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Relativistic kinematics

4-momentum for a particle of mass m:
p=(E/c, px, py, pz)  where
total energy: E = γmc2 and p = γmv = γmβc

The line element is an invariant
If 4-vectors transform like ds, the scalar product of themselves is invariant
under Lorentz transformations: P = {Pt,Px,Py,Pz}
P2 = -Px

2-Py
2-Pz

2+Pt
2   or for 2 4-vectors PQ= -PxQx-PyQy-PzQz+PtQt

For the energy-momentum 4-vector:
In the rest frame E = mc2 ⇒P = (mc,0)⇒ P2 = m2c2. This is the same value it
has in any ref system:
P2 = (E/c)2-p2 = γ2m2c2– γ2m2v2 = γ2m2c2 (1– v2/c2) = m2c2

Hence the total energy is

22222 )()()()( dzdydxcdtds −−−=
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Lorentz transformation of
energy-momentum

Given a particle of energy E and  momentum p, the 4-momentum is  P=(E,p)

And P2 = m2  (c=1)
The velocity of the particle is β = p/E

The energy and momentum viewed from the frame moving with velocity βf is

p|| is the component parallel to βf

And p⊥ is the orthogonal one
€ 

E *
p*||
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CM and laboratory systems

Laboratory system

P1 = (ε1,p1)

P2 = (ε2,p2)

We have in a certain frame (laboratory) 2 particles with 4-momenta P1 and P2

What is the CM energy?
Let’s consider 3 invariants
P1

2=m1
2 P2

2=m2
2 [P1P2 or (P1±P2)2]

In CM:
p*1+p*2 = 0 Hence P*1+P*2 = (ε*1+ε*2, 0) = (E*, 0)
E*2 = (ε*1+ε*2)2 = (P*1+P*2)2 = (P1+P2)2

If M and P are the total mass and energy-momentum
P2 = (P1+P2)2 = M2 = E*2 and since it is an invariant
P2 = (ε1+ε2)2 - (p1+p2)2

Any 4-vector can be written as p = mvγ and ε = mγ
So for the tot momentum and energy  P = Mβγ and E = Mγ (we assume
c=1)⇒βCM = p/E and γCM = E/M

Collisions of 2 particles m1 and m2 at an angle of θ one respect to the other:
E* = P = [(ε1+ε2)2-(p1+p2)2]1/2 = [m1

2+m2
2+2ε1ε2(1-β1β2cosθ)]1/2

In a e+e- collider E1 = E2, m1 = m2= m << E, β1=β2≈1  θ = 180º ⇒ E* ~ 2E
In a fixed target experiment: m2 = M >> m1  and β2 = 0, E2 = M ⇒ E* ~ √(2EM)
E>>M

θ
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Examples
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Problem: suppose we move with particle 1, which is for us the energy of
particle 2?
In the rest frame of 1 (laboratory frame): p1 = 0 and ε1 = m1

⇒ P1P2 = invariant = ε1ε2– p1·p2 = m1ε2

So the energy of particle 2 in reference 1 is:
E21 = ε2 = P1P2/m1 that is also an invariant
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−
=−=p These expressions are invariant and

can be evaluated in any ref system



1/19/06 17

Examples
 2-body decay

Conservation of energy and momentum:

Eg
π→ µ + ν and mν = 0 (Eν = |pν|) 

€ 

mπ = Eν + Eµ = pν + pµ

2
+ mµ

2 ⇒ mπ
2 + Eν

2 − 2mπEν = pµ

2
+ mµ

2 ⇒ Eν =
mπ
2 −mµ

2

2mπ

=
mπ

4

€ 

pν = −pµ

€ 

M = E1 + E2 = p1
2

+ m1
2 + p2

2
+ m2

2 ⇒ M 2 + p1
2

+ m1
2 − 2M p1

2
+ m1

2 = p2
2

+ m2
2

p1 = −p2

€ 

E1 =
M 2 −m1

2 + m2
2

2M

p1 = −p2 =
[M 2 − (m1

2 + m2
2)][M 2 − (m1

2 −m2
2)]

2M
€ 

E1 =
M 2 + m1

2 −m2
2( )

2M

E2 =
M 2 − m1

2 −m2
2( )

2M

€ 

p1
2

= −p2
2

=
M 4 + (m1

2 −m2
2)2 − 2M 2(m1

2 + m2
2)

4M 2
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Reaction thresholds

mp,pp mt,pt s=Ecm
2    c=1

Energy of projectile to produce particles in the final state at rest

True in any reference system

€ 

t + p→ M1 + M2 + ...Mn

s = Mf = Etot
2 − ptot

2

f
∑

€ 

ptot = pp€ 

Etot = Ekin + m = p 2 + m2 ⇒ Ekin
2 + m2 + 2Ekinm = m2 + p 2 ⇒ 2Ekinm − p 2 = Ekin

2

€ 

Etot = mp + mt + Ekin,p

€ 

Ekin
2 = p 2 − 2Ekinm

€ 

Mf
f
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= (mt + mp + Ekin,p )
2 − pp

2

Mf
f
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2

= (mt + mp )
2 + Ekin,p

2 + 2(mt + mp )Ekin,p − pp
2

Mf
f
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 
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2

= (mt + mp )
2 + Ekin,p

2 + 2(mt + mp )Ekin,p − pp
2

= (mt + mp )
2 + 2mtEkin,p
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Ekin,p =

Mf
f
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2

− (mt + mp )
2

2mt

In the ref frame
where the target
is at rest
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Threshold for GZK cut-off [Greisen 66;
 Zatsepin & Kuzmin66]

Integrating over Planck spectrum Ep,th~ 5 ·1019 eV
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Energy of CMB photons: Energy of CMB photons: 

in frame where p is at restin frame where p is at rest

And their energy in the laboratory frame (rest frame of proton) is

MeV150== γγ εγ pE ⇒⇒γγpp= 2= 2·· 10 1011 11  and the threshold  and the threshold 
energy of the proton is then energy of the proton is then 
EEpp ~  ~ γγpp m mpp = 2  = 2 ··10102020  eVeV

γ

~
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Transformations of velocity

If a point has velocity u’ in the frame K’ the velocity u in K is given by

€ 

x = γ(x '+vt')⇒ dx = γ(dx '+vdt ')

t = γ t '+ vx '
c 2
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 
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 
 ⇒ dt = γ dt '+ vdx'

c 2
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dy = dy'
dz = dz'

€ 

ux =
dx
dt

=
γ(dx '+vdt')

γ dt '+ vdx '
c 2
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=
u'x +v

1+
vu'x
c 2

uy =
dy
dt

=
dy '

γ dt '+ vdx '
c 2
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γ 1+
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uz =
dz
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γ dt '+ vdx '
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θ’

x x’
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Transformations of velocity

Hence the generalization of these equations to an arbitrary velocity v not
necessarily along x can be stated in terms of components of u parallel and
perpendicular to v:

The directions of the velocities in the 2 frames are
related by the aberration formula

And the aberration of light is obtained for u’=c
€ 

ux =
dx
dt

=
γ(dx '+vdt')

γ dt '+ vdx '
c 2
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u|| =
u'|| +v

1 + vu'||
c 2
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     u⊥ =
u'⊥

γ 1 + vu'||
c 2
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tanθ =
u⊥
u||

=
u'⊥

γ 1+ vu'||
c 2
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1+ vu'||
c 2
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u'|| +v
 = u'sinθ '

γ(u'cosθ '+v)

€ 

tanθ = csinθ '
γ(c cosθ '+v)

=
sinθ '

γ(cosθ '+v / c)
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Aberration and beaming
Aberration is the apparent change in the direction of a moving object when the
observer is also moving
For θ’ = π/2
γ emitted perpendicular to v in K’

For highly relativistic speed γ>>1 and θ becomes small and θ ∼1/γ

In K photons are concentrated
in the forward direction. Very
few photons are emitted with
θ>>1/γ

€ 

tanθ =
sinθ '

γ(cosθ '+v / c)
=
c
γv

€ 

sinθ = tanθ
1+tan2θ

=

c
γv

1+
c
γv
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2
=

c
γ 2v2 + c 2

=
1

γ 2β 2 +1
=

1−β 2

β 2 +1−β 2
= 1−β 2 =

1
γ
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Aberration and beaming
If we are at rest in the spacecraft we see light coming from every direction from

stars, but if the spacecraft travels at relativistic speeds the whole field of view

Shrinks and even photons coming from behind, look as coming from the

forward direction. If the ship travels towards Orion…


