
Range of a force

Elastic scattering of A and B via the exchange of X. In the rest frame of A the

lower vertex represents the virtual process

` The energy difference between the initial and final states is:

So the energy is violated (ΔE ≥ MXc2 for all p) for a
time τ ≈h/ΔE and the maximum distance over which X

can propagate is called the range of the interaction
R = cτ ≈ h/(MXc)

Eg for em interactions it is infinite since the photon is massless. For weak

interactions propagated by massive bosons (MW = 80.6 GeV/c2 and MZ = 91.2

GeV/c2 RW = 2 10-3 fm (1 fm = 10-15 m))
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Particle exchange
 Considering the exchange of a spin-0 boson X obeying the Klein-Gordon
equation:

For static solutions the 
equation is
(*)

and the solution is the static
potential. For MX = 0 the
equation is that obeyed by the

electrostatic potential and for a charge e- interacting with a charge e+ at the
origin the solution is where r = |x| and the general solution

of (*) is the Yukawa potential
     with R = h/(MXc). The coupling constant that 
     characterizes the strength of the interaction is

Yukawa firstly introduced in 1935 the idea of forces exchanged by massive
particles
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Rates and Cross section
In a typical scattering experiment an ideally monoenergetic  beam of particles is
directed on a target and the rates of production of various particles is measured
The rate per unit area (flux) at which beam particles cross a small surface
placed in the beam at rest respect to the target and perpendicular to the beam
direction is J = nb vi, with nb = density of beam particles and vi = their velocity in
the rest frame of the particle. The rate at which a reaction r occurs is Wr = JNσr

N = number of particles in the target illuminated by the beam
Where σr = cross-section for reaction r and              is the total cross section
L = JN is the luminosity.
The rate per target particle Jσr at which the reaction occurs is equal to the rate
at which beam particles would hit a surface area σr placed in the beam at rest
with respect to the target and perpendicular to the beam direction. The area is
unchanged by a Lorentz transformation in the beam direction, it is the same in
the laboratory or the CM frames.
The total reaction rate is W = JNσ. Since every reaction removes a particle from
the incoming beam, σ determines how the beam intensity is reduced after
crossing a target.
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Total Cross section
The reduction in the intensity of the beam of cross-sectional area A crossing a
segment of the target of thickness dx at a distance x within it is equal to the
interaction rate in the segment:

Where dJ is the change in the flux J(x) between x and x+dx.
The rate is also given by

Where N = nt dV = nt A dx and nt = density of particles in the target
Hence

Integrating and considering that the initial incident flux is J(0) = Ji:

lc = collision length = 1/(ntσ)
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Differential Cross section
Let’s consider the angular distribution of the particles produced in a scattering
reaction. The scattering angle θ is the angle between the beam direction and
the particle direction in an elastic scattering (eg                           and the
production angle in an inelastic one                                )
The angular distribution of the chosen particle (π- or K0) produced in a 2-body
reaction r is described by the differential cross section defined by:

Where dWr is the measured rate for the particle to be emitted into an element of
solid angle dΩ = dcosθdφ in the direction (θ,φ). The relation between the
reaction cross section and the differential one is

Most times experiments are done using unpolarized beams (no spin
dependence and cylindrical spin around beam direction) and unpolarized cross
sections are independent on φ

€ 

π− + p→π− + p

€ 

π− + p→K 0 + Λ

€ 

dWr ≡ JN
dσ r (θ,φ)
dΩ

dΩ

€ 

σ r = dφ
0

2π
∫ dcosθ

−1

1
∫ dσ r (θ,φ)

dΩ



Scattering Amplitude
We can relate the cross-section to a probability of transition from an initial state

i to a final one f. Let’s consider a single beam particle interacting on a single

target particle and let’s confine the system in a cube of side L and volume

V =L3. The incident flux is J = nbvi = vi/V (since N=1). Hence the measured rate

is:

Let’s consider the scattering of a non-relativistic particle by a potential V(x).

The initial state is described by the wavefunction:

And the final state

Where the final momentum qf lies in a small solid angle dΩ in the direction

(θ,φ). In non-relativistic quantum mechanics the transition rate is:

with ρ(Ef) = density of final states

And defining the scattering amplitude associated to the potential (Fourier

transform of the potential) Mif:
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Scattering Amplitude

Defining the momentum transfer q= qf - qi the scattering amplitude associated

to the potential (Fourier transform of the potential) is:

where g0 is the coupling strength of the particle to the potential
For a central potential, in spherical coordinates V(x ) = V(r ), q·r = qrcosθ and

dVol = r2drdφsinθdθ  and R = h/mc
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The cross section is the product of |f|2 times a phase space factor divided by the
incident flux
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Rates and Cross section
The density of the final states can be found considering that the possible values
of the momentum (for the particle in V=L3) are qx,y,z=(2π/L)nx,y,z with nx,y,z

integers and the number of states with momenta in the momentum space
volume                        (momenta pointing into the solid angle dΩ with

magnitude between q, q+dq) is

The cross section provides the probability of occurrence of an interaction
Typically measured in units of barn: 1 barn = 10-24 cm2 = 10-28 m2

The interaction length is λI = 1/(nA σtot) = A/(NAρ σtot) where
nA = NAρ/A = reciprocal of atomic volume
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The 4 known interactions
Electromagnetic: electrons are bound in atoms by it. Its strength is governed by

the fine structure constant (as all the other coupling constants, it ‘runs’ - 
             increases -with the energy eg at 100 GeV αem ~1/128).

The spin 1 bosons carrying the force are photons.

The weak force is responsible of the β-decay of nuclei and its coupling constant

is: with θW = Weimberg angle and sin2 θW ~0.23

The fact that these 2 constants are of the same order of magnitude is related to

the fact that they are unified in the SM (electroweak interactions) and the

corresponding quantum theory is called QED (quantum electrodynamics).

Before it was known that W,Z (spin 1 bosons) existed, Fermi described weak
interactions (β-decay ) as a pointlike interactions with the Fermi constant
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The 4 known interactions
Hadrons (e.g. the n and p) are made of quarks that exist only in their bound
states and are bound together by the strong interactions. They bounds nucleons
in nuclei. The coupling constant runs faster (decreases) with energy than em int.
At few GeV:
Quarks interact via the exchange of mediating bosons called gluons. While in
QED there are two kind of charges (+ and -), in the theory of interquark forces
(QCD = quantum cromodynamics) there are 6 kinds of strong charges called
colors (quarks can carry 3 kind of colors - red, green, blue - and antiquarks
3 kinds of anticolors). Gluons are the carriers of the strong force.
The potential between 2 quarks can be described by:

the 1st  term dominates at small distances and arises from
single gluon exchange (similar to Coulomb potential -α/r). The 2nd is associated
to confinement of quarks at large distances. Because of this term,attempts to
free a quark from a hadron results in production of        pairs. The lines of force
of the color field are pulled together by a strong gluon-gluon interaction forming
a flux tube or string. Pulling it out, the stored energy kr reaches a point that a
couple           can be created.
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The 4 known interactions
In QCD the interactions between quarks are represented by the running const.
αs(q2): for q2 →∞ αs(q2) → 0 quarks behave as free  (asymptotic freedom, 2004
Nobel prize to Gross, Politzer, Wilczek) eg in parton
model interactions on single quarks are considered.
The opposite behavior respect to α is due to the fact
that gluons carry the color charge while the photon is
neutral.
An electron can emit a photon that annihilates in a e--e+

pair, so the electron is surrounded by a cloud of charges (the positive ones are
attracted closer to the electron) and his charge is partially screened. This is why
α increases with increasing energy (decreasing distance) because the closer
one approaches the electron the larger the charge one measures. A similar
screening effect occurs for q-anti-q pairs. However gluons carry color and
an anticolor charge, and the effect of couples of virtual gluons is a resulting
antiscreening that leads to the asymptotic freedom.

In addition there exists gravity. Considering the proton mass
KM2/(4πhc) ~ 10-40. The graviton has not been discovered yet.



How good is QCD?

Notice: hadrons are color neutral states. Gluons have zero mass hence the
force between quarks must be of long range. This does not imply that forces
between hadrons are also long range, because hadrons have zero color
charges overall. The forces between colorless hadrons are the residues of
forces between their quark constituents, and cancel when hadrons are far
apart.



Operators and conservation laws
In quantum mechanics (Emmy Noether 1918) any invariance in equations
under a continuous change of variables is related to a conservation law.
The existence of conserved quantum numbers can be traced back to an
invariance of the theory under some set of transformations.
Translational invariance ↔ linear momentum
Rotational invariance ↔ angular momentum
Invariance under gauge transformations ↔ electric charge
Given an em field described by the potentials (φ,A) the electric and magnetic
fields are unchanged under
Where f is an arbitrary scalar function.
Other types of transformations (acting on internal degrees of freedom) lead to
conserved quantum numbers such as baryon and lepton numbers but these
Conservation laws may not be absolute: eg for barion number defined as
B = [N(q)-N(q)]/3 (for barions made of 3 quarks = 1)
Exercise 2:
• What is violated?
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The building blocks of matter and
interacting forces



Leptons
They are spin 1/2 fermions without strong interactions

They occur in pairs called generations (also the corresponding antileptons

exist): each generation has a conserved quantum number called lepton number
Le = N(e-) - N(e+) + N(νe) - N(νe)

so that Le = 1 for
electrons and νe

-1 for positrons and νe

0 for other particles

Similarly
Lµ = N(µ-) - N(µ+) + N(νµ) - N(νµ)

Lτ = N(τ-) - N(τ+) + N(ντ) - N(ντ)

Neutrino oscillations violate lepton number

conservation
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Lepton masses
Trizium β-decay

from π decay

from
Notice that these are upper limits on flavor eigenstates that are related to mass

eigenstates by

Eg. In the β-decay of trizium νe are produced and

is constrained. This provides independently on the mixing parameters |Uei|2 a
limit on the minimum value                             but only knowing all        and

allows to determine the individual masses
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Quark masses

Discovered in 1995
at Tevatron

Quarks exist inside hadrons not as free states, therefore
masses cannot be measured directly but can be inferred
through their influence on hadronic properties They have
fractional charges -1/3 and 2/3. In 1964 Zweig and Gell-
Mann independently noted that hadrons can be considered
as bound states of these quarks
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Hadrons: barions and mesons
Baryons = qqq Mesons = qq color neutral states
Baryon decuplet JP = 3/2+ and octet JP = 1/2+

Meson octet JP = 0-

(J is the angular momentum, P the intrinsic parity
 = parity of the particle at rest)

P is a unitary operator such that P Ψ(r ) → Ψ(-r ) conserved in strong and em
interactions. Fermion and antifermion must have opposite parity (from Dirac
equation). Leptons have parity 1 and also quarks. Parity of mesons is
PM = PqPq(-1)L = (-1)L+1  L=orbital angular momentum
(-1)L is the parity of the space part of a wave function

The eightfold way

S=1

S=0

S=-1

Q=-1 Q=1



Hadron quantum numbers

Each strongly interacting particle (hadron) is characterized by its mass and

several quantum numbers: spin-parity JP (eg proton 1/2+ has spin 1/2 and

parity +1) and internal quantum numbers, eg electric charge, baryon number B,

Strangeness S, charm C, beauty B, truth T which are conserved in strong and

em interactions. These are additive quantum numbers that can be found by

adding together the contributions from quarks and anti-quarks. T= 0 for all

known hadrons since till now no hadron has been found containing a t quark.

In 1932 Heisenberg suggested that n and p are different charge substates of

the same particle, the nucleon to which a quantum number, the isospin, is

ascribed. For the nucleon I = 1/2 and the 2 substates have I3 = +1/2 (proton)

and -1/2 (neutron). Strong interactions conserve the isospin (they are invariant

under rotations of the length of the isospin vector). It is found that

Q/e = I3 + B/2+S/2
Eg the pion is an isospin triplet with I = 1 and 3 substates π+, π0, π-

(K0,K+) is a doublet with S = + 1 and (K-,K0) with S = - 1 and I=1/2


