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Einstein’s special and general relativity

Special relativity

main motivation: express physical laws in an independent way from the

reference frame of the observer. Absolute Newtonian concepts of space and

time are inadequate to include gravitation

2 principles:

1) All inertial observers are equivalent

2) The velocity of light c is the same in all inertial frames

Redefinition of space an time in accordance with Lorenz transformations: for 2

inertial frames in relative motion with velocity v along x

But gravity cannot be accommodated in framework of special relativity



General relativity
The equivalence of gravitational and inertial mass leads to an understanding of
gravity as the physical manifestation of the curvature of space-time
Space curvature is associated with the energy-stress tensor of matter fields:

Where Gµν = Einstein tensor = Rµν - 1/2gµνR-Λgµν

With gµν=space-time metric
Tµν = stress-energy tensor of matter fields
GN = Newton gravitation constant
Rµν is the Ricci tensor that can be obtained from the Riemann tensor that tells
how much the direction of a vector changes when it is parallel transported
around a closed curve  (zero for flat space-time) and the metric as Rµν = gαγRαµγν

And the Ricci scalar R = gµνRµν

The Einstein tensor is a complicated non linear function of the metric and its
derivatives (10 non linear partial differential equations for the metric)



Minkowski metric
Einstein equations are both field equations (matter tells space-time how to
curve) and motion equations (tell how matter moves)
At lowest order they imply that matter follows geodesics in space-time (the
shortest possible line on a curved surface)
Lorentz transformations leave invariant ds2 = (dx0)2 - (dx1)2 - (dx2)2 - (dx3)2

(and also the velocity of light)
The 4-dimensional metric is

And 4-vectors

Weak gravitational waves can be seen as small perturbations of the
Minkowski space-time. The proper distance between events

is

hµν = linearized gravitational field

€ 

ηµν =

1 0 0 0
0 −1 0 0
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xµ =ηµν x
ν

ds2 = dxµdxµ = dxµdx
µ



Analogy to em waves
In elecromagnetism a 4-potential is introduced Aµ = (Φ, A) and a tensor

(*) Fµν = ∂µAν - ∂νAµ so that Maxwell equations can be summarized by

∂µFµν = jν with jν = (ρ,j) current 4-vector

Since (*) is unchanged under a gauge transformation
Aµ → Aµ + ∂f(r,t)

We can use this freedom to impose a gauge condition on Aµ eg. A0 = 0 and
∂νAν = ∇⋅ A = 0  that lead to a simple wave equation

� Aµ = 0 (Dalambertian or wave operator ∂t
2 - ∂x

2 - ∂y
2 - ∂z

2 ) that has solutions

of the form

Where the gauge conditions translate into ε0 = 0 and k⋅ε=0 showing that the 2

degrees or freedom are traverse to the direction of propagation€ 

Aµ (r, t) = εµe±i(ωt−k ⋅r ) = εµe±ik µ xµ



Gravitational waves
For gravitational wave, inserting the first order expansion of the metric tensor

field

And inserting it in the Einstein equations for vacuum (Tµν = 0) we find that the

Ricci tensor Rµν = 0. Writing it in terms of the perturbations hµν leads to a
simple wave equation �hµν= 0 with similar solutions to em waves:

As em waves do, also gw propagate at the velocity of light (if the graviton exists

it is massles like the photon)

If we choose the z direction as the direction of propagation we find 2 possible

polarization states and a plane gw can be written as

describe the 2 polarization states of
the gw

€ 

gµν =ηµν + hµν

€ 

hµν = Eµν cos(ωt −k ⋅ r)



The 2 polarizations



How is space distorted by a gw?

A unit circle in the xy plane is distorted by the h+ type: the distance between 
2 points on the x axis is larger by h+/2 and that of 2 points on y is smaller by the 
same amount 
For the hx type the same happens rotating the system by π/4 around the z axis
The amplitude of oscillations of h is 

ε is a number <1



Interaction of GW

The distorsion of the circle into an ellipse oscillates with time according to

Waves squeeze and stretch freely

floating objects

€ 

hµν = Eµν cos(ωt −k ⋅ r)

€ 

hµν = Eµν cos(ωt −k ⋅ r)



Quadrupole approximation
Analogous to em: monopole moment = total charge = const ⇒ no radiation

Dipole:                                              ρ = charge density xi = spatial coordinate

If it is time dependent the amplitude of waves ∝ ddi/dt and radiated energy

∝ ∑ |d2di/dt2|2 .

For general relativity the equivalent of the monopole is the mass-energy (the

source of gravitational field constant as long as the radiation is weak) and for
the dipole ρ = density of mass-energy

v is the velocity

To lowest order it is constant and there is no energy radiated (it reflects the fact

that the source is moving in space).

To find radiation one should consider the quadrupole terms



Quadrupole formula
As in em, the amplitude of the radiation is ∝ to

A factor GN/c4 is needed for making h adimensional

Einstein equation

has solutions                                                 quadrupole radiation formula

If the source is highly non-spherical such as binary systems

has magnitude

Hence

N



Amplitude of GWs
For n star of radius R and frequency f and a bump of mass m:

       The radiation amplitude is

For a binary system (the dynamical f
is about 2 f gw) of 2 stars of
mass M and R is the semimajor orbit axis

Internal gravitational potential of r=distance observer-source
the system for a binary system  grav. potential of the system

 at observer location

The luminosity of a source is
Sun luminosity

is an upper limit since the other factor <1



Binary star system
2 n stars of 1.4 solar masses separated by 90 km at 15 Mpc distance

(approximately distance of centre of Virgo cluster of galaxies). The evolution

driven by gw emission is:

- inspiral phase: orbit shrinks as gw carry off energy and angular momentum

- eventually driving the 2 star to merge

- end product of the merger is a highly distorted star or a BH

Amplitude

Frequency

Duration of the source



Examples



Do GW exist?
The fact that binary systems lose energy

emitting gravitational radiation has

turned out to be a useful tool for testing

Einstein’s theory of relativity.

1974 Hulse & Taylor discovery of the 1st

binary pulsar PSR 1913+16 with the

300 m radio telescope at Arecibo, Puerto

Rico: 2 n stars with 1.4 Msun and

orbital period 0f 7.5 hrs. It was found that

the orbit period is declining by about

1/75e6 of a second/yr. They reported a

systematic shift in the observed time of

periastron relative to that expected

if the orbital separation remained

constant.



Do GW exist?
In 1982 the pulsar was arriving at its periastron more than 2 s earlier compared

to 1974. The orbit shrinks by 3.1 mm/orbit and the 2 stars will merge in

300e6 yrs
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Signal frequency
ρ is the mean density of mass-energy

Neutron Star: M = 1.4 Msun and R = 10 km f = 1.9 kHz

BH: 10 Msun and radius 2GM/c2 = 30 km it is f0 = 1 kHz

For a large BH of 2.5e6 Msun (like the one in the centre of the Galaxy) 4 mHz

Mass-radius plot



The signals for ground based detectors



And for space interferometers (LISA)



Sources and experiments

Detection via their
Inprint in CMB

10-4



The noise and sensitivity
2  noise, which competes with the actual gw signal by causing motion of

experimental setup. A form of displacement noise is thermal noise
- sensing noise associated with the conversion of a small displacement into a

readout signal

The output of gw detectors is a time series s(t) that includes instrument noise
n(t) and the response to the gw signal h(t)

Strain amplitude spectral density

Fourier transform of the time series:

Characteristic strain = rms signal in frequency interval of width Δf = f centered
Around f



Operation of bar detectors
When a GW passes through an object it exerts a tidal force causing its
deformation. If the object is vibrating at a characteristic resonant frequency the
deformation will appear as a deviation from its resonant ringing.
It is typically a massive cylinder of several tons. By measuring the acoustic
signal at the ends of the bar the gw can be detected at around 700-900 Hz with
band widths typically of 50 Hz.
Their sensitivity is sufficient to detect gravitational wave bursts that occur in the
Galaxy.
Main noise: thermal motion of atoms the cause bar vibrations and ability to
convert acoustic signals into electric ones. To suppress thermal noise bars are
cooled at very low temperatures from several K to 0.1 °K.
At room temperature the rms amplitude of oscillation due to thermal noise is

~10-16 m

Also CR are a background.



Detectors: antenna bars

1966:
Pioneering
Antenna
h= 10-16

http://sam.phys.lsu.edu/Overview/history.html



The world antenna bars in operation



Scheme

http://www.auriga.lnl.infn.it/auriga/detector/overview.html



Transducer and the readout
The conversion of the mechanical vibration into an usable electromagnetic
signal is accomplished by the transducer. Eg. A capacitive transducer is a plane
plate capacitor with unperturbed capacitance C0 biased at constant E0 attached
to 1 of the bar end faces. The other plate is fixed to a resonant body having the
same frequency of the bar.
The bar-transducer system behaves as the system of two tuned harmonic
oscillators coupled together: within a beat time the elastic energy of the main
resonator is transferred to the lighter transducer producing a resonant plate
displacement larger than the bar displacement by a factor equal to the square
root of the bar-transducer effective mass ratio.
Any displacement x(t) of the bar end face produces a modulation of the
transducer capacitance C(t): at first order in x(t) the voltage signal V(t)
developed across the capacitor is:V(t)=Q(t)/C(t) ~ E0 x(t) + q(t)/C0

Where q(t) is the time dependent transducer mass. The signal is then amplified
by a SQUID (superconducting quantum interference device) for readout of the
magnetic flux with low noise



Antenna characteristics



Detection with interferometers
Most promising technique use laser interferometry of the Michelson type
Light from a powerful laser is split into 2 long orthogonal paths and reflected
against mirrors attached to test weights at the end of the arms. The 2 returning
light beams are made interfere with each other creating interference fringes
which would be stationary if the test bodies are at rest and their distance=const
A GW would cause
 a shift in the
interference
pattern. Cavities are
resonant Fabry-Perot:
light is allowed to travel
many times through
mirrors increasing the
number of photons in
the beams allowing
a higher resolution
Accuracy of 10-18 m
can be achieved


