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Energy loss of charged particlesEnergy loss of charged particles
Charged particles interact with a medium via em interactions by the exchange
of photons. If the range of photons is short, the absorption of virtual photons
constituting the field of the charged particle gives rise to ionization of the
material. If the medium is transparent Cherenkov radiation can be emitted
above a certain threshold. But also sub-threshold emission of electromagnetic
radiation can occur, if discontinuities of the dielectric constant of the material
are present (transition radiation). The emission of real photons by decelerating
a charged particle in a Coulomb field is called bremsstrahlung.
Bethe-Block: mean energy loss
in scattering of charged particles off
electrons in a medium (MeV/g/cm2)
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Collision energy loss of massive charged particlesCollision energy loss of massive charged particles
 textbook: Leroy- textbook: Leroy-RancoitaRancoita

For an incoming particle of mass m>me, velocity v = βc and charge z the
energy loss by collision is given by the Bethe-Block formula

Where n = # of electrons/cm3 of the material = (ZρNA)/A (A,Z=atomic weight
and number)
I = 11.5 Z (eV) = mean excitation potential of the atoms in the material
Tmax = max transferable energy from the incident particle to atomic electrons
                                 and for m>>me

δ = density effect correction
U = shell correction term (important for low kinetic energies of incoming

particle related to the non-partecipation of inner shell (K, L, …) electrons
For heavy particles dE/dx is called stopping power
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Derivation of the formulaDerivation of the formula

Incoming particle of charge ze and velocity v

Atomic electron 
Almost at rest

B = impact parameter

If the electron is at rest the transferred impulse is ortogonal to the
particle direction of motion and the magnitude of the Coulomb force along the
perpendicular direction is
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Since the interaction time
is ≈ b/v the transferred
momentum is

If relativistic corrections are
accounted for

And the electron kinetic energy
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Energy loss by collisionsEnergy loss by collisions

b

db

Incoming particle

The number of electrons encountered 
between b and db is n(2πb)dbdx
and the overall electron kinetic energy is
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And the energy lost by the particle per unit path is

and integrating in the range of impact parameters:
bmax= collision time cannot exceed the typical period of
                  bound electrons on their orbit τ ≈ 1/ν with

     ν mean frequency of excitation of electrons.
The region of space at the maximum field strength is relativistically contracted,
hence τ ≈ 1/ν ≈ bmax/γv and introducing the mean excitation potential I = hν ⇒
bmax = γvh/I.
bmin is evaluated considering the extent to which classical approach (not wave)
can be adopted bmin ≈ h/pe  ⇒ bmin = h/(2meγβc) where the max momentum the
electron can acquire is 2mev
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Energy loss by collisionsEnergy loss by collisions
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This is the energy loss formula except for some correction terms

where classical radius of electron re = e2/(mec2)
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BetheBethe-Block-Block
Stopping power of positive muons in copper vs βγ = p/Mc. The slight dependence on M
at highest energies through Tmax can be used for PID but typically dE/dx depend only on
β (given a particle and medium)

At low β -dE/dx ∝ 1/β2

decreases rapidly as β
increases. At relativistic
velocities β≈ 1 and
reaches a min at βγ ≈ 3
(a particle at the energy
loss min is called mip).
Beyond the min the energy
loss increases logarithmically
(due to the increase of
Tmax and bmax).
However as the range of
distant collisions extends,
the atoms close to the path
of the particle will produce a polarization which results in reducing the electric field
strength acting on electrons at large distances Density effect: δ/2
The relativistic rise depends on ln(βγ) but in the ultrarelativistic region only on lnγ hence
on the particle mass (used for PID)


