't be attached locally

StorHouse SQL Reference Manual A-9

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-20068

-20069

-20070

-20071

-20072

-20073

-20074

-20075

-20076

-20077

-20078

-20079

-20080

-20081

-20082

-20083

-20084

-20085

-20086

Bad arguments

SQLDA size not enough

SQLDA buffer length too high

Specified operation not allowed on the view

Server is not allocated

Query specification for view too long

View column list must be specified as expressions are given
Number of columns in column list is less than in SELECT list
Number of columns in column list is more than in SELECT list
Check option specified for non-insertable view

Given SQL statement is not allowed on the view

More tables cannot be created

View CHECK option violation

Number of expressions projected on either side of set-op don't match
Column names not allowed in ORDER BY clause for this statement
Outer join specified on a complex predicate

Outer join specified on a subquery

Invalid outer join specification

Duplicate table constraint specification

A-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-20087

-20088

-20089

-20090

-20091

-20092

-20093

-20094

-20095

-20096

-20097

-20098

-20099

-20100

-20101

-20102

-20103

-20104

-20105

SQL status codes A
List of codes

Column count mismatch

Invalid user name

System date retrieval failed

Table column list must be specified as expressions are given
Query statement too long

No tuples selected by the subquery for update
Synonym already exists

Database link with same name already exists
Database link not found

Connect string not specified or specified incorrectly
Specified operation not allowed on a remote table
More than one row selected by the query

Cursor not positioned on a valid row

Subquery not allowed here

No references for the table

PRIMARY/CANDIDATE key column defined NULL
No matching key defined for the referenced table
Keys in reference constraint incompatible

Statement not allowed in read-only isolation level

StorHouse SQL Reference Manual A-11

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-20106

-20107

-20108

-20109

-20110

-20111

-20112

-20113

-20114

-20115

-20116

-20117

-20118

-20119

-20120

-20121

-20122

-20123

-20124

Invalid ROWID

Remote database not started

Remote network server not started
Remote database name not valid

TCP/IP remote hostname is unknown
Target of DROP TABLE is not a table
Target of DROP VIEW is not a view
Fetched value truncated and no indicator var
Fetched value NULL and no indicator var
References to the table/record present
Constraint violation

Table definition not complete

Duplicate constraint name

Constraint name not found

Use of reserved word

Permission denied

Procedure not found

Invalid arguments to procedure

Tablespace not empty

A-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-20125

-20126

-20127

-20128

-20129

-20130

-20131

-20132

-20133

-20134

-20135

-20136

-20137

-20138

-20139

-20140

-20141

-20142

-20143

SQL status codes A
List of codes

Tablespace not specified and there is no default

The size of the result set is over the limit

Query conditionally terminated

Number of open cursors exceeds limit

Invalid cursor name

Bad parameter specification for the statement
DELETE/INSERT/UPDATE to user table not allowed

SQLDA sgld_length not an aligned value for sgld_type

Table privileges cannot be revoked from the table owner

Failed to configure system soft limit on number of file descriptors
SQL internal error - no filename for segment

Invalid database name syntax

Invalid database directory

Database name has already been used

Database name is misspelled

The subspace does not exist

Use ALTER TABLESPACE with SUBSPACE clause(s) for this table space
Pointer-fetch mode not allowed

Constraint is only applicable to LOB datatypes

StorHouse SQL Reference Manual A-13

FileTek Proprietary and Confidential

SQL status codes

List of codes

-20144 LOB STORE WITH column not found/specified

-20145 Invalid expression for No-table SELECT (or VALUES INTO)
-20146 LOB_FILE not allowed with array fetch

-20147 LOB datatypes are not allowed on the DISTINCT, ORDER BY or GROUP clauses
-20148 lllegal view operation. Insert/update/delete not allowed
-20149 MAXEXTENT limit of 32767 exceeded

-20160 lllegal ON CLAUSE table reference

-20211 Remote procedure call error

-20212 SQL client bind to daemon failed

-20213 SQL client bind to SQL server failed

-20214 SQL NETWORK service entry is not available

-20215 Invalid TCP/IP hostname

-20216 Invalid remote database name

-20217 Network error on server

-20218 Invalid protocol

-20219 Invalid connection name

-20220 Duplicate connection name

-20221 No active connection

-20222 No environment-defined database

A-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-20223

-20224

-20225

-20226

-20227

-20228

-20229

-20230

-20231

-20232

-20233

-20234

-20235

-20236

-20237

-20238

-20240

-20241

-20242

SQL status codes A
List of codes

Multiple default (DB_NAME used) connections
Invalid protocol in connect_string

Exceeding permissible number of connections
Bad database handle

Invalid host name in connect string

Access denied (authorization failed)

Invalid date value

Invalid date string

Invalid number value

Invalid number string

Invalid time value

Invalid time string

Invalid timestamp string

Division by zero attempted

Invalid hexit string

Database offline and unavailable for access
LOB_FILE not enabled for writing

LOB_FILE not enabled for reading

LOB_FILE specifies TPE_FILE_CREATE, but file exists

StorHouse SQL Reference Manual A-15

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-20243 Error opening LOB_FILE

-20244 Error writing LOB_FILE

-20245 Invalid Locator

20246 Disjoint Modify of lob

-20247 Join columns may not contain lob data

-20248 Unique qualifier not allowed on user table indexes
-20249 Storage_manager table space mismatch

-20300 Column group column doesn't exist

-20301 Column group column already specified

-20302 Column group name already specified

-20303 Column groups haven't covered all columns
-20304 Column groups are not implemented in storage
-30001 Query aborted on user request

-30002 Invalid network handle

-30003 Invalid SQL network interface

-30004 Invalid SQL network interface procedure
-30005 Interface is already attached

-30006 Interface entry not found

-30007 Interface is already registered

A-16 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-30008

-30009

-30010

-30011

-30012

-30013

-30031

-30032

-30033

-30034

-30035

-30041

-30042

-30043

-30051

-30061

-30062

-30063

-30064

SQL status codes A
List of codes

Mismatch in pkt header size and total argument size
Invalid server 1D

Reply does not match the request

Memory allocation failure

Communication packet overflow failure

Output SQLDA changed between FETCH requests
Error in transmission of packet to server

Error in reception of packet from server

Server unexpectedly lost

Server unexpectedly lost (ECONNRESET on send)
Server unexpectedly lost (ECONNRESET on recv)
Error in transmission of packet to client

Error in reception of packet from client

Client unexpectedly lost

Network handle is in-process handle

Could not connect to SQL network daemon

Error in number of arguments

Requested interface not registered

Invalid interface procedure 1D

StorHouse SQL Reference Manual A-17

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-30065 Requested server executable not found
-30066 Invalid configuration information
-30067 Interface not supported

-30091 Invalid service name

-30092 Invalid host

-30093 Error in TCP/IP accept call

-30094 Error in TCP/IP connect call

-30095 Error in TCP/IP bind call

-30096 Error in creating socket

-30097 Error in setting socket option

-30101 Interrupt occurred

-30201 Error setting up FTP connection to host
-30202 Couldn't ftp login to remote host
-30203 Internal error - no FTP connection exists
-30204 Error initiating ftp get command or file not found
-30205 Error reading LOB file from host

-30206 Error initiating ftp put command

-30207 Error writing LOB file to host

-40001 Error in reading configuration

A-18 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

SQL status codes A
List of codes

-50001 Flat File: File 10 error

-50002 Flat File: No more records

-50003 Flat File: Table already exists

-50004 Flat File: Invalid record number

-50005 Flat File: Record already deleted

-50007 Flat File: Inserting duplicate value into unique index
-50008 Flat File: Illegal attempt to update system table entry
-50009 Flat File: Illegal attempt to delete system table entry
-50010 Flat File: Permission denied on creating directory
-50011 Flat File: Directory already exists

-50012 Flat File: Create database failed

-50013 Flat File: Database does not exist

-50014 Flat File: Permission denied on changing directory
-50015 Flat File: Fail to open database

-50016 Flat File: Open CONFIG.CGF failed

-50017 Flat File: Error writing control record

-50018 Flat File: Error reading control record

-50019 Flat File: Error opening file

-50020 Flat File: Error writing record

StorHouse SQL Reference Manual A-19

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-50021

-50022

-50023

-50024

-50025

-50026

-50027

-50028

-50029

-50030

-50031

-50032

-50033

-50036

-50037

-50038

-50039

Flat File: Error reading record

Flat File: Error creating table/index log file

Flat File: Error opening table/index log file

Flat File: Error deleting table/index log file

Flat File: Error writing table/index log file

Flat File: Error reading table/index log file

Flat File: Error reading CONFIG.CGF

The total length (bytes) of a key is too long.

Note: The total length of a key includes the byte-length of all fields (single or
compound) and encode information inserted for each field. The maximum key
length is 256 bytes.

Fail to insert a key on index file.

Fail to delete a key from index file.

Error while searching a key on index file.

Fail to create a new index file.

Fail to open an existing index file.

Error creating DB alias file

Error opening DB alias file

Error reading DB alias file

Index file may be corrupt, should be recreated

A-20 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

SQL status codes A

-50040

-50100

-50101

-50102

-50103

-50104

-50105

-50106

-50107

-50108

-50109

-50200

-50201

-50202

-50203

-50204

-50205

-50206

-50300

Invalid flat file table space id

Flat File:

Flat File:

Flat File;

Flat File;

Flat File:

Flat File:

Flat File:

Flat File:

Flat File;

Flat File:

Flat File:

Flat File:

Flat File:

Flat File;

Flat File:

Flat File:

Flat File:

Flat File;

create file error, no such directory
create file error, 1/0 error

create file error, resource not availabl
create file error, permission denied

create file error, file already exists

List of codes

€

create file error, file name is a directory name

create file error, file table overflow
create file error, no space available
create file error, read only file system

create file error, unexpected error

open file error, no such file or directory

open file error, 1/0 error

open file error, resource not available

open file error, permission denied

open file error, file name is a directory name

open file error, too many open files
open file error, unexpected error

seek file error

StorHouse SQL Reference Manual A-21

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-50400

-50401

-50402

-50403

-50404

-50500

-50501

-50502

-50600

-50601

-50700

-60001

-60002

-60003

-60004

-60005

-60006

-60010

-60015

Flat File;

Flat File:

Flat File:

Flat File;

Flat File;

Flat File:

Flat File:

Flat File:

Flat File;

Flat File;

write file error, 1/0 error

write file error, bad file number

write file error, resource not available
write file error, no more space available
write file error, unexpected error

read file error, 1/0 error

read file error, bad file number

read file error, unexpected error

close file error, bad file number

close file error, unexpected error

Wrong system table version

Loader: Ran out of memory

Loader: Field mismatch

Loader: Error reading checkpoint file

Loader: Error closing checkpoint file

Loader: Data type not supported yet

Loader: Error initializing shared memory

Loader: Error writing checkpoint file

Loader: Error creating checkpoint file

A-22 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-60016

-60017

-60018

-60019

-60020

-60021

-60022

-60023

-60024

-60025

-60026

-60027

-60028

-60029

-60030

-60031

-60032

-60200

-60201

Loader:;

Loader:

Loader:

Loader:

Loader:

Loader:

Loader:

Loader:

Loader:

Loader:;

Loader:

Loader:

Loader:

Loader:

Loader:;

Loader:

Loader:

SQL status codes A
List of codes

Error opening checkpoint file

Data received past previous EOF

Invalid (old) checkpoint log file

Must use same inputs on restart

Table definition has changed

Unrecoverable segment file

Can't abort. Load already finished

Multiple SEGMENT tags for same segment
Multiple REPLACE tags for same segment

Can't use SUBSPACE n with SUBSPACE ROTATE
FIELDS CHAR not allowed with fields_spec list
FIELDS NULLFLAGS not allowed with field_spec list
LOB type fields must be last in fields_spec list

LOB type fields must be at POSITION(*)

LOB type field can only be used with a LOB column
Last LOB type field did not end at end of a record

LOB field data cannot be used in a comparison

Unloader: #expr mismatch between USING and SELECT

Unloader: No matching :field spec found

StorHouse SQL Reference Manual A-23

FileTek Proprietary and Confidential

A SQL status codes
List of codes

-60202

-60203

-60204

-60205

-60206

-60207

-60208

-70000

-70003

-70005

-90001

-90002

-90003

-91001

-91002

-91501

-95001

-95002

-95003

Unloader: No datatype specified for position_spec

Unloader: FIELDS CHAR not allowed with USING clause
Unloader: Output row exceeds maximum length

Unloader: Data too long for user field

Unloader: No FILENAME specified for LOB_FILE

Unloader: FIELDS NULLFLAGS not allowed with USING clause
Unloader: RECORDS terminator not allowed with LOB fields
Cannot use Extractor: Table is not a user table

Cannot use Extractor: Unsupported clauses in select statement
Cannot use Extractor: Incompatible SQLDA parameters
Internal Error: Error MMAPInNg file

Internal Error: Invalid array range or index

Internal Error: Buffer Overflow

Internal Error: (LM) Incompletely read LOB

Internal Error: (LM) LOB Cache Request too large

Internal Error: (XV) Invalid Offset

HS: Invalid table not initialized for operation

HS: LOB Scan object segID and/or subSeglD mismatch

HS: OS write failed

A-24 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

-95004

-95201

-95202

-95203

-95204

-95205

-95206

-95207

-95208

-95209

-95210

-95211

-200001

-300000-309999

-310200

-320100

-321001

-321002

SQL status codes A
List of codes

HS: OS file space problem (possibly out of space)

TSM: Invalid parameter

TSM: OS file space problem (possibly out of space)

TSM: OS file write failed

TSM: OS file read failed

TSM: OS file seek failed

TSM: Max TSM allocated file space exceeded

TSM: Max TSM allocated files exceeded

TSM: Inconsistent file space count encountered

TSM: Inconsistent file count encountered

TSM: FDC file open failed

TSM: FDC get file descriptor failed

Unknown storage manager name

Status codes between -300000 and -309999 indicate StorHouse errors. Ignore
the -30 prefix to determine the 4-digit StorHouse status code and then refer to
the StorHouse Messages and Codes Manual for more information.

Range index: System table for range index does not exist

Temp manager: Temporary directory undefined

Bad table type

User does not have SCAN privilege on the table

StorHouse SQL Reference Manual A-25

FileTek Proprietary and Confidential

A SQL status codes
List of codes

A-26 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL
reserved words

This appendix lists the StorHouse SQL reserved
words. In StorHouse, you can use reserved words
as SQL identifiers (alias names, cursor names,
and database component names) only if you
delimit them with double quotes (“).

A

ABS

ADD
ADD_MONTHS
ALL
ALTER
AN

AND
ANY
ARRAY
AS

ASC
ASCII
AUTO
AVG
BEGIN
BETWEEN
BIGINT
BINARY
BIND
BINDING
BIT
BLOB

BY

CALL

CAST

CHAR
CHARACTER
CHECK

CHR
CLEANUP
CLOB

CLOSE
COLGROUP
COMMIT
COMPLEX
COMPRESS
CONNECT
CONNECTION
CONSTRAINT
CONTINUE
COUNT
CREATE
CURRENT
CURSOR
CVAR
DATABASE
DATE
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DAYS

DBA

DEC
DECIMAL
DECLARATION
DECLARE
DECODE
DEFAULT
DEFINITION
DELETE

DESC
DESCRIBE
DESCRIPTOR

StorHouse SQL Reference Manual B-1

FileTek Proprietary and Confidential

StorHouse SQL reserved words

DISCONNECT ISOLATION
DISTINCT JOIN
DOUBLE KEY

DROP LARGE
END LAST_DAY
ESCAPE LEAST
EXCLUSIVE LEFT
EXEC LENGTH
EXECUTE LEVEL
EXISTS LIKE

EXIT LINK
EXPLICIT LIST
EXTERN LOAD
FETCH LOCK

FILE LOG
FLOAT LONG
FOR LOWER
FOREIGN LPAD
FOUND LTRIM
FROM LVARBINARY
GO LVARCHAR
GOTO MAIN
GRANT MAX
GREATEST MIN
GROUP MINUS
HAVING MINUTE
HOUR MODE
IDENTIFIED MODIFY
IMMEDIATE MONEY

IN MONTH
INDEX MONTHS_BETWEEN
INDEXPAGES NEXT_DAY
INDICATOR NOCOMPRESS
INITCAP NOT
INPUT NOWAIT
INSERT NULL
INSTR NUMBER
INT NUMERIC
INTEGER NVL
INTERFACE OBJECT
INTERSECT OF

INTO ON

IS OPEN

B-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

StorHouse SQL reserved words

OPTION
OR

ORDER
OUTER
OUTPUT
PCTFREE
PRECISION
PREPARE
PRIMARY
PRIVILEGES
PUBLIC
QUARTER
QUESTION
RAW

REAL
RECORD
REFERENCES
RENAME
RESOURCE
RETURN
REVOKE
ROLLBACK
ROWID
ROWNUM
RPAD
RTRIM
SECTION
SECOND
SELECT
SERVICE
SET

SHARE
SHORT
SIZE
SMALLINT
SOME
SPACE

SQL
SQLERROR
SQLWARNING
START
STATIC
STATISTICS

STOP
STORAGE_ATTRIBUTES
STORAGE_MANAGER
SUBSTR

SUM
SYNONYM
SYSDATE
SYSTIME
SYSTIMESTAMP
TABLE
TABLESPACE
TIME
TIMEOUT
TIMESTAMP
TINYINT

TO

TO_CHAR
TO_DATE
TO_NUMBER
TO_TIME

TPE
TRANSACTION
TRANSLATE
TYPE

UNION
UNIQUE
UNSIGNED
UPDATE
UPPER

USER

USING

uID

UUID

VALUES
VARBINARY
VARCHAR
VARIABLES
VERSION
VIEW

WEEK
WHENEVER
WHERE

WITH

StorHouse SQL Reference Manual B-3

FileTek Proprietary and Confidential

H StorHouse SQL reserved words

WORK
YEAR

B-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax

This appendix contains the deprecated syntax of ALTER TABLE SPACE, CREATE
TABLE SPACE, and joins. StorHouse/RM releases 2.3 and higher accept the
deprecated syntax, but convert it, so that your existing programs and scripts can
continue to work.

StorHouse SQL Reference Manual C-1

FileTek Proprietary and Confidential

C Deprecated syntax
ALTER TABLE SPACE

ALTER TABLE SPACE

The ALTER TABLE SPACE statement for StorHouse/RM releases 2.2A and earlier
consists of a USING clause with at least one parameter and value. With this
format, you cannot change the GROUP value for the user tablespace.

Format

ALTER TABLE SPACE table_space_name
USING param_value], ...]

where param_value is defined as:

TABLE_VSET vs_name | TABLE_FSET fs_name |
TABLE_ATF atf | TABLE_VTF vtf |

HASH_VSET vs_name | HASH_FSET fs_name |
HASH_ATF atf | HASH_VTF vtf |

VALUE_VSET vs_name | VALUE_FSET fs_name |
VALUE_ATF atf | VALUE_VTF vitf |

EDC edc

Argument Description

table_space_name (required) Name of the user tablespace to be altered.

param_value (at least one required) Parameter(s) to be changed.
TABLE_VSET Name of the volume set to contain the table data files for the
VS_name user tablespace.
TABLE_FSET Name of the file set to contain the table data files for this user
fs_name tablespace.

C-2 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax C

Argument

ALTER TABLE SPACE

Description

TABLE_ATF atf

TABLE_VTF vtf

HASH_VSET
vS_name

HASH_FSET
fs_name

HASH_ATF atf

Access Time Factor (ATF) for table data files in the user
tablespace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

» 1 — Short access time is important.
= 2 — Short access time is moderately important.

» 3 — Short access time is minimally important.

Vulnerability Time Factor (VTF) for table data files in the user
tablespace. Valid values are:

DEFAULT — (default) Use the value of the StorHouse VTF
system parameter.

= NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

DIRECT - Bypass the performance buffer and write the file
directly to its file set.

Name of the volume set to contain hash index files for the user
tablespace.

Name of the file set to contain hash index files for the user
tablespace.

Access Time Factor (ATF) for hash index files in the user
tablespace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

= 1 — Short access time is important.
» 2 — Short access time is moderately important.

= 3 — Short access time is minimally important.

StorHouse SQL Reference Manual C-3

FileTek Proprietary and Confidential

C Deprecated syntax
ALTER TABLE SPACE

Argument Description

HASH_VTF vtf Vulnerability Time Factor (VTF) for hash index files in the user
tablespace. Valid values are:

DEFAULT — (default) Use the value of the StorHouse VTF
system parameter.

« NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

DIRECT - Bypass the performance buffer and write the file
directly to its file set.

VALUE_VSET Name of the volume set to contain value index files for the user
VS_name tablespace.

VALUE_FSET Name of the file set to contain value index files for the user
fs_name tablespace.

VALUE_ATF Access Time Factor (ATF) for value index files in the user

atf tablespace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

= 1 — Short access time is important.
» 2 — Short access time is moderately important.

» 3 — Short access time is minimally important.

C-4 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax C
ALTER TABLE SPACE

Argument Description
VALUE_VTF Vulnerability Time Factor (VTF) for value index files in the user
vitf tablespace. Valid values are:

DEFAULT — (default) Use the value of the StorHouse VTF
system parameter.

« NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

DIRECT - Bypass the performance buffer and write the file
directly to its file set.

EDC Error Detection Code flag indicating whether the StorHouse
edc error detection capability is to be used for table data and index
files. Valid values are:

» D — (default) Use the StorHouse system default for EDC.
« Y —Use EDCs.
=« N — Do not use EDCs.

Example

The following ALTER TABLE SPACE statement changes the vulnerability time
factor to DIRECT for hash index files in tablespace BILL98.

ALTER TABLE SPACE BILL98
USING HASH_VTF DIRECT

StorHouse SQL Reference Manual C-5

FileTek Proprietary and Confidential

C Deprecated syntax
CREATE TABLE SPACE

CREATE TABLE SPACE

The CREATE TABLE SPACE statement for StorHouse/RM releases 2.2A and
earlier consists of a USING clause. Your existing programs and scripts can
continue to use this old format, but if they do, StorHouse/RM releases 2.3 and
higher convert the CREATE TABLE SPACE into three SUBSPACE clauses. See the
examples on page C -9 for more information about this conversion. If you do not
want three subspaces in your user tablespace, then change your programs or
scripts to use the new CREATE TABLE SPACE format described on page 4-35
instead of the old format described below.

Format

CREATE TABLE SPACE table_space_name
USING TABLE_VSET vs_name, TABLE_FSET fs_name [,param_value...]

where param_value is any of the following:

TABLE_ATF atf | TABLE_VTF vtf |

HASH_VSET vs_name | HASH_FSET fs_name |
HASH_ATF atf | HASH_VTF vtf |

VALUE_VSET vs_name | VALUE_FSET fs_name |
VALUE_ATF atf | VALUE_VTF vitf |

EDC edc | GROUP group_name

Argument Description

table_space_name (required) Name of the new user tablespace. This name must
be unique in the current database.

TABLE_VSET (required) Name of the volume set to contain the table data files

VvS_nhame for the user tablespace.

TABLE_FSET (required) Name of the file set to contain the table data files for

fs_name the user tablespace.

param_value (optional) List of optional storage parameters for the user
tablespace.

C-6 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax C

CREATE TABLE SPACE

Argument Description

TABLE_ATF atf ~ (optional) Access Time Factor (ATF) for table data files in the
user tablespace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

= 1 — Short access time is important.
= 2 — Short access time is moderately important.

= 3 — Short access time is minimally important.

TABLE_VTF vtf (optional) Vulnerability Time Factor (VTF) for table data files in
the user tablespace. Valid values are:

= DEFAULT - (default) Use the value of the StorHouse VTF
system parameter.

= NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

= NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

» DIRECT - Bypass the performance buffer and write the file
directly to its file set.

HASH_VSET (required if you specify HASH_FSET) Name of the volume set
VS_name to contain hash index files for the user tablespace. The default
value is the TABLE_VSET value.

HASH_FSET (required if you specify HASH_VSET) Name of the file set to
fs_name contain hash index files for the user tablespace. The default
value is the TABLE_FSET value.

HASH_ATF atf (optional) Access Time Factor (ATF) for hash index files in the
user tablespace. Valid values are:

» 0 — (default)
= 1 — Short access time is important.
» 2 — Short access time is moderately important.

= 3 — Short access time is minimally important.

StorHouse SQL Reference Manual C-7

FileTek Proprietary and Confidential

C Deprecated syntax
CREATE TABLE SPACE

Argument Description

HASH_VTF vtf (optional) Vulnerability Time Factor (VTF) for hash index files in
the user tablespace. Valid values are:

» DEFAULT - (default) Use the value of the StorHouse VTF
system parameter.

= NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

= NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

= DIRECT - Bypass the performance buffer and write the file
directly to its file set.

VALUE_VSET (required if you specify VALUE_FSET) Name of the volume set
VvS_nhame to contain value index files for the user tablespace. The default
value is the TABLE_VSET value.

VALUE_FSET (required if you specify VALUE_VSET) Name of the file set to
fs_name contain value index files for the user tablespace. The default
value is the TABLE_FSET value.

VALUE_ATF (optional) Access Time Factor (ATF) for value index files in the
atf user tablespace. Valid values are:

» 0 — (default) Use the value of the StorHouse ATF system
parameter.

» 1 — Short access time is important.
= 2 — Short access time is moderately important.

= 3 — Short access time is minimally important.

VALUE_VTF (optional) Vulnerability Time Factor (VTF) for value index files in
vtf the user tablespace. Valid values are:

» DEFAULT - (default) Use the value of the StorHouse VTF
system parameter.

= NOW — Write the file to the performance buffer first and then
copy it immediately to its file set.

= NEXT — Write the file to the performance buffer and copy it to
its file set during the next StorHouse write-back operation.

= DIRECT - Bypass the performance buffer and write the file
directly to its file set.

C-8 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax C

CREATE TABLE SPACE

Argument Description
EDC (optional) Error Detection Code flag indicating whether the
edc StorHouse error detection capability is to be used for table data

and index files. Valid values are:

» D — (default) Use the StorHouse system default for EDC.
= Y —Use EDCs.

= N — Do not use EDCs.

GROUP (optional) Name of the StorHouse file access group to contain
group_name table data and index files. If you omit this parameter, the default
value is STH.
Examples

The following CREATE TABLE SPACE statement creates a new user tablespace
named BILL98. This example contains only the required arguments.

CREATE TABLE SPACE BILL98
USING TABLE_VSET ACCTVSET, TABLE_FSET ACCTFSET

StorHouse/RM releases 2.3 and higher convert this statement into three
SUBSPACE clauses:

CREATE TABLE SPACE BILL98

(SUBSPACE 1 VSET ACCTVSET FSET ACCTFSET OBJECT_TYPE T,
SUBSPACE 2 VSET ACCTVSET FSET ACCTFSET OBJECT_TYPE H,
SUBSPACE 3 VSET ACCTVSET FSET ACCTFSET OBJECT_TYPE V)

In this example, hash and value index files are stored in the same volume set

and file set as the table data files. The default values are used for the omitted
parameters.

StorHouse SQL Reference Manual C-9

FileTek Proprietary and Confidential

C Deprecated syntax
CREATE TABLE SPACE

= The following CREATE TABLE SPACE Statement creates a new user tablespace
named BILLING1996. This example contains all of the required and optional
arguments.

CREATE TABLE SPACE BILLING1996
USING

TABLE_VSET TABLEO96,
TABLE_FSET MAY,
HASH_VSET HINDEX96,
HASH_FSET MAY,
VALUE_VSET VINDEX96,
VALUE_FSET MAY,
TABLE_VTF NEXT,
TABLE_ATF O,
HASH_VTF NOW,
HASH_ATF 1,
VALUE_VTF NOW,
VALUE_ATF 1,

EDCY,

GROUP B5

StorHouse/RM releases 2.3 and higher convert this statement into three
SUBSPACE clauses:

CREATE TABLE SPACE BILLING1996

(SUBSPACE 1 VSET TABLE96 FSET MAY OBJECT_TYPE T ATF O
VTF NEXT EDC Y GROUP B5,

SUBSPACE 2 VSET HINDEX96 FSET MAY OBJECT_TYPE H ATF 1
VTF NOW EDC Y GROUP B5,

SUBSPACE 3 VSET VINDEX96 FSET MAY OBJECT_TYPE V ATF 1
VTF NOW EDC Y GROUP B5)

C-10 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Joins

Deprecated syntax C
Joins

Before StorHouse/RM release 3.1, you specified a join operation by naming the
tables on the FROM clause and by specifying the columns with their respective
join conditions on the WHERE clause. You can continue to use the deprecated
syntax but note the following considerations:

= For multiple outer-joins, particularly when combined with inner-joins, you
should verify that the result sets are correct, that is, the join order matches the
expected result.

= For multiple outer-joins, an error occurs if the table names are not in the
correct order on the FROM clause. Specify the left-side table first for a left
outer-join and the right-side table first for a right outer-join.

» Ifaquery fails with SQL code -20085—Invalid outer join specification—then
change the order of the table list in the FROM clause. If re-ordering the table
list does not eliminate the error, then StorHouse/RM cannot support that
outer-join structure.

= This syntax does not support full outer-joins (left and right outer-joins on the
same columns).

StorHouse SQL Reference Manual C-11

FileTek Proprietary and Confidential

C Deprecated syntax

Joins

Format

FROM table_name [correlation_name] [, table_name [correlation_name]]...

WHERE condition

Argument Description

table_name

(required) Name of the table to be used in the join. For a left outer-
join, specify the left table first. For a right outer-join, specify the
right table first.

correlation_name

(optional for all join types except self-joins) Another name for the
table to be joined with itself. Include a space between the table
name and alias name, for example: CUSTOMER FIRST

condition

(required for all join types except Cartesian product) Condition
used to select and/or combine rows.

» If the column names are the same in both tables, qualify the
column names with the table names.

» For self-joins, qualify the column names with the alias names.

» The format for a left outer-join condition is:
WHERE [table_name.]column = [table_name.]column (+)

« The format for a right outer-join condition is:
WHERE [table_name.]column (+) = [table_name.]Jcolumn

C-12 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Deprecated syntax C
Joins

Examples

The following left outer-join selects customers and their corresponding orders
from two tables. The left table is CUSTOMERS and the right table is
ORDERS. The SELECT statement returns all customers in the CUSTOMERS
table, including those customers with no corresponding entry in the ORDERS
table (in this case, order number and order date are returned with NULL
values).

SELECT CUSTOMERS.CUST_NO, CUSTOMERS.NAME,
ORDERS.ORDER_NO, ORDERS.ORDER_DATE

FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.CUST_NO = ORDERS.CUST_NO (+)

The following right outer-join preserves information from the table specified
on the right in the WHERE clause, that is, all rows in the BILLSUMMARY table
are selected, even if some rows do not have matching rows in the BILLDETAIL
table. In the FROM clause, the right-side table precedes the left-side table. For
example:

FROM BILLSUMMARY,BILLDETAIL
WHERE BILLDETAIL.ACCTNUM(+)=BILLSUMMARY.ACCTNUM

The following equi-join selects the customer number, name, order number,
and order date from the CUSTOMERS and ORDERS tables for all customer
numbers that appear in both tables.

SELECT CUSTOMERS.CUST_NO, CUSTOMERS.NAME,
ORDERS.ORDER.NO, ORDERS.ORDER_DATE

FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.CUST_NO = ORDERS.CUST_NO

StorHouse SQL Reference Manual C-13

FileTek Proprietary and Confidential

C Deprecated syntax
Joins

= The following self-join selects all customer names and numbers that are from
the same city as customer SMITH from the CUSTOMER table. The two
correlation names for the CUSTOMER table are FIRST and SECOND.

SELECT SECOND.CUST_NO, SECOND.NAME

FROM CUSTOMER FIRST, CUSTOMER SECOND
WHERE FIRST.NAME = ‘SMITH” AND SECOND.CITY = FIRST.CITY

C-14 StorHouse SQL Reference Manual

FileTek Proprietary and Confidential

Index

Symbols

|| concatenation operator 2-23, 6-16

A

ABS scalar function 6-5

account ID 2-4

active set, definition 1-6
ADD_MONTHS scalar function 6-7
aggregate function, definition 6-1

aggregate functions, specific
AVG 6-9
COUNT 6-18
MAX 6-37
MIN 6-38
SUM 6-55

alias names 2-5

ALL argument, SELECT statement 4-83
ALTER TABLE SPACE statement 4-7, C-2
AND boolean operator 5-5

AND logical operator 2-20

ANSI 1992 Level 2 SQL 1-1

answer set, definition 1-6

ANY keyword, quantified predicate 5-7
argument, definition 4-1

arithmetic operators 2-21

arrays, declaring 4-14

ASCII scalar function 6-8

auto-join, definition 1-8

AVG aggregate function 6-9

B

basic predicate 5-3

BEGIN DECLARE SECTION statement 4-11
BETWEEN predicate 5-9

BINARY data type 3-3

BIT_LENGTH scalar function 6-11

blanks in CHAR and VARCHAR comparisons 5-2
BLOB data type 3-4

BLOB scalar function 6-12

BLOB_FILE data type 3-22
BLOB_LOCATOR data type 3-22

boolean operator, definition 5-5

boolean operators, specific
AND 2-20, 5-5
NOT 2-20, 5-5
OR 2-20, 5-5

StorHouse SQL Reference Manual Index-1

FileTek Proprietary and Confidential

Index
C

BYTE data type 3-18

C

C language structures 3-21

C++-style comments 1-13

Cartesian product, definition 1-8
CHAR_LENGTH scalar function 6-13
CHARACTER data type 3-5

character literal, definition 2-11

CHR scalar function 6-14

clause, definition 2-2

clauses, specific
DESCRIBE BIND VARIABLES FOR 4-46
DESCRIBE SELECT LIST 4-47
FOR 4-93
FROM 4-86
GROUP BY 4-89
HAVING 4-90
INTO (SELECT) 4-85
INTO (VALUES) 4-108
ORDER BY 4-91
SET 4-106
USING (EXECUTE) 4-57, 4-58
USING (OPEN) 4-72
USING DESCRIPTOR (EXECUTE) 4-58
USING DESCRIPTOR (FETCH) 4-63
USING DESCRIPTOR (OPEN) 4-72
VALUES 4-71
WHERE 4-88

CLOB data type 3-6
CLOB scalar function 6-15

Index-2 StorHouse SQL Reference Manual

CLOB_FILE data type 3-22
CLOB_LOCATOR data type 3-22
CLOSE statement 4-19

codes, error A-1

column constraints 4-32

comments
C++-style 1-13
C-style 1-13
SQL-style 1-13

COMMIT WORK statement 4-20

comparison of CHAR and VARCHAR fields with
blanks 5-2

comparison of data types in DB2 and StorHouse 3-16
comparison operator, definition 2-23
complex predicate 2-20, 5-5
component, definition 4-1

compound index, definition 4-25
CONCAT scalar function 6-16
concatenation operator, definition 2-23
concatenation result data types 2-24
CONNECT statement 4-22

connect string 4-22

connection name 4-22

constant 2-11

Control Center, description XX

conventions
publication xxiii
SQL examples 1-11
SQL formats 1-10

FileTek Proprietary and Confidential

conversion
function data types 3-29
literals 3-28
loader data types 3-23
unloader data type 3-26

COUNT aggregate function 6-18

CREATE INDEX statement 4-24

CREATE SYNONYM statement 4-27
CREATE TABLE SPACE statement 4-35, C-6
CREATE TABLE statement 4-29

CREATE VIEW statement 4-40, 4-41

C-style comments 1-13

cursor name, definition 2-5

cursors
closing 4-19
declaring 4-42
opening 4-72

D

data field, definition 3-17
data type, definition 3-1

data types, general
database 3-2
host language 3-21
loader 3-17
local database 3-16
unloader 3-17

data types, specific
BINARY 3-3
BLOB 3-4
BLOB_FILE 3-22

Index
D

BLOB LOCATOR 3-22
CHARACTER 3-5
CLOB 3-6

CLOB_FILE 3-22
CLOB_LOCATOR 3-22
DATE 3-7

DATE EXTERNAL 3-25
DECIMAL 3-8
DOUBLE PRECISION 3-7, 3-8
FLOAT 3-7, 3-8

int16_t 3-23

int32_t 3-23

int64_t 3-23

int8_t 3-23

INTEGER 3-8
NUMERIC 3-8

RAW 3-18

REAL 3-9

SMALLINT 3-9

TIME 3-10
TIMESTAMP 3-11
TIMESTAMP EXTERNAL 3-25
types for int and long 3-23
uintl6_t 3-23

uint32_t 3-23

uint64_t 3-23

uint8_t 3-23
VARBINARY 3-12
VARBYTE 3-19
VARCHAR 3-13
VARRAW 3-19

database

component names 2-6

data types and functions 3-14
data types, definition 3-2
names 2-6

date and time input formats 3-19
DATE data type 3-7

StorHouse SQL Reference Manual Index-3

FileTek Proprietary and Confidential

Index
D

date format string 2-15

date literal, definition 2-12
DAYOFMONTH scalar function 6-19
DAYOFWEEK scalar function 6-20
DAYOFYEAR scalar function 6-21
DAYS scalar function 6-22

DB2 database data types 3-17

DBA privilege 4-68

DECIMAL data type 3-8

decimal literal, definition 2-14
DECIMAL results in arithmetic operations 2-22
DECLARE statement 4-42

declaring
arrays 4-14
cursors 4-42
host variables 4-12
indicator variables 4-12
new data types for variables and arrays 4-16

DECODE scalar function 6-23
default definition, user table 4-31

definitions
account ID 2-4
aggregate function 6-1
alias name 2-5
argument 4-1
arithmetic operator 2-21
auto-join 1-8
basic predicate 5-3
BETWEEN predicate 5-9
boolean operator 5-5
Cartesian product 1-8
character literal 2-11

Index-4 StorHouse SQL Reference Manual

comparison operator 2-23
complex predicate 5-5
component 4-1
concatenation operator 2-23
cursor name 2-5

data field 3-17

data type 3-1

database data type 3-2
database name 2-6

date literal 2-12

decimal literal 2-14
dynamic SQL 1-4
embedded SQL 1-3
equi-join 1-8

EXISTS predicate 5-10
extraction 1-7

file reference variable 2-8
floating-point literal 2-13
full table scan 1-7
function 2-2, 6-1
hexadecimal literals 2-14
host language data type 3-21
host variable 2-7

hybrid IN 1-9

IN predicate 5-11
inner-join 1-7

input data record 3-17
integer literal 2-13

join 4-94

join table operation 1-7
keyword 2-1

left outer-join 1-7

LIKE predicate 5-12
literal 2-11

loader data type 3-17
locator variable 2-7
logical operator 5-5
nested loop 1-8

nested query 1-9

FileTek Proprietary and Confidential

NULL predicate 5-14
NULL value 2-24
ODBC 1-2

place holder 2-8
predicate 2-2
quantified predicate 5-7
restrictive clause 2-2
scalar function 6-2
select table operation 1-6
self-join 1-8

space 1-12

special register 2-25
SQL 1-1

SQL identifier 2-4
static SQL 1-3
StorHouse SQL 1-1
string of characters 3-5
subquery 1-9
substitution markers 2-8
time literal 2-12
timestamp literal 2-13

DELETE privilege 4-68

DELETE statement 4-44

DESCRIBE BIND VARIABLES FOR clause 4-46
DESCRIBE SELECT LIST clause 4-47
DESCRIBE statement 4-46

DISCONNECT statement 4-49

DISTINCT argument, SELECT statement 4-83

Distributed Relational Database Architecture
(DRDA) 1-2

DOUBLE PRECISION data type 3-7, 3-8

DRDA (Distributed Relational Database

Architecture) 1-2
DROP INDEX statement 4-50

Index
E
DROP SYNONYM statement 4-52

DROP TABLE SPACE statement 4-54
DROP TABLE statement 4-53

DROP VIEW statement 4-56

dynamic SQL 1-4, 4-2

E

embedded SQL 1-3

Embedded SQL Interface (ESQL) 1-3

END DECLARE SECTION statement 4-11
equi-join, definition 1-8

error codes, list A-1

ESQL 1-3

EXECUTE IMMEDIATE statement 4-60
EXECUTE statement 4-57

EXISTS predicate 5-10

expression, definition 2-3

extractor 1-7

F

FETCH statement 4-62

file access group, StorHouse 4-9, 4-37, C-9
file reference variable 2-8

file set, user tablespace C-2

fixed-length data type 3-3

StorHouse SQL Reference Manual Index-5

FileTek Proprietary and Confidential

Index
G

FLOAT data type 3-7, 3-8
FOR clause 4-93

format string
definition 2-14
for dates 2-15
for times 2-16

FREE LOCATOR statement 4-66
FROM clause 4-86

full table scan 1-7

function, definition 2-2, 6-1
functions and database data types 3-14

functions, specific
ABS 6-5
ADD_MONTHS 6-7
ASCII 6-8
AVG 6-9
BIT_LENGTH 6-11
BLOB 6-12
CHAR_LENGTH 6-13
CHR 6-14
CLOB 6-15
CONCAT 6-16
COUNT 6-18
DAYOFMONTH 6-19
DAYOFWEEK 6-20
DAYOFYEAR 6-21
DAYS 6-22
DECODE 6-23
GREATEST 6-25
HOUR 6-26
INITCAP 6-27
INSTR 6-28
LAST_DAY 6-30
LEAST 6-31
LENGTH 6-32

Index-6 StorHouse SQL Reference Manual

LOWER 6-33
LPAD 6-34

LTRIM 6-36

MAX 6-37

MIN 6-38
MINUTE 6-39
MONTH 6-40
MONTHS_BETWEEN 6-41
NEXT_DAY 6-42
NVL 6-43
OCTET_LENGTH 6-44
OVERLAY 6-45
POSITION 6-47
QUARTER 6-48
RPAD 6-49

RTRIM 6-51
SECOND 6-52
SUBSTR 6-53

SUM 6-55
TO_CHAR 6-57
TO_DATE 6-58
TO_HEX 6-59
TO_NUMBER 6-61
TO_TIME 6-62
TRANSLATE 6-63
TRIM 6-65

UPPER 6-67

WEEK 6-68

YEAR 6-69

G

gateway, database 1-2

GRANT statement 4-67
GREATEST scalar function 6-25
GROUP BY clause 4-89

FileTek Proprietary and Confidential

Index
H

input formats for date and time data 3-19
H input host variable, describing 4-46
INSERT privilege 4-68
INSERT statement 4-70
INSTR scalar function 6-28
int16_t data type 3-23
int32_t data type 3-23
int64 _t data type 3-23
int8_t data type 3-23

group, StorHouse file access C-9 input data record, definition 3-17

hash index 4-25

HAVING clause 4-90

hexadecimal literal, definition 2-14
host language data types 3-21

host variable name 2-7

host variables, declaring 4-12

HOUR scalar function 6-26 integer literal, definition 2-13

hybrid IN 1-8 INTO clause
DESCRIBE 4-46
I SELECT 4-85

invoking StorHouse SQL 1-2
IBM Distributed Relational Database Architecture 1SQL 1-2

(DRDA) 1-2
identifier, definition 2-6 J
IN predicate 5-11
INDEX privilege 4-68 join columns 1-7
indexes join condition 1-7, C-12

assigning FSETS C-7

assigning to a user tablespace 4-25
assigning VSETs C-7 join, definition 1-7, 4-94
creating 4-24

dropping 4-50, 4-53

join operations 1-8

indicator variables, declaring 4-12 K
INITCAP scalar function 6-27

keyword
inner-join, definition 1-7 definition 2-1

StorHouse SQL Reference Manual Index-7

FileTek Proprietary and Confidential

Index
L

reserved B-1

L

LAST DAY scalar function 6-30
LEAST scalar function 6-31

left outer-join, definition 1-7
LENGTH scalar function 6-32
LIKE predicate 5-12

list of
aggregate functions 6-2
loader data types 3-14
reserved words B-1
scalar functions 6-2
SQL statements 4-2
status codes A-1

literal, definition 2-11

literals
character 2-11
conversion of 3-28
date 2-12
floating-point 2-13
hexadecimal 2-14
integer 2-13
time 2-12
timestamp 2-13

loader data type
conversion 3-23
definition 3-17
list of 3-18

LOB locator 2-7
local database 1-2

Index-8 StorHouse SQL Reference Manual

local database data types 3-16
locator variable, LOB 2-7
logical operator, definition 5-5
logical operators 2-20
LOWER scalar function 6-33
LPAD scalar function 6-34
LTRIM scalar function 6-36

M

masks
date format strings 2-15
time format strings 2-16

MAX aggregate function 6-37
MIN aggregate function 6-38
MINUTE scalar function 6-39
MONTH scalar function 6-40

MONTHS BETWEEN scalar function 6-41

N

names, user-supplied 2-4

naming conventions
account ID 2-4
alias name 2-5
cursor name 2-5
database component name 2-6
database name 2-6
host variable name 2-7

nested loop 1-8

FileTek Proprietary and Confidential

Index

nested query, definition 1-9
NEXT_DAY scalar function 6-42
NOT logical operator 2-20

NOT NULL constraint 2-24
NULL predicate 5-14

NULL value, definition 2-24
NUMERIC data type 3-8

NVL scalar function 6-43

O

object identifier 3-4

OCTET_LENGTH scalar function 6-44

OID 314

Open Database Connectivity (ODBC) gateway 1-2
OPEN statement 4-72

operators
arithmetic 2-21
comparison 2-23
set 2-18

OR boolean operator 5-5

OR logical operator 2-20

ORDER BY clause 4-91

output host variables, describing 4-46
OVERLAY scalar function 6-45

P

padding
bit data 3-3
character data 3-5

place holder, definition 2-8
POSITION scalar function 6-47
precompiler, ESQL 1-4
predicate order 5-2

predicate, definition 2-2

predicates, specific
basic 5-3
BETWEEN 5-9
complex 2-20, 5-5
EXISTS 5-10
IN 5-11
LIKE 5-12
NULL 5-14
quantified 5-7

PREPARE statement 4-75
privileges 4-68
PUBLIC account 4-69

Q

quantified predicate 5-7
QUARTER scalar function 6-48
queries, types of 1-6

StorHouse SQL Reference Manual Index-9

FileTek Proprietary and Confidential

Index
R

R

range index 4-25

RAW data type 3-18

REAL data type 3-9

rescaling DECIMAL columns 3-24
RESOURCE privilege 4-68
restrictive clause, definition 2-2

result data types
concatenation 2-24
UNION set operator 2-18

result table, definition 1-6

REVOKE statement 4-77

right outer-join, definition C-13
ROLLBACK WORK statement 4-80
RPAD scalar function 6-49

RTRIM scalar function 6-51

S

scalar function, definition 6-2

scalar functions, specific
ABS 6-5
ADD_MONTHS 6-7
ASCII 6-8
BIT_LENTH 6-11
BLOB 6-12
CHAR_LENGTH 6-13
CHR 6-14
CLOB 6-15

Index-10 StorHouse SQL Reference Manual

CONCAT 6-16
DAYOFMONTH 6-19
DAYOFWEEK 6-20
DAYOFYEAR 6-21
DAYS 6-22
DECODE 6-23
GREATEST 6-25
HOUR 6-26
INITCAP 6-27
INSTR 6-28
LAST_DAY 6-30
LEAST 6-31
LENGTH 6-32
LOWER 6-33
LPAD 6-34

LTRIM 6-36
MINUTE 6-39
MONTH 6-40
MONTHS_BETWEEN 6-41
NEXT_DAY 6-42
NVL 6-43
OCTET_LENGTH 6-44
OVERLAY 6-45
POSITION 6-47
QUARTER 6-48
RPAD 6-49

RTRIM 6-51
SECOND 6-52
SUBSTR 6-53
TO_CHAR 6-57
TO_DATE 6-58
TO_HEX 6-59
TO_NUMBER 6-61
TO_TIME 6-62
TRANSLATE 6-63
TRIM 6-65

UPPER 6-67

WEEK 6-68

YEAR 6-69

FileTek Proprietary and Confidential

SCAN privilege 4-68
SECOND scalar function 6-52
SELECT privilege 4-68

SELECT statement
description 4-82
FOR clause 4-93
FROM clause 4-86
GROUP BY clause 4-89
HAVING clause 4-90
INTO clause 4-85
ORDER BY clause 4-91
WHERE clause 4-88

select table operation, definition 1-6
self-join, definition 1-8

SET clause 4-106

SET CONNECTION statement 4-105
set operator 2-18

SMALLINT data type 3-9

SOME keyword, guantified predicate 5-7
space, definition 1-12

special register, definition 2-25

special registers
SYSDATE 2-25
SYSTIME 2-26
USER 2-25

SPUFI 1-2

SQL identifier 2-4

SQL status codes A-1

SQL, invoking 1-2

SQL_IDX_TYPE system parameter 4-24

Index
S

SQLCA 4-60

SQLDA 4-46

SQL-style comments 1-13
statements, list of 4-2

statements, specific

ALTER TABLE SPACE 4-7, C-2
BEGIN DECLARE SECTION 4-11
CLOSE 4-19

COMMIT WORK 4-20
CONNECT 4-22

CREATE INDEX 4-24

CREATE SYNONYM 4-27
CREATE TABLE 4-29

CREATE TABLE SPACE 4-7, 4-35, C-6
CREATE VIEW 4-40, 4-41
DECLARE 4-42

DELETE 4-44

DESCRIBE 4-46
DISCONNECT 4-49

DROP INDEX 4-50

DROP SYNONYM 4-52

DROP TABLE 4-53

DROP TABLE SPACE 4-54
DROP VIEW 4-56

END DECLARE SECTION 4-11
EXECUTE 4-57

EXECUTE IMMEDIATE 4-60
FETCH 4-62

FREE LOCATOR 4-66

GRANT 4-67

INSERT 4-70

OPEN 4-72

PREPARE 4-75

REVOKE 4-77

ROLLBACK WORK 4-80
SELECT 4-82

SELECT (RIGHT OUTER-JOIN) C-13

StorHouse SQL Reference Manual Index-11

FileTek Proprietary and Confidential

Index
T

SET CONNECTION 4-105
UPDATE 4-106

VALUES INTO 4-108
WHENEVER 4-109

static SQL 1-3

status codes, list A-1

STH access group 4-37, C-9
StorHouse Xix

StorHouse account ID 4-22
StorHouse password 4-22
StorHouse SQL reserved words B-1
StorHouse SQL, definition 1-1
StorHouse/Admin 1-2
StorHouse/RM XX

StorHouse/SM Xix

string of characters, definition 3-5
subquery, definition 1-9
substitution marker, definition 2-8
SUBSTR scalar function 6-53
SUM aggregate function 6-55

synonyms
creating 4-27
dropping 4-52

syntax rules for StorHouse SQL 1-10
SYSDATE special register 2-25
SYSSMUSERS system table 2-3

system parameter, SQL_IDX_TYPE 4-24
system table, SYSSMUSERS 2-3

Index-12 StorHouse SQL Reference Manual

SYSTIME special register 2-26

T

tables
creating 4-29
dropping 4-53

TIME data type 3-10

time format string 2-16

time literal, definition 2-12
TIMESTAMP data type 3-11
timestamp literal, definition 2-13
TO_CHAR scalar function 6-57
TO_DATE scalar function 6-58
TO_HEX scalar function 6-59
TO_NUMBER scalar function 6-61
TO_TIME scalar function 6-62
TRANSLATE scalar function 6-63
TRIM scalar function 6-65

type declarations 4-12

U

uint16_t data type 3-23
uint32_t data type 3-23
uint64 _t data type 3-23
uint8_t data type 3-23

unary arithmetic operator 2-22

FileTek Proprietary and Confidential

Index

UNION ALL set operator 2-18
UNION set operator 2-18

unloader data type
conversion 3-26
definition 3-17

UPDATE privilege 4-68
UPDATE statement 4-106
UPPER scalar function 6-67
USER special register 2-25

user tables
creating 4-29
dropping 4-53

user tablespaces
creating 4-35
dropping 4-54

user-supplied names 2-4

USING clause
EXECUTE 4-57, 4-58
OPEN 4-72

USING DESCRIPTOR clause
EXECUTE 4-57, 4-58
FETCH 4-63
OPEN 4-72

V

value index 4-25

VALUES INTO statement 4-108

VARBINARY data type 3-12
VARBYTE data type 3-19

VARCHAR data type 3-13
variable declarations 4-11
variable-length data type 3-2
VARRAW data type 3-19

views
creating 4-40
dropping 4-56

W

WEEK scalar function 6-68
WHENEVER statement 4-109
WHERE clause 4-88

WITH GRANT OPTION 4-69

Y

YEAR scalar function 6-69

StorHouse SQL Reference Manual Index-13

	Online Guide
	Contents
	Welcome
	StorHouse family of products
	StorHouse/SM
	StorHouse/RM
	Control Center

	Purpose of this document
	Intended audience
	Contents
	Related documentation
	Conventions

	Introduction
	About StorHouse SQL
	Ways to submit StorHouse SQL
	Types of StorHouse SQL
	Static SQL
	Dynamic SQL

	SQL standard differences
	Through a FileTek interface
	In an application program
	Through a gateway
	Through a federator

	Types of queries
	Selection
	Extraction
	Join
	Join types
	Inner-join
	Left outer-join
	Equi-join
	Self-join
	Cartesian product

	Join methods
	Nested loop
	Hybrid IN

	Subquery

	StorHouse SQL conventions
	SQL format conventions
	SQL example conventions
	Spaces in StorHouse SQL
	Comments in StorHouse SQL
	SQL-style comment
	C-style comment
	C++-style comments

	Elements of StorHouse SQL
	Keywords
	Clauses
	Predicates
	Functions
	Expressions
	User-supplied names
	Account IDs
	Alias names
	Cursor names
	Database names
	Database user component names
	Host variable names
	LOB locator variables
	LOB file reference variables
	Substitution markers

	Delimited SQL identifiers
	Delimited account IDs
	Qualified and delimited user table names
	Delimited volume set and file set names
	Delimited user tablespace names

	Literals
	Character literals
	Date literals
	Time literals
	Timestamp literals
	Integer literals
	Floating-point literals
	Decimal literals
	Hexadecimal literals

	Format strings
	Date format strings
	Time format strings

	Operators
	Set operators (UNION and UNION ALL)
	Logical operators (AND, OR, NOT)
	Arithmetic operators (+, -, *, /, unary)
	Comparison operators (=, <>, <, >, <=, >=)
	Concatenation operator (||)

	NULL values
	Special registers
	USER special register
	SYSDATE special register
	SYSTIME special register

	StorHouse data types
	About StorHouse data types
	Database data types
	Descriptions of database data types
	Database data types and functions
	StorHouse and local database data types

	Loader and unloader data types
	List of loader and unloader data types
	Date and time formats of input and result data

	Host language data types
	Data type conversion
	Conversion of loader data types
	Conversion of unloader data types
	Conversion of literals
	Conversion of function data types

	StorHouse SQL statements
	About StorHouse SQL statements
	List of StorHouse SQL statements
	Categories of SQL
	ALTER TABLE SPACE
	Format
	Examples

	BEGIN and END DECLARE SECTION
	Format
	Declaring host and indicator variables
	ESQL format
	C language format
	Examples

	Declaring arrays
	ESQL format to declare an array
	C language format to declare a non-char array
	C language format to declare a char array
	Examples

	Declaring type definitions for variables and arrays
	ESQL format to declare a new data type for a variable
	ESQL format to declare a new data type for an array
	Examples

	CLOSE
	Format
	Example

	COMMIT WORK
	Format
	Examples

	CONNECT
	Format
	Example

	CREATE INDEX
	Format
	Examples

	CREATE SYNONYM
	Format
	Example

	CREATE TABLE
	Format
	Examples

	CREATE TABLE SPACE
	Format
	Examples

	CREATE VIEW
	Format
	Example

	DECLARE
	Format
	Examples

	DELETE
	Format
	Example

	DESCRIBE
	DESCRIBE BIND VARIABLES
	Format
	Example

	DESCRIBE SELECT LIST
	Format
	Example

	DISCONNECT
	Format
	Examples

	DROP INDEX
	Format
	Example

	DROP SYNONYM
	Format
	Example

	DROP TABLE
	Format
	Example

	DROP TABLE SPACE
	Format
	Example

	DROP VIEW
	Format
	Example

	EXECUTE
	Format
	Examples

	EXECUTE IMMEDIATE
	Format
	Example

	FETCH
	Format
	Examples

	FREE LOCATOR
	Format
	Example

	GRANT
	Format
	Examples

	INSERT
	Format
	Example

	OPEN
	Format
	Examples

	PREPARE
	Format
	Examples

	REVOKE
	Format
	Examples

	ROLLBACK WORK
	Format
	Example

	SELECT
	Format
	INTO clause
	Format
	Examples

	FROM clause
	Format
	Example

	WHERE clause
	Format
	Example

	GROUP BY clause
	Format
	Example

	HAVING clause
	Format
	Example

	ORDER BY clause
	Format
	Examples

	FOR clause
	Format

	Joins
	Sample tables
	Performing multiple inner-join operations
	Performing a left outer-join
	Changing the table order
	Using parentheses to specify join order
	Combining inner-join and outer-join operations
	Using a WHERE clause with a join
	Explanation of query 1
	Explanation of query 2

	SET CONNECTION
	Format
	Example

	UPDATE
	Format
	Example

	VALUES INTO
	Format
	Example

	WHENEVER
	Format
	Example

	StorHouse SQL predicates
	About StorHouse SQL predicates
	Predicate order
	Comparisons of CHAR and VARCHAR fields with blanks

	Basic predicate
	Format
	Example

	Complex predicate
	Examples

	Quantified predicate
	Format
	Example

	BETWEEN
	Format
	Example

	EXISTS
	Format
	Example

	IN
	Format
	Example

	LIKE
	Format
	Examples

	NULL
	Format
	Examples

	StorHouse SQL functions
	About StorHouse SQL functions
	Aggregate functions
	Scalar functions

	ABS
	Format
	Example

	ADD_MONTHS
	Format
	Example

	ASCII
	Format
	Example

	AVG
	Format
	Example

	BIT_LENGTH
	Format
	Example

	BLOB
	Format
	Example

	CHAR_LENGTH
	Format
	Example

	CHR
	Format
	Example

	CLOB
	Format
	Example

	CONCAT
	Format
	Examples

	COUNT
	Format
	Example

	DAYOFMONTH
	Format
	Example

	DAYOFWEEK
	Format
	Example

	DAYOFYEAR
	Format
	Example

	DAYS
	Format
	Example

	DECODE
	Format
	Example

	GREATEST
	Format
	Example

	HOUR
	Format
	Example

	INITCAP
	Format
	Example

	INSTR
	Format
	Example

	LAST_DAY
	Format
	Example

	LEAST
	Format
	Example

	LENGTH
	Format
	Example

	LOWER
	Format
	Example

	LPAD
	Format
	Examples

	LTRIM
	Format
	Example

	MAX
	Format
	Example

	MIN
	Format
	Example

	MINUTE
	Format
	Example

	MONTH
	Format
	Example

	MONTHS_BETWEEN
	Format
	Example

	NEXT_DAY
	Format
	Example

	NVL
	Format
	Example

	OCTET_LENGTH
	Format
	Example

	OVERLAY
	Format
	Example

	POSITION
	Format
	Example

	QUARTER
	Format
	Example

	RPAD
	Format
	Example

	RTRIM
	Format
	Example

	SECOND
	Format
	Example

	SUBSTR
	Format
	Example

	SUM
	Format
	Example

	TO_CHAR
	Format
	Example

	TO_DATE
	Format
	Example

	TO_HEX
	Format
	Examples

	TO_NUMBER
	Format
	Example

	TO_TIME
	Format
	Example

	TRANSLATE
	Format
	Example

	TRIM
	Format
	Example

	UPPER
	Format
	Example

	WEEK
	Format
	Example

	YEAR
	Format
	Example

	SQL status codes
	List of codes

	StorHouse SQL reserved words
	Deprecated syntax
	ALTER TABLE SPACE
	Format
	Example

	CREATE TABLE SPACE
	Format
	Examples

	Joins
	Format
	Examples

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

