StorHouse/RM
Concepts

StorHouse/RM Release 3.4

Publication Number
900132 Rev. H

September 17, 2008

All rights reserved. No part of this publication may be reproduced, translated, stored in
any electronic retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission
of FileTek, Inc.

Copyright © 1998-2008 FileTek, Inc. As an Unpublished Licensed Work.
Publication Number: 900132 Rev. H

NOTICE: U.S. GOVERNMENT USERS

This notice applies to all acquisitions of this work by or for the U.S. Government
(“Government”), or by any prime contractor or subcontractor (at any tier) under
any contract, cooperative agreement or other activity with the Government. By
accepting delivery of this work, the Government agrees that this work and the
Licensed Program(s) described herein qualify as “commercial” computer
software within the meaning of the acquisition regulation(s) applicable to this
procurement. The terms of conditions of the license for the Licensed Program(s)
shall pertain to the Government’s use and disclosure of this work and the
Licensed Program(s), and shall supersede any conflicting contractual terms or
conditions. If the license for this work and the Licensed Program(s) fails to meet
the Government’s need or is inconsistent in any respect with Federal law, the
Government agrees to return this work and the Licensed Program(s), unused, to
FileTek, Inc. The following additional statement applies only to acquisitions
governed by DFARS Subpart 227.4 (October 1988) “Restricted Rights - Use,
duplication and disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 (OCT. 1988).” Unpublished licensed
work property of FileTek, Inc. Unauthorized use, duplication or distribution
prohibited. All rights reserved. A copyright notice on this work and/or on the
Licensed Program(s) by itself does not constitute publication or public disclosure
of this work or the Licensed Program(s). The contractor/manufacturer is:

FileTek, Inc.
9400 Key West Avenue
Rockville, Maryland 20850

Information in this document is subject to change without notice and does not represent
a commitment on the part of FileTek, Inc. Further, FileTek, Inc. reserves the right to
supplement the document with information not available at the time of creation of the
document. FILETEK, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND CANNOT
WARRANT THE RESULTS YOU MAY OBTAIN USING THE DOCUMENT. IN NO
EVENT SHALL FILETEK, INC. BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF
BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
EVEN IF FILETEK, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS PUBLICATION. Some
states or jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

FileTek and StorHouse are registered U.S. trademarks of FileTek, Inc. VRAM is a U.S.
trademark of FileTek, Inc. Sun, Microsystems, and Ultra Enterprise are registered
trademarks or trademarks of Sun Microsystems, Inc. Microsoft and Windows are
registered trademarks of Mircrosoft Corporation. UNIX is a registered trademark of the
Open Group. Oracle is a registered trademark and Oracle8i is a trademark of Oracle
Corporation. IBM, DB2, Distributed Relational Database Architecture, and DataJoiner
are registered trademarks or trademarks of International Business Machines
Corporation. Sequelink is a registered trademark of DataDirect Technologies. All other
brand or product names are trademarks or registered trademarks of their respective
owners.

Documentation for FileTek’s StorHouse product. Protected by the following U.S. Patents:
4,864,572; 5,247,660; 5,727,197; 6,049,804. Other patents pending.

Contents

Products and applications 4
StorHouse databases 6
User tables 8

Large objects 10

Indexes 12

User tablespaces 14
Metadata 16

Storage management 18
Backup 20

Recovery 22

Software architecture 24
SQL 26

ESQL 28

Data loaders 32

Data unloader 34

S-Iu‘i_bvlse ODBC interface 36

StorHouse/UDB Link 38
Welcome

Queries 40
This publication describes the key

concepts of StorHouse/RM. It Concurrency 42
explains the structures that store

Database security 44
relational data on StorHouse and

the facilities that access and Administration 46

manage that data.

StorHouse/RM Concepts

Detail data

Detail data is the most
granular level of information
that an enterprise can
collect at a single point of
service. A call detail record,
ATM transaction, point-of-
sale data, clickstream,
photo, audio or video clip,
and e-mail message are all
examples of detail data.

StorHouse/SM

StorHouse/SM, the storage
management component,
controls a hierarchy of
storage devices composed
of cache, redundant array of
independent disks (RAID),
Serial Advanced
Technology Attached
(SATA) disks, massive array
of idle disks (MAID),
erasable and write-once-
read-many (WORM) optical
disk jukeboxes, and
erasable and WORM
automated tape libraries.
StorHouse/SM is also
responsible for critical
system management tasks,
like data migration, backup,
and recovery. It provides
system-managed storage
that optimizes media usage,
response time, and storage
costs for each application.
StorHouse/SM runs on
Sun0 Microsystems[] Sun
Fired Servers, on Hewlett-
Packard PA-RISC systems,
and on IBM® pSeries
servers.

4 StorHouse/RM Concepts

Products and applications

StorHouse® is the FileTek® enterprise-wide solution for managing the capture,
storage, movement, and access of gigabytes (GB) to petabytes (PB) of relational
and non-relational detail data. StorHouse technology combines industry-leading,
scalable storage devices and Open System processors with specialized storage
management and relational database management system (RDBMS) software
components. Together, these components make StorHouse the ideal hub server,
active archive, or database extension for data warehousing and high volume data-
intensive applications such as Customer Relationship Management (CRM),
Enterprise Resource Planning (ERP), and e-business.

StorHouse as a hub server

As a hub server, StorHouse is an enterprise-wide data warehouse for transaction-
level data. Different operational systems can load detail information into the
centralized StorHouse hub, and multiple dependent data marts can query, or
mine, the hub on a regular or ad hoc basis.

zZI0Ss
mainframe
UNIX |1:|
|I|IIII|iI workstation s NT
UNIX
server
;TL);, database
database
zI0s
mainframe T OLAP
| y
I li SATA disk
MPP
UND.(. MAID DSS
application Optical L Hitabase
server

Automated tape

The StorHouse hub server stores static operational data from multiple
operational systems safely and securely. As a centralized, single storage repository,
it provides timely, shared access to one data source, a consistent view of business
activity across the enterprise, and information used to fuel data marts for decision
support and other analytical applications.

FileTek Proprietary and Confidential

StorHouse as an active archive

As an archive server, StorHouse is a high capacity back-end archive for one or
more database systems. You can store operational and informational data in
StorHouse and then unload/reload it into the database as required. Data is always
available for ad hoc querying and can be restored to the database for decision
support at any time. Some typical active archive applications include bill
regeneration, subpoena compliance, and audits.

StorHouse
Active Archive

MAID

-

Application |4 Database |¢— Reload —
Unload

Application | Ad hoc query
-

Unload

= - -

Application |4 Database — Reload —

Optical \\

Automnated tape

StorHouse as a database extension

As a database extension, StorHouse is a high capacity back-end storage repository
for a primary database. Users and applications need not know the location of the
data. They simply submit a query through the primary database. A database
extension is suitable for operational and historical data, as well as relational and

non-relational data.

Guery data
from 12 months ago

Application |3

Primary

.

FileTek Proprietary and Confidential

Database

o
-
Result data

(6 months of data)

S MAID ™

StorHouse
Database Extension

Optical \

Autornated tape

(60 months of data)

StorHouse/RM

StorHouse/RM, the FileTek
RDBMS component, works
in conjunction with
StorHouse/SM to
specifically administer the
storage, access, and

movement of relational data.

StorHouse/RM provides
row-level SQL access to
high volumes of detail data
on any layer, including tape,
in the StorHouse storage
hierarchy. SQL access is
available from different
platforms through a variety
of industry-standard
protocols.

StorHouse/Control
Center

StorHouse/Control Center is
the FileTek Windows®-
based network computing
system for providing
administrative control of
StorHouse. StorHouse/
Control Center consists of
one or more servers that
communicate with clients
over an IP network. The
StorHouse/Control Center
server provides network
connectivity to StorHouse.
The StorHouse/Control
Center clients consist of one
or more graphical user
interface (GUI) modules for
performing StorHouse
system and database
administration tasks,
configuring and managing
servers, and analyzing
StorHouse activity and
performance.

Products and applications

5

m SforHouse

Capabilities

Maximum number of user
tablespaces: no
meaningful limit

Maximum number of user
and system tables in a
database: no limit

Maximum number of
indexes in a database: no
meaningful limit

Maximum number of
indexed columns for a
table: 2400

6 StorHouse/RM Concepts

StorHouse databases

A StorHouse database is a write-once-read-many database, ideal for storing high
volumes of detail data. Fach database contains:

s User table data that you store and access
» Optional indexes—value, hash, and range—that locate the table data
» Metadata that describes database components

A StorHouse database has both a logical and a physical structure. Logically, user
tables, indexes, and large object (LOB) data reside in user tablespaces and
metadata resides in a system tablespace. Physically, these components reside in
files. Table data, indexes, and LOB data can reside in the same user tablespace (as
shown below) or different user tablespaces.

‘ Database 1 ‘ | Database n ‘
| User tablespace 1 ‘ ‘ User tablespace n ‘ | System tablespace ‘
‘ User table 1 | ‘ User table n ‘ ‘ System table 1 ‘ ‘ System table n ‘

I | I |
| Table data | | Index 1 | | Index n | LOB data | Index | | Log | | Index log | | Journal |

StorHouse database user files

StorHouse database user files reside on the StorHouse storage hierarchy. Each
user table consists of one or more segments. Each segment consists of a table data
file, an index file for each index, and one or more LOB subsegment files. Each
time you load data into a user table, StorHouse creates a segment with this set of
segment files. You can load multiple segments at a time and replace existing
segments. Replacing a segment does not remove it from StorHouse but rather
invalidates it, making the files in the segment inaccessible. You can also merge (or
coalesce) and delete segments later. Merging segments enhances performance
because it reduces the number of file and extent opens and closes for a query.

FileTek Proprietary and Confidential

The following user table consists of three segments. This user table has one value
index, one hash index, and one LOB column.

User table
Table Index 1 Index 2 LOB
data Value index Hash index column
s t1 Table Value Hash LOB h
egmen data file index file index file subsegment file
Segment 2 Table Value Hash LOB h
9 data file index file index file subsegment file
Table Value Hash LOB h
Segment 3 data file index file index file subsegment file
H:

Range indexes are stored in system tables instead of segments. Depending on size
or by user request, LOB values may be stored in the table data file, or LOB values
in different columns may be stored in the same LOB subsegment file, or LOB
values in a single column may be stored in multiple LOB subsegment files.

StorHouse database system files

StorHouse database system files reside on and are managed by the UNIX® file
system. These database system files contain the following system components or
metadata:

s System tables

s System table indexes

= System table logs

» System table index logs
» (Optional) Journal files

Each system component is a separate UNIX file. The journal files must be on disk
systems separate from the other files.

FileTek Proprietary and Confidential

Extents

Segments consist of
StorHouse files that can
reside on any storage
device in the StorHouse
storage hierarchy. Files are
composed of different
extents, or file components:

Database user file extents

Table | Hash | Value | LOB
data index index file
file file file

Data Data Data Data
DF Map Map DF
DF DF

= A data extent holds user
data and/or control data.

A definitions (DF) extent
contains information
necessary to retrieve the
data.

= A map extent is the high-
level index that
StorHouse/RM always
reads first when doing
index lookups.

You can hold some or all
extents in the performance
buffer to enhance
performance. For instance,
you can hold the value index
and hash index DF and map
extents in the performance
buffer longer than the table
data extent to speed access
to the data.

StorHouse databases 7

m SforHouse

What'’s different
about StorHouse
user tables?

» User tables are read-only.

— Ensures a permanent
record of critical detail
data

— Maximizes concurrency
of data to all users
(minimal locking/no
updating)

— Eliminates need to
allocate additional
space for inserts and
index updates

— Eliminates need for
continual backups

All table data is bulk-
loaded.

— Loads faster
— Optimizes data
organization

User tables are loaded in
multiple segments.

— Maximizes concurrent
loading

— Bypasses time-
intensive index updates

Dropped user tables may
be undropped, providing a
safety mechanism for
errors.

Segments can be
invalidated and later
validated or deleted.

— Provides a way to
recover from load
errors or to replace
data

— Prohibits access to
certain table data

StorHouse/RM Concepts

User tables

A user table is the basic unit of data storage in a StorHouse database. User tables
hold user-accessible data. Logically, StorHouse user tables are like most RDBMS
user tables; they consist of columns and rows of data. Each row contains data
values conforming to the constraints of the columns that make up the row.

Columns represent |

specific data types — | |
and domains.

ACCOUNT LAST_NAME BILLING

91256 ANDERSEN 12023.98
Rows represent 91347 WHITE 39022903.89
specific database 91486 MCGUIRE 3988229.55
records or tuples. 97865 CORNFELD 283.00

99003 HAWKINS 109936.10

The intersection of
arow and a column
contains a specific
data value.

Physically, user tables are stored in files on the StorHouse storage hierarchy. The
user tablespace defines the target storage device and the migration path through
the hierarchy. For instance, you can store time critical data on magnetic disk and
then migrate that data to tape or optical as the data ages. The StorHouse software
automatically manages storage and migration based on your user tablespace
parameters.

Integrity constraints on tables

The data type of a column determines the maximum length of data values in the
column and the kind of data that is valid for the column. A data type enforces an
integrity constraint on a column. When you load data into a user table, the value
that you load into a column must be consistent with the length and compatible
with the data type of that column.

Prohibiting null values in a column is another integrity constraint. A null value
stands for an unknown, not applicable, or missing value. If a column allows null
values, then you don’t have to load data values into that column. But remember
that StorHouse user tables are read-only; so, if you define a column as null and
don’t load data into that column, then those data values will always be null.

FileTek Proprietary and Confidential

Views on tables

You can create a virtual table or view that appears and acts like a table but draws
its content from one or more existing tables and/or views. A view does not
actually contain data and it does not take up storage space like a table. Instead, a
view is defined by a query that references base tables. When you query a view,
you actually query the tables referenced by the view. Views are useful for tailoring
or limiting user access to data. They provide convenience, security, or both by
letting you determine which data in which tables is available to which users.

Base ACCOUNT LAST_NAME BILLING
table 91256 ANDERSEN 12023.98
91347 WHITE 39022903.89
91486 MCGUIRE 3988229.55
97865 CORNFELD 283.00
99003 HAWKINS 109936.10
A view is a pre-defined query - . AR
on one or more tables or . Y
views. : '

\ \
\ '

'

View ACCOUNT LAST_NAME

91256 ANDERSEN

91347 WHITE
This view suppresses the 91486 MCGUIRE
BILLING column from the 97865 CORNFELD
base table. 99003 HAWKINS

You can create views on user tables and system tables, but you can’t insert,
update, or delete rows in views based on user tables. StorHouse user tables are
read-only.

FileTek Proprietary and Confidential

Column data types

BIGINT- signed big integer
(64-bit) from
-9223372036854775808
through
9223372036854775807

BINARY - array of bytes
with a length from 1 to 256

BLOB — variable-length
array of bytes with a length
from 1 to 2147483638 bytes

CHAR - array of characters
with a length from 1 to 256

CLOB - variable-length
array of characters with a
length from 1 to
2147483638 bytes

DATE —date value in month,
day, year

DOUBLE PRECISION —
double precision, floating-
point number

INTEGER - signed integer
from -2147483648 through
2147483647

NUMERIC or DECIMAL —
decimal fixed-point number
with precision and scale up
to 31 digits

REAL - single precision,
floating-point number

SMALLINT — signed small
integer from -32768 through
32767

TIME — time value in hours,
minutes, seconds, and
optionally milliseconds

TIMESTAMP — date and
time combination with
optional milliseconds and
microseconds

VARBINARY - variable-
length array of bytes with a
length from 1 to 32705 bytes

User tables 9

m SforHouse

LOB data types

The following data types

define LOB columns and

mechanisms for loading,

unloading, and accessing
LOB data.

BLOB and CLOB.

= When creating a table,
defines a column as a
variable-length array of
bytes (BLOB) or as a
variable-length character
string of character-based
data (CLOB) upto2 GBin
size.

When loading or
unloading, defines LOB
data in the input data file
or the result file.

BLOB_FILE and
CLOB_FILE.

= When loading, specifies
host, path, and user
information to access
separate LOB files
containing BLOB or CLOB
values.

= When unloading,
specifies host, path, and
user information to write
LOB result files for BLOB
or CLOB values.

= When transferring LOB
datato a client file through
ESQL, defines a file
reference variable to
represent the file.

BLOB_LOCATOR and
CLOB_LOCATOR. Defines
a locator variable to identify,
access, and manipulate a
BLOB or CLOB at the
StorHouse server.

10 StorHouse/RM Concepts

Large objects

StorHouse/RM supports the storage and retrieval of large objects (LOBs),
including binary large objects (BLOBs) and character large objects (CLOBs).
LOBs may be stored with the rest of the table data (in-line) or in separate files
(out-of-line). StorHouse/RM determines in-line and out-of-line storage on a row-
by-row basis.

In-line LOBs

An in-line LOB is a LOB value that’s stored with the table data. If space permits—
a LOB value does not exceed any user-defined in-line limit and the row does not
exceed 32 KB—you can store a LOB value in a table data file. For instance:

Row 1-31 KB Table data 3 KB In-line check image 28 KB

StorHouse/RM treats in-line LOB values like any other variable-length, nullable
field. In-line storage is the default, that is, StorHouse/RM attempts to store LOBs
with the table data unless you specify otherwise.

Out-of-line LOBs

An out-of-line LOB is a LOB value that’s stored in a separate file—called a LOB
subsegment file—from the table data. When defining a LOB column, you can
choose to: (1) always store LOB values out-of-line, (2) or store LOB values in-line
when possible and out-of-line when necessary, (3) or even store values of
different LOB columns in the same LOB subsegment file, for instance, check
images and photos in the same LOB subsegment file. For out-of-line LOBs,
StorHouse/RM inserts an object identifier (OID) in the table row to identify the
LOB subsegment file containing the LOB value.

Row 1 Table data

In-line check image OID

OID OID
l j v

LOB subsegment file 1 LOB subsegment file 2

Out-of-line check image row 2 Out-of-line photo row 1
Out-of-line photo row 2

Row 2 Table data

FileTek Proprietary and Confidential

LOB loading and unloading

With the FileTek FTP Data Loader, you can load LOB data from three locations:
(1) in a client file with the other input data, (2) in separate LOB data files (one
LOB value per file) on your client computer, (3) in separate LOB data files on a
remote system. For instance, in the following example, account numbers reside
in a client data file and photos reside in separate LOB files. The data file contains
the file names containing the photos.

Client input data Loaded StorHouse Table

Account_No | Photo_ID
Data file
123, photol . 123)
456, photo2 LOB files !m
] 456 o

photol photo2

Likewise, with the FileTek FTP Data Unloader, you can unload LOB data to three
locations: (1) in a client file with the other result data, (2) in separate LOB result
files (one LOB value per file) on your client computer, (3) in separate LOB result
files on a remote system.

LOB access

When accessing a LOB value from an embedded SQL (ESQL) program, you can:

s Place the entire LOB value into a host variable that is large enough to hold the
value. The entire LOB value moves from the StorHouse server to the client.

s Place a reference to a LOB value or part of a value into a locator variable. The
locator variable moves to the client while the LOB value remains on the
StorHouse server. A program can manipulate the value using the locator
variable and fetch it in many parts back to the client.

» DPlace a file name into a file reference variable to identify a client file to which

LOB data can be moved. For instance, you can transfer an XML document
from StorHouse to a client file to be read by an XML reader.

FileTek Proprietary and Confidential

LOB functions

The following functions take
LOB arguments:

ASCII
BIT_LENGTH
BLOB
CHAR_LENGTH
CLOB
CONCAT
COUNT
COUNT_BIG

INITCAP
INSTR
LENGTH
LOWER
LPAD

LTRIM

NVL
OCTET_LENGTH
OVERLAY
POSITION
RPAD
RTRIM
SUBSTR
TO_CHAR
TO_DATE
TO_HEX
TO_NUMBER
TO_TIME
TRANSLATE
TRIM

= UPPER

LOB statements

These SQL statements are
exclusive for LOBs.

VALUES INTO
manipulates a LOB
selected with a locator
variable.

FREE LOCATOR
releases a locator variable
before the end of a
transaction.

LOB operators

The following operators are
valid for LOB operands:
equal (=), unequal (<>), and
string concatenation (|[).

Large objects 11

m SforHouse

Capabilities

Maximum number of
indexed columns for a
table: 2400

Maximum length of an
indexed column (including
VARBINARY and
VARCHAR columns): 256
bytes

Maximum number of
columns in a compound
index: 16

Maximum size of a
compound index: 2048
bytes

12 StorHouse/RM Concepts

Indexes

Indexes provide efficient access to table data. You can create an index on a column
or combination of columns in a user table. An index based on one column is a
simple index. An index based on multiple columns is a compound index.
StorHouse supports three index types—value, hash, and range.

Value index

Value indexes work best with queries that return multiple rows based on a range
of values. A value index contains an ascending list of all the values in a column (or
group of columns for a compound value index). For each column value, the
index contains an index map to the table row containing that value. By searching
the index rather than the table, then matching column values to row IDs,
StorHouse/RM can more efficiently find requested table rows.

Value index
BILL_ACCT column

Value Row ID BILLING table

10000 1 — BILL_ACCT LAST_NAME BILL_DATE

10001 2— 10000 ANDERSEN 01/10/2000

20000 3 __|—-> 10001 WHITE 01/02/2000

20001 4 —|—> 20000 MCGUIRE 01/12/2000

30000 5 20001 CORNFELD 01/15/2000
30000 HAWKINS 01/01/2000

Hash index

Hash indexes work best with queries that return specific rows based on a specific
value. A hash index is a two-part index based on an index map extent and a hit list
that uses a proprietary StorHouse algorithm to effectively locate individual table
rows based on individual index values. For hash indexes (unlike for value
indexes), StorHouse/RM must access the data row to determine that the row’s
column content meets the selection criteria. StorHouse/RM, for example, might
use a hash index for the following SQL statement:

SELECT ACCOUNT

FROM CUSTOMER
WHERE ACCOUNT = 99003

FileTek Proprietary and Confidential

Range index

Range indexes are useful for user tables with multiple segments. A range index
contains the lowest and highest column data values for each segment in a user
table. Instead of searching through multiple segments, StorHouse/RM first looks
at the range index to find the specific segment with the requested data values.
Then, StorHouse/RM might use any hash or value indexes to find a specific data
value or range of values in the segment. For instance, in the following example, if
you requested data for 01/15/2000, StorHouse/RM would check the range index
and determine that segment 1 contains the requested value.

Range index
BILL_DATE column
Segment | Low Value | High Value
1 01/01/2000 | 01/31/2000 | ——— BILLING table
2 02/01/2000 | 02/29/2000
3| 03/01/2000| 03/31/2000 —> Segment 1
4 04/01/2000 | 04/30/2000 Segment 2
5 05/01/2000 | 05/31/2000 Segment 3
Segment 4
Segment 5

Each time you load new data into a table, StorHouse/RM enters the low and high
data values into the range index. If there’s one segment, there’s one low and high
value pair in the range index. If there are 100 segments, there are 100 low and
high value pairs in the range index.

Range indexes are stored in a set of system tables. There are one or two system
tables for each column data type.

FileTek Proprietary and Confidential

Index basics

You can create any index
type for any non-LOB
column.

You can create different
types of indexes for the
same column. For
instance, you can create a
range and a value index
for the same column.
StorHouse/RM decides
which index to use to
satisfy a specific query.

You can create indexes
before or after you load
the table data. A deferred
index is an index created
after a table is loaded.

Value and hash indexes
are stored in index files on
the StorHouse storage
hierarchy.

Range indexes are stored
in system tables on the
UNIX file system.

Index files can reside on
different storage devices
from table data files and
LOB subsegment files.

The StorHouse software
automatically manages
the migration and backup
of index files based on the
user tablespace definition.

Allindex values are stored
in ascending order.

Invalidating a segment
invalidates the segment’s
index files as well as the
table data file and any
LOB subsegment files.

Deleting a segment
deletes all its segment
files, including index files.

Indexes 13

m SforHouse

User tablespace
basics

« A database has one or
more user tablespaces.

When you create a user
table, you assignitto a
user tablespace.

You can assign LOB
columns to the same user
tablespace as the table or
to different user
tablespaces.

When you create an index
for a user table, you can
assign it to the same user
tablespace as the table or
to a different user
tablespace.

You can assign different
indexes of a table to
different user
tablespaces.

Table data files of a user
table can be stored in
multiple VSETs and
FSETs.

Index files and LOB
subsegment files can be
stored in multiple VSETs
and FSETs and different
VSETs and FSETs from
their associated table data
file.

You can change storage
parameters later to store
subsequent segments
differently.

14 StorHouse/RM Concepts

User tablespaces

A user tablespace defines where segment files are stored on the StorHouse storage
hierarchy. It also sets attributes that influence storage management, like backup
and migration. Each user tablespace consists of one or more subspaces that define
different storage parameters for different components.

‘ User tablespace |

| Subspace 1 ‘ ‘ Subspace 2 |
Table data file Hash index file
storage parameters storage parameters
OBJECT_TYPE T OBJECT_TYPE H
VSET: JAN2000 VSET: JAN2000
FSET: JAN2000T FSET: JAN2000H
ATF: 2 ATF: 1
VTF: NEXT VTF: NOwW
EDC: Y EDC: Y
MAX_EXT_SIZE: 400 MAX_EXT_SIZE: 800
HOLD: 2 HOLD: 60
HOLD_SPECIAL: 30 HOLD_SPECIAL: 180
GROUP: STH GROUP: STH
‘ Subspace 3 | ‘ Subspace 4 ‘

Value index file
storage parameters

OBJECT_TYPE V

LOB subsegment file
storage parameters

OBJECT_TYPE L

VSET: JAN2000 VSET: JAN2000
FSET: JAN2000V FSET: JAN2000L
ATF: 1 ATF: 2
VTF: NOW VTF: NOW
EDC: Y EDC: Y
MAX_EXT_SIZE: 500 MAX_EXT_SIZE: 800
HOLD: 60 ~ HOLD: 0
HOLD_SPECIAL: 180 HOLD_SPECIAL: 30
GROUP: STH ~ GROUP: STH

Assigning storage. The VSET (volume set) and FSET (file set) subspace
parameters assign storage on StorHouse. A VSET is one or more physical volumes
that are treated as a logical unit of storage. A volume is a unit of media, such as an
optical disk cartridge or a tape cartridge, on which data can be recorded and read.
You use VSETS to control the physical grouping of files. An FSET is an area of
storage within a volume set. Files are stored in FSETs.

Whether you use multiple subspaces and different VSETs and FSETs in a user
tablespace depends on your data and your access and performance requirements.
For example, to manage the storage of table data, indexes, and LOB data in
different ways but remove them from StorHouse at the same time, you can create
multiple subspaces and assign different FSETs for the same VSET. Or to manage
the storage of all components the same way, you can create one subspace and
assign one FSET in one VSET.

FileTek Proprietary and Confidential

Migrating performance copies. The ATF (Access Time Factor) subspace
parameter works with the StorHouse migrate function to keep data that is most
likely to be accessed in the StorHouse performance buffer while maintaining a
supply of free space. Additionally, the HOLD (for data extents) and
HOLD_SPECIAL (for DF and map extents) subspace parameters define the
number of days to hold these extents in the performance buffer.

Creating performance and primary file copies. The VTF
(Vulnerability Time Factor) subspace parameter controls the creation of
performance and primary copies of segment files. Performance copies reside in
the StorHouse performance buffer. Primary copies reside in resident file sets on
the designated StorHouse media. During a load, StorHouse can:

» Bypass the performance buffer and directly write the files to their resident file
sets. StorHouse, however, always writes DF and map extents to both the
performance buffer and resident file sets.

s Write extents to the performance buffer first and copy them to their file sets
second. StorHouse copies each extent to the resident file set after creating the
extent on the performance buffer. So for a table file, StorHouse creates the
data extent on the performance buffer and then copies the data extent to its
resident file set. Then StorHouse creates the DF extent on the performance
buffer and then copies it to the file set.

s Write extents to the performance buffer then copy them to their file sets
during the next StorHouse write-back operation.

Using error detection checking. The EDC (Error Detection Code)
subspace parameter determines whether to use the StorHouse error detection
feature for files. StorHouse generates EDCs during data loads and uses EDCs to
detect errors during data movement in StorHouse.

Setting data extent sizes. The MAX_EXT_SIZE subspace parameter
specifies the maximum data extent size (in megabytes) that StorHouse/RM writes
to StorHouse during a load operation. StorHouse checkpoints each data extent
when it reaches the maximum size and then creates a new one. And StorHouse
can recover data extents to the last successful checkpoint.

FileTek Proprietary and Confidential

Subspace basics

= A user tablespace
contains one or more
subspaces.

» A subspace defines the
storage parameters for a
specific component—
table data only, hash
indexes only, value
indexes only, or LOB data
only—or for all
components.

The OBJECT_TYPE
parameter determines the
type of component
allowed in a subspace: T
for table data, H for hash
index, V for value index, L
for LOB data, or ""or" " for
all types.

= You can create multiple
subspaces for the same
component type, for
instance, one subspace
for January table data,
another subspace for
February table data, and
SO0 on.

When loading data,
loading deferred indexes,
and merging segments
you can use default
subspaces, select specific
subspaces, or rotate
among subspaces for
component types.

User tablespaces 15

m SforHouse

Metadata

Metadata basics Metadata are system components that StorHouse/RM creates and uses to manage
a database. These components, stored on the UNIX file system within a system

StorHouse/RM creates a tablespace, are as follows:

system tablespace and
metadata for each new
database. = System tables

Each system component » System table indexes

is a separate UNIX large s System table logs
file. = System table index logs

All system tables have = Journal files

corresponding logs.

Some, not all, system system tablespaces

tables have indexes.

For each database, StorHouse/RM creates a separate database directory on the
StorHouse server. This database directory, also called system tablespace, contains
all of the system components for a specific database. Physically, the database

The StorHouse metadata system components are UNIX files.
backup utility backs up

Range indexes are stored
in system tables.

system components and ‘ StorHouse |
other files in the system
tablespace. | | |
= The StorHouse metadata ‘ Database 1 ‘ ‘ Database n |
restore utility recovers [[
system components with ‘ System tablespace 1 ‘ ‘ System tablespace n |
the latest metadata [
backup files.
| System tables |
" Th?_redo journaling [system table indexes |
utilities recover changes
to system components | System table logs |
since a metadata backup. | systemtable index logs |
= System tables, indexes, | Journal files |
and logs are on storage UNIX files
devices separate from
. . I 1
journal files. CONFI G, CGF 10000000011, | DX TO000000003. TBL TO000000015. LOG

| 0000000000. I DX 10000000011. LOG TO000000004. LOG T0O000000015. TBL
| 0000000000. LOG 10000000012. 1 DX TO0O00000004. TBL TO000000016. LOG
| 0000000001. 1 DX 10000000012. LOG TO000000005. LOG T0000000016. TBL
| 0000000001. LOG 10000000013. 1 DX TO000000005. TBL T0000000017.LOG
1 0000000002. I DX 10000000013. LOG TO000000006. LOG TO0O00000017. TBL
| 0000000002. LOG 10000000014. 1 DX TO000000006. TBL T0000000018. LOG
| 0000000003. 1 DX 10000000014.LOG TO0000000007. LOG T0000000018. TBL

16 StorHouse/RM Concepts FileTek Proprietary and Confidential

System tables

StorHouse/RM creates a set of system tables for each database in the database
system tablespace. System tables contain information about a database.
StorHouse/RM updates system tables when you create database components,
reads system tables to verify that database components exist and that accounts are
authorized to access them, and updates system tables after confirmed loads.
Authorized users can query system tables by submitting a SELECT statement. For
instance, you can query the SYSTBLSPACES system table to list the user
tablespaces in a database or the SYSINDEXES system table to determine the types
of indexes defined for a user table. The following table describes each system

table.

SYSTEM TABLE
SYSCOLAUTH
SYSCOLUMNS
SYSDBAUTH
SYSDROP_PEND
SYSINDEXES
SYSPACKAGE
SYSPACKSTMT
SYSRANGES_datatype
SYSSMUSERS
SYSSTAT_COL
SYSSTAT_HIST
SYSSTAT_IDX
SYSSTAT_SMATRIX
SYSSTHFILES
SYSSTHSEGMENTS
SYSSTHSPACES
SYSSYNONYMS
SYSTABAUTH
SYSTABLES
SYSTBLSPACES
SYSVIEWS

DESCRIPTION

Contains column update privileges

Describes columns of user tables

Lists account database privileges

Contains information about dropped user tables and indexes
Defines each indexed column

Defines each package in a database

Contains each statement in a package

Contain range index entries

Contains default user tablespaces

Contains statistics for each indexed column of a segment
Contains the spread and frequency of each histogram bucket
Contains row averages for queries that use value indexes
Contains matrixes for calculating spreads of non-numeric values
Contains StorHouse file and group names for segment files
Contains information about segments

Describes subspaces in user tablespaces

Defines synonyms in a database

Contains account table privileges

Defines each user table, system table, and view

Defines each user tablespace in a database

Describes each view in a database

FileTek Proprietary and Confidential

System table
indexes

StorHouse/RM creates
system table indexes for
specific system tables when
a database is created.
System table indexes are
stored as UNIX files in the
same directory as the
system table files. Their
operation is transparent to
you.

System table logs

Each system table has a
corresponding system table
log that's used to recover
changes to system tables.
Before StorHouse/RM
updates a system table, it
first copies a “before image”
of any record being updated
to the system table log and
then makes the change in
the system table. If the
transaction fails or is rolled
back, StorHouse/RM copies
the before image (or undo
record) back to the system
table, removing the change.
If the transaction completes
or is committed,
StorHouse/RM empties the
system table log.

System table index
logs

Each system table index
has a log that can recover
changes to system table
indexes. The operation of
the index log is similar to the
system table log.

Metadata 17

File migration
factor

The purpose of file migration
is to keep highly accessed
extents in the performance
buffer while maintaining a
supply of free space in the
buffer for new high-access
files. To accomplish this,
StorHouse maintains a
migration factor for each
extent. User-controllable
parameters determine when
to start a migration. The
migration factor determines
which extents to migrate.
This migration factor is
derived from the file ATF
attribute, the size, and the
access history. Typically:

Extents with smaller
migration factor values
are migrated off the
performance buffer first.

Extents with many
accesses tend to have
larger migration factors
than extents with few
accesses.

Extents with larger sizes
tend to have smaller
migration factors than
extents with smaller file
sizes.

Extents with older
accesses tend to have
smaller migration factors
than extents with more
recent accesses.

18 StorHouse/RM Concepts

Storage management

StorHouse/SM complements its relational counterpart by providing system-
managed storage features for table data files, index files, LOB subsegment files,
metadata backup files, and archived journal files located anywhere in the
StorHouse storage hierarchy.

File management

With StorHouse/SM, you can design and tune data availability strategies and
migration paths through the storage hierarchy. For instance, you can initially
load table data on the performance buffer for fast write time and fast access, or
you can load table data directly to optical or tape. StorHouse/SM can
automatically duplicate file copies in different libraries to increase data
availability and to improve access performance. As access requirements diminish,
StorHouse/SM can migrate files to a lower-cost-per-megabyte media or move
files located on selected volumes to shelf storage automatically based on usage,
access requirements, available space, and user-defined parameters. The following
diagram shows an example of how data can move through the storage hierarchy.

Mainframe

Load table A RAIDMagnetic
on performance buffer
> O
WORM Optical
Migrate table A Erasable Optical Shelf 0
to tape [

Shelf 1

Automated Tape

- Shelf 2
1 t f
m Move table A to shel ﬁ

v

FileTek Proprietary and Confidential

Volume management

A physical volume is a unit of media on which data can be recorded and read.
Optical disk and tape cartridges are examples of physical volumes supported by
StorHouse. A logical volume is one side or surface of a physical volume. Some
physical volumes, such as magnetic tape, have only one usable side and contain
only one logical volume. Others, such as most types of optical disks, have two
usable sides and contain two logical volumes. Some of the features for managing
volumes are described here.

Migration. StorHouse automatically migrates volumes between libraries and
shelf devices. It selects volumes that aren’t in use, have the oldest access time, or

aren't flagged for retention—or volume holding—in the library device. You can also
manually move specific volumes between library devices or between a library device

and shelf storage at any time.

Retirement. This feature protects against read errors due to erasable media
degradation. StorHouse retires a volume by moving file extents from erasable
volumes (such as tape) to one or more other volumes in the same volume set.

StorHouse selects volumes for retirement based on media mount limits and volume

mount counts.

s The media mount limit (recommended by the media manufacturer and initially

set at installation) indicates the number of mounts that a volume of the media
can undergo before the risk of unrecoverable errors due to media degradation

exceeds a safe threshold.

» The volume mount count indicates the number of times a volume has been used

(mounted and dismounted).

You can also manually retire a volume regardless of the mount count and mount
limit values.

Erasure. For crasable optical and tape media, you can erase entire volumes and

volume sets to remove unused data. Space on erased volumes is available for
reallocation in the volume set.

FileTek Proprietary and Confidential

Storage management

Storage
performance
features

Volume holding lets you
keep frequently accessed
volumes in a library
device. Volumes that you
hold migrate to shelf
storage after other
volumes.

Pre-emptive priority
processing ensures that
all transaction-oriented,
time-sensitive requests
have priority over
sequential or batch
requests.

Look-ahead queuing
minimizes response time
by servicing all current
requests for a mounted
cartridge before
dismounting it.

Platter cycling ensures
that a greater percentage
of chronological data is
mounted and available for
retrieval without the need
to flip cartridges.

Duplexing simplifies file
recovery, increases the
availability of data to near
100 percent, and
improves overall response
time. StorHouse
automatically determines
when to access the
duplex copy instead of the
primary copy for better
overall system
performance.

19

StorHouse

File copies

20 StorHouse/RM Concepts

Performance buffer copy —
active file extents stored
on high-speed magnetic
disk for optimal access.

Primary copy — a file copy
available for normal
access.

Backup copy — a duplicate
copy of a primary file. You
can use a backup copy to
recover a primary file that
has been corrupted or
destroyed.

Archive copy —a duplicate
copy of a primary file. You
can use an archive copy
to recover a primary file
that has been corrupted
or destroyed.

Backup

StorHouse backup facilities simplify data recovery should the need arise.

Backup operations for segment files

StorHouse provides backup operations for creating secondary copies of table data
files, index files, and LOB subsegment files.

» White-back copies new file extents from the performance buffer to their
primary file sets. The VTF attribute in each subspace of a user tablespace
determines when write-back occurs for segment files.

s Backup creates a backup copy of a primary file, leaving the source file
(primary) intact. You can schedule a backup to run automatically at specified
intervals.

s Archive creates an archive copy of a primary file, leaving the source file intact.
You can schedule an archive to run automatically at specified intervals.

s Replicate creates a second copy of a file on another StorHouse system.

Magnetic disk

&@— Performance buffer copy

Optical Write-back

or Tape Library

Primary copy

&,
%
%

Archive copy Backup copy

FileTek Proprietary and Confidential

Backup utility for metadata

The metadata backup utility copies all files from a database directory on UNIX to
one primary file copy on the StorHouse storage hierarchy. These files include:

» System tables, including range indexes
= System table indexes

= System table logs

» System table index logs

This utility creates metadata backup files in the file set and volume set that you
name using StorHouse system parameters. All metadata backup files for all
databases are grouped in one file set and volume set. Each time you run a backup,
the utility creates a new backup file version for the specified database.

Volume set for metadata backup files

Database A Database B

file version 1

file version 2
file version 3

You can create backup and archive copies of metadata backup files, then move
those copies to shelf and store them off-site for disaster recovery purposes.

FileTek Proprietary and Confidential

Metadata backup
utility features

You can back up
metadata for one
database or multiple
databases at the same
time.

You can schedule a
metadata backup to run at
specific frequencies (like
hourly, daily) and times.

The metadata backup
utility stops when it
detects any active loads.

You can set a limit for the
number of backup file
versions to keep. The
maximum is 99 for each
database.

StorHouse automatically
deletes old file versions
(based on your limit) to
make room for new ones.

The most recent metadata
backup file is the default
version used to recover
metadata. However, you
can specify an older
version to restore
metadata through older
backups.

You can enable journaling
for an existing StorHouse
database and reset the
journaling environment
with metadata backup
command options.

Only an authorized
account with the
StorHouse OPERATOR,
SERVICE, or SYSTEM
privilege can run the
metadata backup utility.

Backup 21

m SforHouse

Disaster recovery,
general recovery

Disaster recovery is the
process of re-creating a
destroyed production
system after a devastating
event or natural disaster (for
example, a fire, flood,
tornado, or earthquake).
Such events can prevent
users from writing and
accessing critical business
data because of damaged
or destroyed hardware,
software, and media.
StorHouse provides
software features that
expedite disaster recovery.
For more information about
these features, refer to the
FileTek Recovery Strategies
manual, publication number
900117.

General recovery is the
process of re-creating
misplaced files and broken
cartridges or recovering
data because of events like
StorHouse/RM failures,
power losses, or operating
system crashes. For
instance, should heavily
accessed tape cartridges
begin to degrade, general
StorHouse user file recovery
can re-create the data on
new volumes and retire the
old ones. Or if your site
loses power while
StorHouse/RM is updating
the metadata, general
metadata recovery can
protect your database and
restore it to a consistent
state.

22 StorHouse/RM Concepts

Recovery

StorHouse attempts to recover from error conditions automatically, but there are
some conditions that require assistance. In the event of a failure or error,
StorHouse provides recovery tools for metadata and segment files. This topic
focuses on general recovery features.

Metadata recovery

The purpose of metadata recovery is to protect databases left in an inconsistent
state due to a failure.

» An inconsistent database occurs when a single atomic operation that updates
one or more system tables fails before completing and committing all updates.

s An unprotected database allows access (“dirty reads”) and further updates to
inconsistent metadata.

Structures used to recover metadata are metadata backup files, redo journals, and
undo records in system table logs and system table index logs. Processes used to
recover metadata are the automated metadata recovery process, the metadata
restore utility, and redo journaling utilities. Metadata recovery scenarios are

described below.

SQL engine failure. If an engine (connection instance) terminates
abnormally during DDL or metadata UPDATE, INSERT, or DELETE processing,
the automated metadata recovery process invokes a recovery process to roll back
incomplete updates and non-committed metadata. Any locks in place at the time
of the failure are held and then released after the roll back.

Power loss or system crash. When the system initializes after a power
loss or operating system crash, the automated metadata recovery process inspects
the database directories for an inconsistent state and invokes a recovery process
for each inconsistent database. The recovery process locks the metadata to
prohibit dirty reads and then releases the locks when recovery completes.

Hardware failure. In the unlikely event that the magnetic disks containing
the database directories should fail, you can run the metadata restore utility to
recover the metadata of one or more databases with metadata backup files. And,
you can use redo journaling utilities to recover committed transactions since the
last metadata backup or to a point in time (specified in days).

FileTek Proprietary and Confidential

Segment file recovery

The purpose of segment file recovery is to ensure access to table, index, and LOB
data. Structures used to recover segment files are backup and archive file copies.
Recovery scenarios are described below.

Broken or misplaced volume. If a volume containing segment files
breaks or becomes misplaced or unreadable, you can create a replacement volume
as long as you have backup or archive copies of the unreadable files. To recover a
volume, you first disable it and then issue the StorHouse RECOVER VOLUME
command.

Unreadable files. If a primary copy of a segment file is unreadable for any
reason, you can create a new primary copy from the backup or archive copy. To
recover unreadable segment files, first delete and remove the unreadable primary
files and then re-create the primary files with the StorHouse CREATE PRIMARY
command.

Optical — Primar
y copy
or Tape Library @3@_

Archive copy Backup copy

Load errors. If a user table contains incorrect data, you can invalidate
segments and later delete and remove them from StorHouse. If a load fails at any
point or if StorHouse is shut down during a load, the FileTek data loaders
provide a restart capability that continues a load from the last checkpoint (data
extent) and an abort capability that automatically deletes and removes any
partially written segments. A failure during an in-progress load does not require
metadata recovery because metadata updates occur only when a load completes
successfully and is confirmed.

FileTek Proprietary and Confidential

Segment file
recovery tools

Create a replacement
volume in the same
volume set to be
recovered by copying
extents from primary (if
readable), backup, or
archive copies

Create new primary
copies from backup or
archive copies

Move selected backup or
archive volumes to shelf
storage and store them
off-site for disaster
recovery purposes

Disable lost, destroyed, or
otherwise unusable
volumes

Preview the backup or
archive volumes that are
needed to recover one or
more disabled primary
volumes

Retire tape volumes that
have degraded with use
by copying extents from
one volume in a volume
set to one or more new
volumes in a volume set

Validate that all extents on
a volume can be read

Implement duplex support
to access backup or
archive copies when the
primary copy is on a
disabled volume or in an
offline device

Recovery 23

m SforHouse

Software architecture

StorHouse/RM is composed of the following software modules.*

Software for SQL processing

Software for data (un)loading

StorHouse/ | ESQL user StorHouse I\Fl:l\(/g%gta gtsoer:%ouse
UDB Link | StorHouse ODBC loader L
e 3 al application
application driver utility
StorHouse/RM API StorHouse API
I User StorHouse
DataDirect ODBC Front-end communications FTP communications
: - manager
client driver tool manager
Client
Server
DataDirect ODBC
server driver
StorHouse/RM API StorHouse StorHouse
FTP communications
Front-end server manager
communications manager
Back-end communications manager
SQL statement manager
Execution Data Server
o o manager unload- | data
Parser Optimizer Authorization Extractor er loader
manager
IDX | TPL
StorHouse
Page manager AP
StorHouse/SM

* The following modules are customer-supplied: DataDirect ODBC client driver, User StorHouse application,

and User FTP tool.

24 StorHouse/RM Concepts

FileTek Proprietary and Confidential

Client software

DataDirect ODBC client driver Provides access to StorHouse databases from ODBC-enabled client, Web, and server applications
StorHouse/UDB Link Enables federation through IBM® DB2® Universal Database (UDB)

ESQL Enables C and C++ applications to access StorHouse databases

User StorHouse application Contains API calls that enable user applications to access StorHouse

StorHouse/ODBC driver Provides access to StorHouse databases from ODBC-enabled client, Web, and server applications
StorHouse/RM API Passes prepared SQL statements to the front-end communications manager

Front-end communications manager Arranges (marshals) prepared SQL in communication packets and unmarshals result set data

User FTP tool Transfers input data being loaded and receives result data being unloaded
FileTek MVS data loader utility Prepares input data for loading and transfers the load stream to StorHouse
StorHouse API Lets user applications access StorHouse, perform file functions, and transfer data

StorHouse communications

manager Manages socket-level communications between StorHouse client and server systems

Server software

DataDirect ODBC server driver Lets StorHouse/RM communicate with ODBC-enabled client, web, and server applications

Back-end communications manager Unmarshals SQL statements and marshals result set data

SQL statement manager Tracks SQL statements through all processing steps

Parser Checks SQL syntax, validates database components, and builds a preliminary execution tree
Optimizer Builds a final execution tree

Authorization manager Checks granted privileges on database components

Execution manager Runs the constructed execution tree built by the optimizer

Extractor Processes qualifying queries that result in full segment scans

IDX routine Fetches index data through the page manager

TPL routine Fetches tuple (row) data through the page manager

Page manager Translates retrieval requests into calls to StorHouse/SM data retrieval services
StorHouse FTP server Formats input or result data into a stream and transfers it to StorHouse or a user FTP tool
Server data loader Receives load streams, loads data into StorHouse user tables, and builds index entries
Data unloader Executes unload requests

StorHouse API Enables the server data loader and data unloader to perform StorHouse file functions

StorHouse communications manager Manages communications between the client and server, including ESCON channel support
StorHouse/SM Reads, writes, and manages data on media in the StorHouse storage hierarchy

FileTek Proprietary and Confidential Software architecture 25

m SforHouse

SQL types

StorHouse SQL can be
static or dynamic.

Static SQL statements are
embedded in a program.

Dynamic SQL statements
are prepared and
executed by a program at
runtime.

The StorHouse
Embedded SQL (ESQL)
interface lets you code
static SQL in C and C++
programs.

All StorHouse SQL
statements can be
embedded in a program.

SQL categories

Four categories of
StorHouse SQL are as
follows:

Data definition language
(DDL) statements
maintain database
components and grant
and revoke privileges.

Data manipulation
language (DML)
statements query and
manipulate data.

Transaction control
statements manage
database changes.

ESQL statements,
declarative and
executable, can be
included in program.

26 StorHouse/RM Concepts

SQL

StorHouse provides industry-standard Structured Query Language (SQL).

Statements

StorHouse supports a subset of ANSI-standard SQL plus extensions defined by

FileTek to support additional capabilities. StorHouse SQL statements are:

STATEMENT

ALTER TABLESPACE
BEGIN DECLARE SECTION
CLOSE

COMMIT WORK
CONNECT

CREATE INDEX
CREATE SYNONYM
CREATE EXPLAIN TABLES
CREATE TABLE
CREATE TABLE SPACE
CREATE VIEW
DECLARE

DELETE

DESCRIBE
DISCONNECT

DROP EXPLAIN TABLES
DROP INDEX

DROP SYNONYM
DROP TABLE

DROP TABLE SPACE
DROP VIEW

END DECLARE SECTION
EXECUTE

EXECUTE IMMEDIATE
EXPLAIN PLAN

FETCH

FREE LOCATOR
GRANT

INSERT

OPEN

PREPARE

PURGE TABLE
RENAME

REVOKE

ROLLBACK WORK
SELECT

SET CONNECTION
UPDATE

VALUES INTO
WHENEVER

TYPE

static and dynamic
static

static

static

static

static and dynamic
static and dynamic
dynamic

static and dynamic
static and dynamic
static and dynamic
static

static and dynamic
static

static

dynamic

static and dynamic
static and dynamic
static and dynamic
static and dynamic
static and dynamic
static

static

static

dynamic

static

static

static and dynamic
static and dynamic
static

static

static and dynamic
static and dynamic
static and dynamic
static

static and dynamic
static

static and dynamic
static and dynamic
static

CATEGORY

DDL

ESQL, declarative
ESQL, executable
transaction control
ESQL, executable
DDL

DDL

DDL

DDL

DDL

DDL

ESQL, declarative
DML

ESQL, executable
ESQL, executable
DDL

DDL

DDL

DDL

DDL

DDL

ESQL, declarative
ESQL, executable
ESQL, executable
DML

ESQL, executable
ESQL, executable
DDL

DML

ESQL, executable
ESQL, executable
DDL

DDL

DDL

transaction control
DML

ESQL, executable
DML

DML

ESQL, declarative

FileTek Proprietary and Confidential

Predicates

A predicate reduces the number of rows returned by a query. With predicates, you
can compare values by using operators or keywords. StorHouse supports these

predicates:

Basic
BETWEEN
Complex

Functions

EXISTS
IN
LIKE

NULL
Quantified

A function is a named operation in an SQL statement, followed by one or more

expressions. StorHouse supports these aggregate and scalar functions:

ABS
ADD_MONTHS
ASCII

AVG
BIT_LENGTH
BLOB
CHAR_LENGTH
CHR

CLOB
CONCAT
COUNT
COUNT_BIG
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DAYS
DAYOFMONTH
DECODE

FileTek Proprietary and Confidential

GREATEST
HOUR

INITCAP

INSTR
LAST_DAY
LEAST

LENGTH

LOWER

LPAD

LTRIM

MAX

MIN

MINUTE

MONTH
MONTHS_BETWEEN
NEXT_DAY

NVL
OCTET_LENGTH

HOUR
POSITION
QUARTER
RIGHT

RPAD

RTRIM
SECOND
SUBSTR
SUBSTR_UDB
SUM
TO_CHAR
TO_DATE
TO_HEX
TO_NUMBER
TO_TIME
TRANSLATE
TRIM

UPPER
WEEK

Operators

Basic predicates compare
values with a relational
operator, while complex
predicates combine basic
predicates using logical
operators.

» Relational operators are:
= > <, >=, <=, <>

= Logical operators are:
NOT, AND, and OR

Quantified predicates use
the keywords ANY or
SOME.

Aggregate and
scalar functions

Aggregate functions
summarize information
about groups of rows in a
table. The result contains a
single row per group that
summarizes all selected
rows. StorHouse aggregate
functions are:

« AVG

« COUNT

« COUNT BIG
= MAX

= MIN

« SUM

Scalar functions produce a
single value from another
value. In the functions table,
all functions except AVG,
COUNT, COUNT_BIG,
MAX, MIN, and SUM are
scalar functions.

sQL 27

m SforHouse

Static versus
dynamic SQL

Static SQL statements are
hardcoded in a program.
These statements are
compiled when the rest of
the program is compiled.
You use static SQL when
you know—at compile
time—which SQL
statements you're going to
issue and the names of the
tables and columns you plan
to select. Only the values of
host variables in your
search condition may
change from one execution
to the next. An example of a
static query is an airline
reservation system that
checks for available seats.
You would use host
variables to tailor the flight
number and date, but the
table and columns in the
SELECT statement remain
static. Unlike static SQL
statements, which are
embedded in a program,
dynamic SQL statements
are built at runtime and
placed in a string host
variable.

28 StorHouse/RM Concepts

ESQL

StorHouse provides an Embedded SQL Interface (ESQL) for coding StorHouse
SQL statements in C and C++ programs. By embedding SQL statements in a host
program, you can develop applications that are more flexible than those
developed in just the host language or SQL. Statements embedded in an ESQL
program are called static SQL.

Compiling an ESQL program

Because an ESQL program contains a mix of SQL and host language statements,
you cannot submit it directly to a host language compiler. You must first submit
it to the StorHouse ESQL precompiler, which scans your source program and
translates the embedded SQL into host language statements that include
StorHouse/RM runtime subroutines. The output of this translation is a pure C or
C++ program, which you can compile, link, and execute. The ESQL precompiler
also accepts C or C++ object files and passes them to the C or C++ linker. The
following diagram illustrates the path from source code to executable for an
ESQL program.

System
Editor Contains embedded SQL

Source Program statements

ESQL
Precompiler

All SQL statements have been
replaced by calls to StorHouse/RM
runtime subroutines

Modified
Source Program

StorHouse/RM
INCLUDE Compiler
Files
Object Program
StorHouse/RM
Linker Libraries
Executable

Program

FileTek Proprietary and Confidential

Submitting queries with ESQL

You submit queries in an ESQL program with the SELECT statement. StorHouse
ESQL supports the following SELECT statement clauses: FROM, GROUP BY,
HAVING, INTO, ORDER BY, and WHERE. For queries that return only one row,
you use the SELECT statement INTO clause. For queries that return more than
one row, you use a cursor to retrieve—or fetch—one row at a time or an array of
rows into output host variables.

L] ~L]

a0 Database —_—
Queries? Queries?

‘ Queries can return ‘

SN

Only one row Multiple rows

(use SELECT INTO) (use FETCH INTO)
with a cursor

/ AN

FETCH one row FETCH multiple rows
at a time into host at a time into an array
variables of host variables

Checking the status of SQL

ESQL programs require a data structure called the SQL Communications Area
(SQLCA) to hold information about the status of your most recently executed
SQL statement. StorHouse updates the SQLCA after every executable SQL
statement. You can use the SQLCA to check return code information, number of
rows fetched, and warning flags. C programs implement the SQLCA as a global
structure that the ESQL precompiler automatically declares and defines.

FileTek Proprietary and Confidential

Host variables

You can use host variables
to tailor an SQL statement.

Input host variables pass
data to StorHouse/RM.
They are typically used in
WHERE clauses.

= Output host variables
pass data and status
information to your
program. They are
typically used in the INTO
clause of a SELECT or
FETCH statement or in
the VALUES INTO
statement.

For LOBSs, you can define
and use the following host
variables:

= A locator variable is used
to identify and manipulate
a LOB value at the server
or to access parts of a
LOB value.

= A file reference variable is
used to transfer a LOB
value (or a part of it) to or
from a client file.

You can associate a host
variable with an optional
indicator variable to detect
NULL or truncated values.

ESQL 29

m SforHouse

Excerpt from an ESQL program

This sample ESQL program illustrates some of the static SQL statements and
techniques used to code an ESQL program.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

static int static_select(void);
static int wusage

char *prog
static int wusage
char *prog
!
fprintf(stderr, "Usage: % <dbnane>\n\n", prog);
return (0);

mai n
int argc,
char *argv][]
)
{
int rc = 0;

This is a Declare Sectlon—_’ EXEC SQL BEG N DECLARE SECTI ON:

a required ESQL program char dbname[64] ;
component that contains EXEC SQL END DECLARE SECTI ON;
your host variables,

indicator variables, and if (arge!=2)

new type declarations. The return (usage(argv[0])):

ESQL precompiler

generates the strcpy(dbname, argv[1]);

corresponding host

I ape dec?a tions fo EXEC_SQ .

anguage declarations for WHENEVER SQLERROR GOTO err;

these variables and types

so that you can use them EXEC SQ

at your convenience in CONNECT TO :dbname AS ‘connl’; <«— Your program must connect to a
SQL and C ESQ.L does rc = static_sel ect(): StorH'ouse c_iataba;e before it can
not recognize variables or submit queries. A single program
types defined in C EXEC SQ can connect to up to 10 databases
language statements DI SCONNECT * connl’; at a time. The CONNECT and
coded outside a Declare EXEC SQL DISCONNECT statements manage
Section. VWHENEVER SQLERROR CONTI NUE; connectivity.

return (rc);

30 StorHouse/RM Concepts FileTek Proprietary and Confidential

err:
printf("SQ Error (%d) %\n", sqlca.sqlcode, sqlca.sqlerrm);

return (-1);

static int static_select()

{
EXEC SQL BEG N DECLARE SECTI ON ——— WHENEVER automates condition checking and error handling. This

char tretval [33]; _ .
EXEC SQL END D|[ECL]ARE SECTI ON; statement checks the SQLCA for errors, warnings, or successful execution
and tests all executable SQL statements that physically follow it in the source
EX\E\ﬁEﬁg_VER SOLER . ' file. It stays in effect until it is superseded by another WHENEVER statement
QLERROR err. < that checks for the same condition or until the end of the source file.
EXEC SQL
DECLARE stcur CURSOR FOR 4 StorHouse uses a cursor to process the rows that satisfy your queries.
EFE%LOI\E/IC;— ngm svst abl es DECLARE names a cursor and associates the cursor with the query that
VHERE %/bl NOTyLI KE ' SYS% : follows. You must explicitly define a cursor for queries that return more than
one row.
EXEC SQL
WHENEVER NOT FOUND GOTO over;
EXEC SQL
OPEN stcur; OPEN executes the associated SELECT statement with the current program
. variables and identifies the result set.
for (; ;)
tretval [0] = '"\0";
EXEC SQU FETCH reads the rows of the result set and returns the values into host
FETCH stcur INTO :tretval; 4_F variables
printf("%\n", tretval);)
}
E;’(Eg saL ’7 CLOSE terminates cursor processing. Once a cursor is closed, you cannot
CLOSE stcur: < perform FETCH operations on the cursor.
EXEC SQL . ’— COMMIT WORK ends a transaction. It releases locks and makes any changes
COMT WORK, 4 to the database during that transaction permanent.

printf("Static select statenment executed successfully\n");
return (0);
err:

fprintf(stderr, "SQ Error: % %\n", sqlca.sql code,
sqlca.sqglerrm);

EXEC SQL
WHENEVER SQLERROR CONTI NUE;
EXEC SQL
ROLLBACK WORK; « ROLLBACK WORK cancels the current transaction and rolls back any

database changes performed during the transaction.
return (-1);

FileTek Proprietary and Confidential ESQL 31

Loading features

Concurrency. You can load
the same or different user
tables in parallel as well as
query a user table while it's
being loaded.

Conversion. Data fields
with different but compatible
data types are automatically
converted to the format of
the columns in the tables.

Segment management.
You can load one or multiple
segments at a time,
invalidate or merge existing
segments, and name
segments in the event they
need to be replaced.

Subspace selection. You
can use default subspaces,
select specific subspaces,
or rotate among subspaces
for each component type.

Data generation. You can
load columns with
generated values, such as
the current date, a constant
value, a sequence of values,
or a record number.

Restart capability. You can
restart loads from the point
of failure or abort a load and
start at the beginning.

SQL tool. In addition to
loading data, you can use a
FileTek data loader to
submit StorHouse SQL
statements. The data loader
commits each statement
when it completes.

Deferred index load. You
can use a data loader to
create index entries for
existing segments.

32 StorHouse/RM Concepts

Data loaders

Comprehensive data loader programs developed by FileTek transfer large
amounts of relational data from host environments to StorHouse. You load data
from a UNIX, Windows, Linux, VAX, or other File Transfer Protocol (FTP)
enabled host with the FileTek FTP Data Loader. You load data from an IBM MVS
environment with the FileTek MVS Data Loader utility. If your MVS machine is
FTP-enabled, you can also run the FileTek FTP Data Loader from MVS.

Loading with FTP

With the FileTek FTP Data Loader, you use your standard client FTP software (or
tool) to communicate with the StorHouse FTP server. These two programs
communicate over a TCP/IP connection to transfer files from your local file
system on your host to a remote file system on StorHouse. The server data loader
then loads your data into StorHouse user tables and builds and stores any indexes

focal file . TCP/IP

v

server data
loader

Some of the source code for the StorHouse FTP server was derived from the
source code used in the BSD (University of California at Berkeley) FTP tool. You
use standard FTP commands including a standard put command with customized
parameters to transfer data.

If your client supports it, FTPS can be used for secure, encrypted communication
with the StorHouse server.

FileTek Proprietary and Confidential

Loading from MVS

The Filelek MVS Data Loader utility is an MVS batch program that initiates the
loading of a sequential dataset from a host computer into a StorHouse user table.
Loading data from MVS requires two FileTek data loader programs:

» The client data loader, which runs on your host computer, prepares your data
for loading and sends it to StorHouse. The FileTek MVS Data Loader utility
is the FileTek-supplied client data loader.

» The server data loader, which runs on StorHouse, loads your data into
StorHouse user tables and builds and stores any indexes.

The FileTek MVS Data Loader utility uses the channel connection to achieve
maximum data transfer rates.

Client

client
data
loader

ESCON

Server

server
data
loader

Mainframe

FileTek Proprietary and Confidential

LOAD DATA
statement

The SQL-like LOAD DATA
statement describes load
characteristics and input
data. This statement is
similar and compatible with
the control information
supplied for Oracle® and
DB2 load utilities. A FileTek
data loader accepts clauses
that are not part of the
StorHouse syntax but
ignores those that do not
apply to StorHouse. The
LOAD DATA statement
clauses are as follows:

» CHARACTERSET

» CONCATENTATE

»« CONSTANT

= CONTINUEIF

= DEFAULTIF

= DIFFERENT SEGMENT
» DISCARDFILE

« DISCARDS

« ESCAPED BY

=« FIELDS

= INFILE

= INTO TABLE

« LOAD

» NULLIF

« POSITION

= PRESERVE BLANKS
= RECNUM

= REPLACE SEGMENT
» SAME SEGMENT

« SEGMENT

« SEQUENCE

» SUBSPACE number

= SUBSPACE ROTATE
= SYSDATE

» TRAILING NULLCOLLS
« WHEN

Data loaders 33

m SforHouse

Unload features

Run multiple unload and
load operations during an
FTP session

Pipe the output to another
program, such as a data
loading utility

Unload an entire table,
specific columns or rows
of a table, or multiple
tables (join)

Format result data
records in any of three
record formats: text, fixed-
length, or variable-length

Create result data fields
with the following data

types:

— BIGINT

— BINARY

— BINARY EXTERNAL
— BLOB

— CHARACTER

— CLOB

— DATE EXTERNAL

— DECIMAL

— DECIMAL EXTERNAL
— DOUBLE

— FLOAT

— FLOAT EXTERNAL

— INTEGER

— INTEGER EXTERNAL
— SMALLINT

— TIME EXTERNAL

— TIMESTAMP EXTERNAL
— VARBINARY

— VARCHAR

Place each BLOB or
CLOB value in a file on
the local host or a remote
host

34 StorHouse/RM Concepts

Data unloader

The Filelek FTP Data Unloader is a tool for copying data from StorHouse user
tables to your host. This utility executes a SELECT statement, then it formats and
transfers the result data to a sequential (or flat) file on your host or to a VRAM
file on StorHouse. You can receive LOB data with the other result data (space
permitting) or in separate files on a client or remote computer.

With the FileTek FTP Data Unloader, you use your standard client FTP tool to
communicate with the StorHouse FTP server. These two programs communicate
over a TCP/IP connection to transfer files between the local and remote file
systems.

Server computer

Client (host) computer
tent (host) pu (StorHouse)

Network (TCP/IP)

User

User-level
FTP commands

(like open, put))
Server-level FTP commands (like USER, STOR)

>
»
<

Client Server replies StorHouse
FTP FTP
tool server

<«—— Result data

! I

Local file system StorHouse

If your client supports it, FTPS can be used for secure, encrypted communication
with the StorHouse server.

Your client FTP tool interacts with you and your local file system. It sends server-
level FTP commands and your control file to the StorHouse FTP server. The
StorHouse FTP server interacts with the remote file system—StorHouse database
tables. It replies to your client FTP commands, invokes a StorHouse process to
execute the unload query, and transfers the result data.

FileTek Proprietary and Confidential

The unload process

To unload data from StorHouse user tables:

Prepare the input

At your computer, prepare a control file containing an UNLOAD
statement.

b Transfer the control file

With your client FTP tool:

» Start FTP and log into the StorHouse FTP server with the ftp or
open command.

» Set the transfer type to ASCII or BINARY, if needed, with the type
command.

= Transfer the control file with the put command.

The StorHouse FTP server parses the FTP commands, then a
StorHouse engine or extractor reads the UNLOAD statement and
prepares your query.

Receive the resuit data

With your client FTP tool, retrieve the result data with the get
command. This step is not needed when unloading data to a
StorHouse VRAM file.

FileTek Proprietary and Confidential

UNLOAD
statement

The SQL-like UNLOAD
statement is the input to an
unload operation. This
statement describes how to
format the result data and
contains the query that
selects the StorHouse data
to unload. Optional
UNLOAD clauses enable
you to:

Specify the character set
of result data
(CHARACTERSET
clause)

Define delimiters for
character result data
(FIELDS clause)

Format all data fields as
CHARACTER data type
(FIELDS clause)

Specify a character to
append to the end of
result records
(RECORDS clause)

Specify an escape
character to insert into the
result data (ESCAPED BY
clause)

Describe each data field
in result records (USING
clause), including data
type, position, and null
handling

Insert constant text into
result records
(CONSTANT clause)

Specify a VRAM file name
to unload data to a file on
StorHouse (OUTFILE
clause)

Data unloader 35

m SforHouse

ODBC interface

Setting up the StorHouse supports the Microsoft Open Database Connectivity (ODBC)
Oracle-StorHouse interface, an open software architecture that enable applications to use SQL to
environment access relational data stored on a variety of RDBMSs. For instance, Microsoft SQL

_ Serverl] 7.0 and Oracle8il] Heterogeneous Services can access StorHouse
In order to incorporate h h ODBC
Oracle Heterogeneous roug :
Services in an Oracle-
StorHouse environment,
you first install one of the Oracle access to StorHouse
FileTek ODBC driver
products (Database Oracle users can access StorHouse data transparently through the Oracle8i
Interconnect or the .

. Heterogeneous Services and ODBC. To users, StorHouse appears as part of the
StorHouse/ODBC driver) . : .
and set up a data source local Oracle database. The Oracle Heterogeneous Services architecture consists of
that points to the StorHouse three components: server, agent, and non-Oracle system.
database you want to
access. Then you set up Server Agent Non-Oracle System
Oracle Heterogeneous I I I
Services for StorHouse as ! l ! ! ! l
follows: Heterogeneous) . StorHouse
Oracle Services Generic Driver Remote

Code Module
Install the Oracle Module Database

Heterogeneous Services
data dictionary

The agent code, generic to all Heterogeneous Services-based products, provides
. database communication and multithreading support. Oracle has Generic
environment to access .. f d Th ble Oradl
Heterogeneous Services Connectivity agents for ODBC and OLE DB. These agents enable Oracle
agents applications to use ODBC and OLE DB drivers in conjunction with FileTek-
supplied ODBC drivers to access StorHouse databases.

Set up your Oracle

Configure Generic
Connectivity agents

Create and test a
database link to your
StorHouse database

36 StorHouse/RM Concepts FileTek Proprietary and Confidential

Supported ODBC drivers

FileTek provides an ODBC client driver that communicates with StorHouse/RM
through the StorHouse/RM API. The StorHouse/RFS product, for instance, uses
this driver. FileTek also supports the DataDirect SequeLink system, which
provides ODBC-enabled client, Web, and server applications access to
StorHouse. These applications may be running on a variety of platforms,
including Windows, Solaris, Digital UNIX, SGI IRIX,

0S/390, and any JVM-enabled platform.

The DataDirect SequeLink system consists of client and server components. The
SequeLink server provides data access services between ODBC client applications
and databases like StorHouse. The SequeLink client sends ODBC calls across your
network to the SequeLink server. The server then passes the request to a
StorHouse engine, which processes the request and passes the result to the
SequeLink server, which passes it to the SequeLink client and application.

Application

‘ SequelLink Client ‘ SequelLink Server

StorHouse

L1

FileTek Proprietary and Confidential

Microsoft SQL
Server 7.0 access
to StorHouse

Through an ODBC
connection with Microsoft
SQL Server 7.0, Windows
users can connect to and
access StorHouse data
through a single, familiar
interface. For instance, with
the SQL Server 7.0 import
feature, users can replicate
StorHouse user tables. The
SQL Server 7.0 import
utility:

Retrieves the table
definitions from
StorHouse

Creates the tables and
indexes on the SQL
Server

Unloads the data from
StorHouse

Loads the data into the
SQL Server tables

ODBC interface 37

m SforHouse

Federated system

A federated system is an
RDBMS that supports
applications and users who
submit SQL statements that
reference two or more
RDBMSs or databases in a
single statement (for
example, a join between
tables in different
databases).

Federator

A federator is the software
component in a federated
system that coordinates
SQL processing.
Websphere Information
Integrator is the federator for
DB2 UDB.

Wrapper

A wrapper is software that
implements a connection in
a federated system. The
StorHouse/UDB Link is the
FileTek-supplied wrapper
software to implement the
connection between DB2
UDB and StorHouse. You
install the software and then
define the wrapper with the
DB2 CREATE WRAPPER
statement.

Data source

A data source is a server or
a database in a federated
system. Each StorHouse
database is a separate data
source. You define data
sources with the DB2
CREATE SERVER
statement.

38 StorHouse/RM Concepts

StorHouse/UDB Link

The StorHouse/UDB Link gives DB2 Universal Database (UDB) users near-
transparent access to the terabytes to petabytes of data supported by
StorHouse/RM. This software, also called the FileTek wrapper, implements the
connection between DB2 UDB release 8.2 and StorHouse databases. The
components of a federated DB2 system with the StorHouse/UDB Link are:

Client

Federator (UDB 8.2)

DB2/UDB FileTek Wrapper

StorHouse

How it works

In a federated system, a client communicates with a federator. The federator
appears to the client as a database (even though it may not be one). The client
need not know that the data sources exist or participate in a query. The federator:

s Accepts and parses a query from the client

s Breaks a query into smaller queries

s Submits these queries to one or more data sources
= Receives the results from the data sources

s Assembles the results into a single answer set

» Returns the answer set to the client

The federator maintains a local data dictionary. This dictionary contains
descriptions of the data sources, also called servers, and their available data,
defined by nicknames. The federator uses this information to decide what
portions of the original query will be processed by each data source. The
dictionary also contains user mappings, which associate DB2 authorization IDs
with StorHouse account IDs for specific data sources.

FileTek Proprietary and Confidential

Partitioning data

In a federated system, you must determine where you partition, or distribute,
data between DB2 and StorHouse. Criteria for partitioning data include
frequency of access, volume of data, and volatility of data. Partitioning models
that work well with StorHouse are as follows.

Horizontal partitioning

Horizontal partitioning divides rows into sets. Within each set, the rows remain
intact. Partitioning criteria are usually range-based, like date. For instance, rows

with the current month could be stored in DB2 and rows with past months could
be stored in StorHouse. Or rows with pending orders could be stored in DB2 and
rows with filled orders could be stored in StorHouse.

Vertical partitioning

Vertical partitioning splits rows into two or more sets of columns and bases the
data placement decision on the use of columns rather than rows. Columns that
are frequently accessed, smaller, or more volatile could be stored in DB2. Those
columns that are infrequently accessed, larger, or more stable could be stored in
StorHouse.

Summary-Detail partitioning

A third data model places summary data in DB2 and detailed data in StorHouse.
This can be effective if you can divide users into groups based on data access
patterns. Frequently, summary data is sufficient for most users, while only a small
number of users need access to the full detail.

Duplication

In some cases, it may be beneficial to duplicate data between DB2 and
StorHouse. This can be full duplication of all data or duplication of a subset. Full
duplication turns StorHouse into a disaster recovery facility.

FileTek Proprietary and Confidential

Nickname

A nickname is the
representation in a DB2
catalog of a remote table or
a view controlled by a
particular data source. You
define nicknames with the
DB2 CREATE NICKNAME
statement.

User mapping

User mapping is the
correspondence between a
user’s DB2 identity, or
authorization ID, and the
identity used when
communicating with a data
source, for instance, a
StorHouse account ID. You
define user mappings with
the DB2 CREATE USER
MAPPING statement.

Passthru

Passthru is the capability of
a client to issue queries and
other SQL statements
directly to a data source.
You authorize passthru for
specific data sources with
the DB2 GRANT
PASSTHRU statement.

Pushdown
Pushdown is the act of

moving SQL processing into
a particular data source.

StorHouse/UDB Link 39

m SforHouse

SELECT features

The StorHouse SELECT
statement lets you:

Retrieve data from one or
multiple tables or views in
one query

Specify restrictions or
search conditions to

return only those rows
that satisfy the criteria

Group the rows of a result
set

Apply one or more
gualifying conditions to
groups of rows

Sort retrieved data in
ascending or descending
order on one or multiple
columns

Eliminate duplicate rows
from a result set

Perform arithmetic
computations on column
data

Combine SELECT
statements using UNION
and UNION ALL set
operators

Explain facility

You use the explain facility
by submitting a set of SQL
statements—CREATE
EXPLAIN TABLES and
EXPLAIN PLAN—and
querying the result tables.
The explain facility can help
you determine whether
StorHouse/RM uses an
index and which index for a
guery. Or you can determine
the chosen join method and
join predicate.

40 StorHouse/RM Concepts

Queries

You access StorHouse relational data by submitting a guery with a StorHouse
SELECT statement. StorHouse supports these types of queries: selection, join,
extraction, and subquery. You can analyze the execution plan for a specific query
by using the StorHouse explain facility.

Selection

A selection returns specified columns from one or more rows in one table. For
instance, when you access all the information in a user table for a specific account
number, then you are performing a selection.

Join

A join creates a result set from data in multiple tables or views. StorHouse/RM
supports these types of joins:

» An inner-join combines the matched rows of the tables. The unmatched rows
are omitted from the result set.

» A left outer-join combines the matched rows of tables, and for unmatched
rows, combines the values of the left table with null values for the right table.

» An equi-join joins a column from one table with a column from another table
by using predicates that specify equalities.

» A self- or auto-join joins a table with itself. For example, you can select all
customer names and numbers that are from the same city as another customer
in the table.

» A cartesian product joins all rows of two or more tables.

StorHouse/RM supports nested loop and hybrid IN join operations. A hybrid IN
is a type of merge join (single pass through the tables). The optimizer chooses the
most efficient join operation for the query but may consider one type over the
other when certain conditions are met. For instance, the optimizer may use a
hybrid IN join operation when the query is an equi-join and the inner table has a
value index on the join column.

FileTek Proprietary and Confidential

Extraction

An extraction returns one or more columns for all rows of a user table or a range
of segments. Two types of queries are eligible for extraction:

» A simple query results in a full table scan, which reads every row in a table
without the use of an index.

w A full segment select query returns data from one or more entire segments with
the use of a range index.

The StorHouse extractor software processes full table scans and full segment selects
quicker and more efficiently than a StorHouse engine. Furthermore, when a
table resides on both StorHouse optical and tape media, the extractor always uses
the tape copy when available to benefit from faster sequential I/O. Simple and
full segment select queries must meet query requirements and additional
extractor requirements to qualify for extractor processing.

Y Process with
extractor

Meets
extractor

rules
?

Eligible
query
?

Process with
database engine

Subquery

A subquery is a SELECT statement nested in another SQL statement. The
statement containing the subquery is the parent statement. StorHouse supports
simple and correlated subqueries. A simple subquery executes once for the entire
parent statement, while a correlated subquery executes once for each row produced
by the parent statement. The main uses of subqueries in StorHouse are to define
the set of rows to be included in views and to answer multiple-part questions in
queries.

FileTek Proprietary and Confidential

Simple query
requirements

= The account issuing the
query must have the
SCAN database privilege.

= The query must not
contain WHERE, ORDER
BY, GROUP BY, or
DISTINCT clauses.

Full segment
select query
requirements

All predicates in the
WHERE condition must
be based on columns in
range indexes.

» The predicates must
select all rows from one or
more segments.

Extractor
requirements

= The query must refer to
one table and must not
contain any subqueries.

« The host and StorHouse
systems must have the
same native values key so
that no byte-reordering of
INTEGER and SMALLINT
columns is necessary.

» The application issuing
the query must not have
changed any values in
SQLDA fields set by
DESCRIBE.

Queries 41

Controlling
concurrency

Three tunable system
parameters help manage
the number of concurrent
operations for optimal
performance.

SQL_LDR_MAXLOAD.
Specifies the maximum
number of LOAD
statements that can be
processed at a time. One
engine is required per LOAD
statement. Requests
beyond the limit are queued.
When the queue length
exceeds twice the
maximum, then new
requests are rejected.

SQL_LDR_MAXINTO.
Specifies the maximum
number of INTO TABLE
clauses in any one LOAD
statement. A load fails when
the maximum number of
INTO TABLE clauses is
exceeded.

SQL_SESSIONS. Specifies
the maximum number of
StorHouse engines that can
run concurrently for all
users. This sets the
maximum number of
connections allowed
system-wide. The maximum
number of connections
includes the number of
loads (one engine per LOAD
statement) plus the number
of queries. Requests
beyond the limit are
rejected.

42 StorHouse/RM Concepts

Concurrency

StorHouse supports the serializable ANSI/ISO transaction isolation level, which
guarantees the highest read consistency and data integrity in a database.
StorHouse concurrency software facilitates maximum simultaneous access to
data.

Parallelism

Users can load the same or different user tables concurrently. Users can query a
user table while it’s being loaded, and they can access the new segments after the
load completes. One StorHouse engine is required for each load and to handle
each query. System parameters control concurrency. Some of the parallel
operations are shown below.

Load different user tables in one load
INTO TABLE A ———— SEGMENT 1
——— LoAD <
INTO TABLE B ———— SEGMENT 1
Load multiple segments of the same user table in one load
> @’ INTO TABLE A ———— SEGMENT 1
. ——— LoaD <
ST INTO TABLE A ————— SEGMENT 2

Load multiple segments of multiple user tables in one load

INTO TABLE A ————— SEGMENT 1

INTO TABLE A ———— SEGMENT 2
LOAD

INTO TABLEB ———— SEGMENT 1

INTO TABLEB —— SEGMENT 2

Query a user table while it’s being loaded

LOAD INTO TABLE A ———— SEGMENT 2

SELECT =——— FROM TABLE A ——— SEGMENT 1

FileTek Proprietary and Confidential

Locking

StorHouse locking is fully automatic and requires no user action. StorHouse
implements table-level locks. Tables include user tables, system tables, and views.

Two types of table locks are:

» A shared (or read) lock reserves a table for reading only. This lock prevents a
table from being dropped. Multiple engines can have a shared lock on the
same table.

s An exclusive (or write) lock reserves a table for updating only. This lock
prohibits a table from being shared. One engine can have an exclusive lock on

a table. All other lock requests (shared and exclusive) for the table are queued.

An engine holds on to locks—both shared and exclusive—against user tables
throughout a transaction. It releases shared locks against system tables as soon as
it’s done processing the system tables, and it releases exclusive locks against
system tables when the transaction ends. Note that for DDL statements, the
operation is atomic, so the transaction boundaries match the statement
boundaries.

When an engine places a shared lock on a table, subsequent shared lock requests
can access the same table, but an exclusive lock request starts a queue. When
queueing begins, subsequent requests—both shared locks and exclusive locks—
queue up behind the exclusive lock.

Timeline
T Shared lock
2 Shared lock Table
3 Shared lock
4 Exclusive lock Queue
T Shared lock
T Shared lock

When an engine releases an exclusive lock, the next entry in the queue gets the
lock. In the above example, a shared lock (entry 5) would be granted, followed by
the next shared lock (entry 6) in the queue.

FileTek Proprietary and Confidential

When locks occur

Metadata backup. A
metadata backup uses a
database-level lock that has
the effect of read-locking
every system table. This
allows queries to continue
and prevents DDL
statements from changing
the metadata. DDL
statements are queued until
after the lock is released.

Metadata recovery. Any
locks in place at the time of a
transaction failure are held
and then released after roll
back. A recovery process
places any necessary locks
on applicable metadata
during system initialization
and releases those locks
after recovery. Journaling
uses locks during physical
1/O to the current journal file
and during journal cycling.

Loads. A load acquires a
shared lock on the user table
during commit processing.
No locks are held during the
middle of a load. A load
acquires and releases an
exclusive lock on
SYSTABLES at load start
and on SYSSTHSEGMENTS
at load end.

DDL processing. All DDL
statements acquire an
exclusive lock on applicable
system tables. Additionally,
CREATE, GRANT, and
REVOKE statements
acquire a shared lock on
applicable user tables; and
DROP statements acquire
an exclusive lock on
applicable user tables.

Queries. A query requires a
shared lock on the user
table.

Concurrency 43

m SforHouse

Administrative
accounts

Each StorHouse/RM system
comes with two
administrative accounts.

SYSADM. This
administrator account has
all privileges in all
StorHouse databases.
SYSADM can perform all
StorHouse database and
system administration tasks.
SYSADM owns the system
tables for each StorHouse
database.

PUBLIC. This special-
purpose account simplifies
the process of granting and
revoking database
component privileges. Any
StorHouse account with
SQLEXECUTE has PUBLIC
access to all StorHouse
databases. PUBLIC
privileges, however, vary
from database to database.

44 StorHouse/RM Concepts

Database security

StorHouse security controls access to StorHouse databases, the administrative
tasks a user can perform, and the tables a user can query or load. This multilevel
security consists of account and privilege facilities.

StorHouse accounts

Only users with valid StorHouse accounts can access a StorHouse database. Users
need a StorHouse account with certain StorHouse privileges to:

s Perform StorHouse system and database administration tasks

= Submit StorHouse SQL statements

» Load data into StorHouse user tables

» Unload data from StorHouse user tables

s Access StorHouse data from a host language application (using ESQL) or a
local database application (such as a DB2 application)

Account passwords provide additional validation. An account must always
specify a password when loading data or connecting to a StorHouse database.

Security validation

StorHouse/SM validates all connects to StorHouse databases. Only valid
StorHouse accounts with passwords can connect to StorHouse databases.
StorHouse/SM also validates account access and command privileges.
StorHouse/RM validates account database and database component privileges.

StorHouse tracks all connects and disconnects as well as requests denied due to
invalid account IDs or passwords. It also logs SQL statements submitted and
transaction statistics for each completed transaction. You can then use Control
Center to analyze possible security violations and account activity.

FileTek Proprietary and Confidential

StorHouse privileges

Privileges control access to user table data and determine the administration tasks

a StorHouse account can perform in all databases, in specific databases, or for

specific database components.

TYPE PRIVILEGE AUTHORIZATION
Access SQLADMIN Have DBA privilege in all databases
Command SQLEXECUTE Submit SQL statements in all databases
SQLCOMMAND Run a FileTek data loader in all databases
Database DBA Perform the following in a specific database:
= Create user tables, indexes, views, and synonyms
for other accounts
= Insert, update, and delete data in system tables
= Grant and revoke database and database
component privileges
= Access any table, view, or synonym
RESOURCE Perform the following in a specific database:
= Create user tables, indexes, views, and synonyms
for own account
» Access those database components
= Grant other accounts SELECT and INDEX
privileges on those components
SCAN Read all rows in any user table on which the account
has SELECT privilege
Database ALL Have all database component privileges for a
component specified component
DELETE Delete rows from a system table or system view
INDEX Create an index for a user table
INSERT Load data into a user table or insert rows into a
system table or system view
SELECT Access a user table or system table or view
UPDATE Update columns in a system table or system view

FileTek Proprietary and Confidential

Privilege types

There are four types of
StorHouse privileges.

Access privilege.
Provides the broadest level
of security. It enables an
account to perform
database administration
tasks in all StorHouse
databases.

Command privileges.
Let accounts submit SQL
statements and certain
StorHouse commands in all
StorHouse databases. At a
minimum, an account must
have SQLEXECUTE to
access a StorHouse
database.

Database privileges.
Control the functions an
account can perform in a
specific database.

Database component
privileges. Determine
account access to specific
components—Ilike tables
and views or columns within
tables and views—in a
specific database. An
account authorized to load
data must have INSERT
privilege on the user tables it
can load. Otherwise,
DELETE, INSERT, and
UPDATE apply to system
tables only because
StorHouse does not allow
updates of user tables.

Database security 45

StorHouse/
Performance
Monitor

With StorHouse/
Performance Monitor you
can:

Display near real-time
activity (such as mounts,
megabytes read and
written, shelf requests, file
opens, CPU average
utilization, and so on)

Display historical activity
to determine trends

Graphically depict system
performance measures in
pre-defined reports

Create custom reports

CCAdmin
With CCAdmin you can:

Make StorHouse systems
available or unavailable to
a StorHouse/Control
Center server

Establish or terminate
connections between
StorHouse/Control Center
servers and specific
StorHouse systems

Configure label printers to
print labels for blank
volumes

Collect diagnostic
information, performance
statistics, and activity
information about
StorHouse/Control Center
servers

46 StorHouse/RM Concepts

Administration

StorHouse/ Control Center (CC) is the FileTek network computing system used
for StorHouse administration. StorHouse/Control Center consists of server and
client components. A StorHouse/Control Center server, which runs on the
Microsoft Windows NT, XP Pro, or 2000 platform, is a program that enables
StorHouse/Control Center clients to communicate with StorHouse systems
through a TCP/IP network and optional serial ports. A StorHouse/Control Center
client, which runs on Windows 95, 98, 2000, XP Pro, or NT platforms, consists
of three graphical user interface (GUI) software modules:

» StorHouse/Admin (system and database administration)
» StorHouse/Performance Monitor (system performance analysis)
s CCAdmin (StorHouse/Control Center server administration)

You can install all of the client modules or some combination on any client
machine, as indicated in the following sample configuration.

Sevial find
TCPAP

CC client
StorHouse/Admin

cC Iienl CC client
StorHousef + StorHouse/Admin

Performance Monitor « StorHouse/Performance
Monitor

olient
StorHouse/Admin

FileTek Proprietary and Confidential

StorHouse/Admin

StorHouse/Admin combines StorHouse/SM and StorHouse/RM administration
in one user interface, simplifying the tasks of storage management, database
administration, system operation, and security control. By navigating with a
folder list, you can perform the following database administration functions.

Databases. — DB Accounts. List

Create
databases, list
all databases,
display the size
of user data,
display all
columnsin a
database.

Views. Create,
alter, and drop

B cals

-3 User

-3 Syatem

all accounts that can
access a database,
grant and revoke
database privileges,
display privileges,
and assign an
account default user
tablespace.

DB Accourts

SYNONYIms
Tahles

=-E= BILLDETAIL
- Columns
B Indexes
B Privieges
L Segments
- B BILLSUMMARY

Tablespaces
ey

views; list views in tablespaces; assign
a database; and default user

list account
privileges for

views.

a user tablespace.

FileTek Proprietary and Confidential

Tablespaces. Create,
alter, drop, and list user

tablespaces; and list
user tables assigned to

——— Synonyms. Create public and private

synonyms, drop synonyms, and list
synonyms in a database.

User Tables. Create, clone, and copy user
tables; export DDL, list user tables in a
database; display the size of a user table;
list tables and indexes in a volume set; and
drop user tables.

Columns. Display column definitions of a
user table.

Indexes. Create and drop indexes, list
indexes for a user table, and list index
names in a database.

Privileges. Grant and revoke database
component privileges for a user table and
list account privileges for a user table.

Segments. Archive and back up segments,
schedule archives and backups, change
segment attributes, invalidate and
revalidate segments, display segment
properties, list segments in a user table, list
extents in a segment, display low and high
values in a segment, and delete segments.

System tables. Back up metadata,
schedule metadata backups, list system
tables in a database, display column
definitions of system tables, list the index of
system tables, export the contents of
system tables, export the DDL of system
tables and/or indexes, and list account
privileges for system tables.

The GUI ISQL tool

StorHouse/Admin provides
an Interactive SQL (ISQL)
tool for submitting SQL
statements to StorHouse.
The following list describes
what you can do with the
ISQL tool.

SQL-entry features:

= Submit a new SQL
statement, the previous
one, or the next one

= Save one or more SQL
statements as a script and
later load the script and
run it

Result set features:

« Save aresult set as a text
file on your computer or
network

= Print a result set

« Save aresult set as a
report and then load that
report as needed

General ISQL features:

Log an ISQL session to a
text file

Limit result sets to 100
rows or allow larger
results

Set options for scripts,
such as stop a script
when an SQL statement
fails or when no rows are
returned

Access online help for
StorHouse SQL

Administration 47

FileTek Proprietary and Confidential Administration 48

	Products and applications
	StorHouse as a hub server
	StorHouse as an active archive
	StorHouse as a database extension

	StorHouse databases
	StorHouse database user files
	StorHouse database system files

	User tables
	Integrity constraints on tables
	Views on tables

	Large objects
	In-line LOBs
	Out-of-line LOBs
	LOB loading and unloading
	LOB access

	Indexes
	Value index
	Hash index
	Range index

	User tablespaces
	Metadata
	System tablespaces
	System tables

	Storage management
	File management
	Volume management

	Backup
	Backup operations for segment files
	Backup utility for metadata

	Recovery
	Metadata recovery
	Segment file recovery

	Software architecture
	Client software
	Server software

	SQL
	Statements
	Predicates
	Functions

	ESQL
	Compiling an ESQL program
	Submitting queries with ESQL
	Checking the status of SQL
	Excerpt from an ESQL program

	Data loaders
	Loading with FTP
	Loading from MVS

	Data unloader
	The unload process

	ODBC interface
	Oracle access to StorHouse
	Supported ODBC drivers

	StorHouse/UDB Link
	How it works
	Partitioning data

	Queries
	Selection
	Join
	Extraction
	Subquery

	Concurrency
	Parallelism
	Locking

	Database security
	StorHouse accounts
	Security validation
	StorHouse privileges

	Administration
	StorHouse/Admin

