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OverviewOverview
Neutrinos and their properties (done)

Neutrino astronomy and connections to Cosmic rays and
gamma-astronomy

Neutrino sources and neutrino production

SN collapse and nutrino burst

Neutrino telescopes and detection technique

Search Methods

Current experimental scenario
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Astrophysical neutrinos: Sun and SN1987AAstrophysical neutrinos: Sun and SN1987A

Combined effect of nuclear fusion
reactions

http://www.nu.to.infn.it/Supernova_Neutrinos/#7

++→+ enpeν
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Neutrino FluxesNeutrino Fluxes

Atmospheric νs
νs from WIMP 
annhilation
Cosmic νs
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Astronomy with particlesAstronomy with particlesAstronomy with particles

 straight line propagation to point back to sources

 Photons: reprocessed in sources and absorbed by extragalactic
backgrounds

    For Eγ > 500 TeV do not survive journey from Galactic Centre

λ Protons: directions scrambled by galactic and intergalactic magnetic fields
(deflections <1° for E>50 EeV)

 Interaction length  p +p +  γγCMBCMB  →→  ππ + n + n
        λλγγpp  = (= ( n nCMBCMB  σσ )  ) -1-1    ~~ 10 10 Mpc Mpc

 Neutrons: decay γct ∼ E/mn ct ~10kpc for E~EeV
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ν
γ

p

Messengers from the Universe

Photons currently Photons currently 
provide all provide all 
informationinformation
on the Universe buton the Universe but
interact in sources interact in sources 
and during and during 
propagationpropagation
Neutrinos andNeutrinos and
gravitational wavesgravitational waves
have discovery have discovery 
potential becausepotential because
they open a newthey open a new
window on the window on the 
universeuniverse

pγ→ee p + γ →π + n
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 γ+IR→e+e-

γ+MW
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W49B

SN 0540-69.3
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E0102-72.3

Cas A

1 pc ~ 3 1 pc ~ 3 ly ly ~ 10~ 101818 cm cm
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Hillas Plot

R = acceleration site dimensions
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Neutrino production: bottom upNeutrino production: bottom up

Neglecting γ absorption
(uncertain) ϕν ∼ ϕγ
Targets: p or ambient γ

Beam-dump model: π0 → γ-astronomy  π± → ν-astronomy

0π ±π

γ

p

µνµ

µννee

τµνννe

Berezinsky et al, 1985
Gaisser, Stanev, 1985
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From photon fluxes to From photon fluxes to νν predictions:pp predictions:pp
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From photon fluxes to From photon fluxes to νν predictions: p predictions: pγγ
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Astrophysical NeutrinoAstrophysical Neutrino
OscillationsOscillations

If θ13 =0 ⇒ c13 = 1 and s13 =0 and δ = 0  and for normal hierarchy
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θ12 ≈ 35deg⇒ csol = 0.82 and ssol = 0.57
θ23 ≈ 45deg⇒ satm = catm =1
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Astrophysical Neutrino OscillationsAstrophysical Neutrino Oscillations
Hence for astrophysical sources L>kpc: the uncertainties on distances to
sources and on their dimensions eliminate the effect of the phase term.

40%40%40%40%20%20%ννττ

40%40%40%40%20%20%ννµµ

20%20%20%20%60%60%ννee
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But: energy losses in sourcesBut: energy losses in sources
At high energy this ratio modifies into 1:1.8:1.8 since pions/muons may

suffer significant energy losses prior to decay. Since pion lifetime

< muon one                  , it can decay more easily before losing

significant energy compared to muons. This leads to a suppressed
contribution of νe and νµ from µ decay. When muons do not decay at

source 0:1:0 and the ratio is modified by oscillations into 1:1.8:1.8.

Transition at about 106 TeV for AGNs, for GRBs associated to collapse

of massive stars transition at 1 TeV due to intense inverse Compton

losses

 (Kashti & Waxman, PRL95 (2005))

∈0 = energy at which
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Neutrino production: top downNeutrino production: top down
Decay of neutrons in sources
Decay or annihilation of supermassive relic of Big Bang 1024 eV = 1015 GeV
~ MGUT (monopoles, topological defects, vibrating strings…)
Resonant UHE neutrino interactions on relic neutrinos (Z-bursts)

Guaranteed neutrinos: GZK Guaranteed neutrinos: GZK ννss
UHECR produce UHECR produce ππs s →→ννss

ννs from CR interactions in thes from CR interactions in the
 Galactic plane Galactic plane

Can explain EHECRCan explain EHECR

Gelmini et al, PRD70, 2004
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Supernovae and gravitational collapseSupernovae and gravitational collapse
Stars are in hydrostatic equilibrium: equilibrium between the gravitational force
towards the core and the pressure opposing to I: For spherical symmetry:

The layer between r and r+dr contains dm(r ) = 4πr2 ρ(r ) dr
The gravitational force on this layer is:

While the pressure force is:

Mass inside radius r= distance
from the centre of the star

density
Pressure

€ 

Fgrav = −G M(r)dm(r)
r2

€ 

P(r) − P(r + dr)[ ] × (4πr2) =
dP
dr

× (4πr2dr)

CVDCVD
http://www.nu.to.infn.it/Supernova_Neutrinos/
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Pressure in starsPressure in stars
In normal stars the source of pressure is the thermal motion of the material. In

degenerate stars (n stars or white dwarfs) it is a quantum mechanical effect.

Given Heisenberg uncertainty principle

A particle cannot be compressed in a volume (Δx)3 without having a

Momentum

For a system of N particles confined in a volume Vwith particle density n = N/V
Each particle has an available volume of (Δx)3 ~ 1/n and so a momentum
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The The Chandrasekar Chandrasekar massmass

In the non relativistic case:

In the relativistic case:

In the non relativistic case the total energy is

The equation has the form:
That has a min for

For R>R* the gravitational effect dominates and the system contracts.
For R<R* the repulsive effect of the Fermi momentum dominates
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The The Chandrasekar Chandrasekar massmass

When N increases the system becomes unavoidably relativistic:

And the total energy is:

This equation has no equilibrium position. The energy is positive or negative.
For N sufficiently small E>0 and the repulsive effect wins and the star expands
until it becomes non relativistic. For N sufficiently large the system collapses to

R->0.
The critical condition that separates the collapse from the existence of a stable
solution is

And if fermions have nucleons

€ 

R*→ N−1/3 and 
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The The Chandrasekar Chandrasekar massmass
A  more detailed calculation includeing the density  profile of the star would give

Which is the max mass of a Carbon white dwarf (in this case the pressure is generated
by electrons that have a smaller mass and so a larger velocity for the same momentum
and a larger pressure P.
The corresponding radius is given by the condition where fermions become relativistic

  

€ 

p ≈ mc ≈hN
1/3

R*
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Core CollapseCore Collapse
A star passes most of its lifetime burning H (main sequence). The resultingA star passes most of its lifetime burning H (main sequence). The resulting

He builds up in the core and its mass increase, heating and contracting underHe builds up in the core and its mass increase, heating and contracting under

the pressure of outer layer. The star contraction pauses as nuclear fusionthe pressure of outer layer. The star contraction pauses as nuclear fusion

provides the energy necessary to replenish the energy the star loses inprovides the energy necessary to replenish the energy the star loses in

radiation and neutrinos.  When the T in the core is sufficiently large, Heradiation and neutrinos.  When the T in the core is sufficiently large, He

burning begins. After He burning the evolution is greatly accelerated byburning begins. After He burning the evolution is greatly accelerated by

neutrino losses The scheme repeats for different stagesneutrino losses The scheme repeats for different stages

Million yrsMillion yrs

Few weeksFew weeks


